系统辨识 第2章 系统描述与辨识模型
系统辨识

1. 模型与系统1)模型:把关于实际系统的本质的部分信息简缩成有用的描述形式。
它用来描述系统的运动规律,是系统的一种客观写照或缩影,是分析、预报、控制系统行为的有力工具。
模型是实体的一种简化描述。
模型保持实体的一部分特征,而将其它特征忽略或者变化。
不同的简化方法得到不同的模型。
2)系统:有些书里也称为过程,按某种相互依赖关系联系在一起的客体的集合。
本身的含义是比较广泛的,可以指某个工程系统、某个生物学系统,也可以指某个经济的或社会的系统。
这里所研究的“对象”是抽象的,重要的是其输入、输出关系。
2. 残差和新息1)新息(输出预报误差):是过程输出预报值与实测值之间的误差。
(P13)过程输出预报值: 输出预报误差: 过程输出量: 2)残差:是滤波估计值和实测值之差。
3. 系统可辨识的条件最小二乘方法满足开环可辨识条件;激励信号是持续激励,阶次至少要(na+nb+1)阶。
可辨识条件:为了辨识动态系统,激励信号u 必须在观测的周期内对系统的动态持续地激励。
满足辨识对激励信号最起码的要求的持续激励信号应具备的条件,称“持续激励条件”。
4. 建立数学模型1)建立方法:①理论分析法:机理法或理论建模,“白箱”问题②测试法:系统辨识,“黑箱”问题③两者结合:“灰箱”理论问题2)基本原则:①目的性-明确建模的目的,如控制、预测等。
因为不同的建模目的牵涉到的建模方法可能不同,它也将决定对模型的类型、精度的要求。
②实在性-模型的物理概念要明确。
③可辨识性-模型的结构要合理,输入信号必须是持续激励的;另外数据要充足。
④节省性-待辨识的模型参数个数要尽可能地少。
以最简单的模型表达所描述的对象特征。
5. 辨识:就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。
1)试验设计:包括输入信号(幅度、频带等)、采样时间、辨识时间(数据长度)、开环或闭环辨识、离线或在线辨识(P19)目的:使采集到的数据序列尽可能多地包含过程特性的内在信息。
系统辨识方法

系统辨识方学习总结一.系统辨识的定义关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。
L.Ljung也给“辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。
出了一个定义:二.系统描述的数学模型按照系统分析的定义,数学模型可以分为时间域和频率域两种。
经典控制理论中微分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程和离散状态空间方程也如此。
一般在经典控制论中采用频域传递函数建模,而在现代控制论中则采用时域状态空间方程建模。
三.系统辨识的步骤与内容(1)先验知识与明确辨识目的这一步为执行辨识任务提供尽可能多的信息。
首先从各个方面尽量的了解待辨识的系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。
对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。
(2)试验设计试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。
主要涉及以下两个问题,扰动信号的选择和采样方法和采样间隔(3)模型结构的确定模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的,对所辨识系统的眼前知识的掌握程度密切相关。
为了讨论模型和类型和结构的选择,引入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。
所谓模型结构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。
在单输入单输出系统的情况下,系统模型结构就只是模型的阶次。
当具有一定阶次的模型的所有参数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。
(4)模型参数的估计参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶段就称为模型参数估计。
(5)模型的验证一个系统的模型被识别出来以后,是否可以接受和利用,它在多大程度上反映出被识别系统的特性,这是必须经过验证的。
第02讲系统辨识三要素

第02讲系统辨识三要素系统辨识是指通过对系统输入和输出数据的观测和分析,求解出系统的数学模型的过程。
系统辨识主要有两种方法:非参数辨识和参数辨识。
在进行参数辨识时,需要确定三个基本要素,分别是模型结构、参数估计方法和误差分析方法。
本文将详细介绍这三个要素。
首先,模型结构是系统辨识的核心要素之一、模型结构决定了辨识出的数学模型与实际系统之间的对应关系。
模型结构的选择需要根据实际问题和已有的知识和经验来确定。
常用的模型结构包括线性模型、非线性模型、时变模型等。
例如,对于一个物理系统来说,可以尝试使用一阶惯性环节、二阶惯性环节等常见的线性模型结构进行辨识;对于一个生物系统来说,可以采用Lotka-Volterra模型等非线性模型结构进行辨识。
选择合适的模型结构可以提高系统辨识的精度和可靠性。
其次,参数估计方法是指在给定模型结构的情况下,通过对系统输入和输出数据进行处理和分析,求解出模型参数的过程。
参数估计方法分为两类:最小二乘法和最大似然法。
最小二乘法通过最小化观测数据与模型预测数据之间的残差平方和来估计模型参数;最大似然法通过最大化观测数据的似然函数来估计模型参数。
当观测数据服从高斯分布时,最小二乘法和最大似然法等效。
参数估计方法的选择需要根据数据性质和实际问题来确定。
对于小样本数据,最大似然法常常具有更好的效果;对于大样本数据,最小二乘法通常是更好的选择。
最后,误差分析方法是指用来评估辨识结果的准确性和可信度的方法。
误差分析方法主要包括残差分析、模型检验和辨识结果评价等。
残差分析是通过分析辨识结果与观测数据之间的差异来评估模型拟合程度的方法。
模型检验是通过将辨识结果应用到实际应用中,观察其预测能力和鲁棒性来评价模型的有效性。
辨识结果评价是通过计算模型的性能指标,如均方误差、决定系数等来评估辨识结果的准确性和可靠性。
误差分析方法的选择需要根据实际问题和辨识结果的要求来确定。
对于较为简单的问题,可以选择较为简单的误差分析方法;对于复杂的问题,需要选择更为精确和全面的误差分析方法。
系统辨识课件2 西工大

公式法求g(τ)公式组 公式法求g(τ g(
N 1 g (τ ) = Rxy (τ ) + g0 2 N +1 a Δ
N 1 g0 = N + 1 a 2Δ2
∫
NΔ 0
R xy (τ ) dτ
∫
NΔ 0
Rxy (τ ) dτ ≈ Δ∑ Rxy (i )
i =1
N −1
1 R xy (τ ) = N
其中:
R x2 (τ ) = − a 2 / N R 1 (τ ) = R x (τ ) − R x2 (τ ) x
N 2 τ a (1− ) −∆ <τ < ∆ ∆ = N +1 ∆ ≤τ ≤ (N −1)∆ 0
R 1 (τ ) 的波形如下: x
பைடு நூலகம்
当Δ很小时,Rx1(τ)可认为是脉冲函数,则有
T
g = [g ( 0 )
x ( 0) x(−1) X = ⋮ x(− N + 1)
g (1)
⋯
g ( N − 1) ]
⋯ ⋯
x(rN − 1) x(rN − 2) ⋮ ⋮ x(− N + 2) ⋯ x(rN − N ) x(1) x ( 0)
Y = [y ( 0 )
6.二电平M 6.二电平M序列及其性质 二电平
工程实际:将M序列转变成电平信号,“0”取为av,“1”取为-av 。 工程实际 移位脉冲周期为Δ,则该二电平M序列的周期为NΔ。 数字特征: 数字特征: (1)均值mx 在一个周期NΔ内,其均值mx为
mx =
1 N −1 N +1 a ( a∆ − a∆) = − N∆ 2 2 N
~ g m = g m−1 + K(g m - g m−1)
系统辨识课件方崇智

e
ˆ (假设的数学关系) f
系统的 实际输 出
(1)数学模型
• 数学模型和真实系统的区别
不可测干扰 可测 输入
u, d , f z
可测 输出
可测 输入
e
综合误差
ˆ (假设的数学关系) f
ˆ , e拟合u, z关系 u, z f
可测 输出
(1)数学模型
• 数学模型的两类形式及其用途
可测 输入
第6章 模型阶次辨识 内 容:Hankel矩阵法、F-Test定阶法。
第7章 系统辨识在实际中注意的问题
参考书:
1.方崇智、萧德云编著,《过程辨识》,清华大学出版社,北京 2.李言俊,张科编著,《系统辨识理论及应用》,国防工业出版社,北京 3.蔡季冰编著,《系统辨识》,北京理工大学出版社,北京
预修课程:自动控制原理,概率统计与随机过程
e
综合误差
可测 输出 •系统分析 •系统设计
ˆ (假设的数学关系) f
ˆ f
•预测(预测控制) •性能监测与故障诊断 •仿真
ˆ z
•在线估计和软测量 •模型评价与系统辨识
(1)数学模型
• 数学模型的近似性和外特性等价
u u
d f
e ˆ f u
z
近似性
ˆ f
ˆ z
d
u u
从黑箱角度出 发,外特性等价 (统计意义)
(1)设计辨识实验,获取实验数据
数据集是辨识的三要素之一
min J fˆ , K ( z (1)
z ( L), u(1)
u( L), )
数据集性质→影响辨识结果,u →数据集,因 此要设计辨识实验(重点设计u)
(1)设计辨识实验,获取实验数据
《系统辨识》课件

23
第二章
过渡响应法和频率响应法
§21 过渡响应法(时域法) 采用非周期试验信号,通过系统的动态响应研究系 统的模型。 一、非参数模型的辨识 在时域中建立线性系统非参数模型时,用很简便的 方法就可得到脉冲响应曲线,阶跃响应曲线、方波响应 曲线或它们的离散采样数据表。 脉冲响应:可以采用幅值相当大,宽度很窄的方波 来近似δ 函数 。 对于线性系统,脉冲响应,阶跃响应和方波响应之 24 间是可以相互转换的。
过程的非线性与时变性(有助于模型类的选择)
噪声水平(以便用多大的输入,使得观测量有多
大的信噪比)
变量之间的延迟(滞后环节参数) 2)输入信号的选择(阶跃、方波、脉冲、PRBS)。
16
第一章
概
述
3)采样速度的选择(要采集数据就有采样速度选择 问题)。实际上先采用较短的采样间隔,在数据分析时, 可根据需要隔几个取一个数据。 4)试验长度的确定(试验时间问题)。辨识精度与 试验时间的长短有关。 2、模型结构确定 根据辨识的目的及对被辨识系统的先验知识,确定
系统辨识
电气工程与自动化学院 陈 冲
1
课程主要内容
第一章
第二章 第三章 第四章 第五章
概
述
过渡响应法和频率响应法 辨识线性系统脉冲响应函数的相关分析法 线性系统参数估计的最小二乘法 线性系统的状态估计法
结束
2
第一章
一、建模的必要性 二、模型 三、建模方法
概
述
四、系统辨识的内容(或步骤)
自适应第二章模型参考自适应辨识

辨识问题分为两类: 1、黑箱问题(完全辨识问题):被辨识系统的基本特性 完全未知。辨识这类系统很困难,目前尚无有效的办法。 2、灰箱问题(不完全辨识问题):系统的某些特性已知。 这种情况下,系统辨识简化成阶的辨识和参数估计问题。
二、辨识步骤
由于辨识目的不同,辨识精度要求 以及模型型式等就不同。
试验设计包括:变量的选择;采用 何种输入信号(包括信号大小); 采样速率(时间间隔大小)等。 参数估计是系统辨识中最主要的 部分。方法:最小二乘法;极大 似然法等。 模型的有效性、正确性只能通过 试验来验证。 系统辨识是研究如何用试验分析 的方法,来建立系统的数学模型 的一门学科。
r (t ) am e1 (t ) km [ ] * b0 (t ) b0 y p (t )
* a0 (t ) a0 T
r (t ) [ *] ] (t ) 令: (t ) [ b0 (t ) y p (t ) b0 (可调参数向量) (参数希望值-常数) (输入信号向量)
*
k m a* ( s ) 0 ( s) Dm ( s) kmb ( s) D p ( s) k p N p (s)
*
令0 ( s) Dm ( s) q( s) D p ( s) kmb* ( s )
即:
0 ( s ) Dm ( s )
Dp ( s)
*
商:q( s)
余式:kmb* ( s )
N m (s) Dm ( s )
首1互质多项式,1≤k-L≤n-m
已知:Dm ( s)是Hurwitz多项式(即稳定)
辨识目的:根据r (t )、y p (t )决定k p和N p ( s)、Dp ( s)的系数。
系统辨识与模型预测控制

系统辨识与模型预测控制系统辨识与模型预测控制是现代控制理论中的关键概念,它们在工程领域中被广泛应用于系统建模及控制设计中。
本文将详细介绍系统辨识与模型预测控制的基本概念、原理、方法和应用。
一、系统辨识系统辨识是指通过实验数据对系统的动态行为进行建模和估计的过程。
它可以帮助我们了解系统的性质和结构,并在控制系统设计中提供准确的数学模型。
系统辨识的主要任务是确定系统的参数和结构,并评估模型的质量。
1.1 参数辨识参数辨识是系统辨识的主要内容之一,它通过收集系统的输入和输出数据,并根据建模方法对参数进行估计。
常用的参数辨识方法包括最小二乘法、极大似然法、频域法等。
参数辨识的结果对建模和控制设计具有重要的指导意义。
1.2 结构辨识结构辨识是指确定系统的数学结构,即选择合适的模型形式和结构。
常用的结构辨识方法有ARX模型、ARMA模型、ARMAX模型等。
结构辨识的关键是根据系统的性质和实际需求选择适当的模型结构,以保证模型的准确性和有效性。
二、模型预测控制模型预测控制是一种基于系统动态模型的控制方法,它通过在线求解最优控制问题实现对系统的控制。
模型预测控制通过对系统未来动态行为的预测,结合控制目标和约束条件,求解优化问题得到最优控制输入。
它具有优良的鲁棒性和适应性,并且能够处理多变量、非线性以及时变系统的控制问题。
2.1 模型建立模型预测控制的第一步是建立系统的数学模型,通常采用系统辨识的方法得到。
模型可以是线性的或非线性的,根据实际需求选择适当的模型结构和参数。
2.2 控制器设计模型预测控制的核心是设计控制器,控制器的目标是使系统输出跟踪参考轨迹,并满足约束条件。
控制器设计通常通过求解一个离散时间最优控制问题来实现,常用的方法有二次规划、线性规划、动态规划等。
2.3 优化求解模型预测控制的关键是求解最优控制问题,将系统的模型和控制目标转化为一个优化问题,并通过数值优化方法求解得到最优解。
常用的优化算法包括线性规划、非线性规划、遗传算法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
bm s
m
拉氏变换 与反变换
1、连续/离散系统的输入输出模型 (二) 离散型输入输出模型
● 离散系统输入输出模型的基本形式是差分方程:
y (k ) a1 y (k 1) an 1 y (k n 1) an y (k n) bn 1u (k n 1) bn u (k n) b0 u (k ) b1u (k 1)
y (t ) a1 y (1) (t ) an 1 y ( n 1) (t ) an y ( n ) (t ) b0 u (t ) b1u (1) (t ) bm 1u ( m 1) (t ) bm u ( m ) (t )
连续系统的传递函数形式:
G(s) Y ( s ) b0 b1s U (s) 1 a1s an 1s n 1 an s n bm 1s
3、系统辨识模型
一般随机模型结构:
噪声模型
白噪声
有色噪声
过程模型
成形滤波器:有色噪声可以看作是 白色噪声驱动的线性环节的输出。
D ( z 1 ) H (z ) C ( z 1 )
1
系统一般模型:
z d B ( z 1 ) D ( z 1 ) z (k ) u (k ) v(k ) 1 1 A( z ) C(z )
第2章 系统描述与辨识模型
2.1 连续/离散系统的输入输出模型 2.2 状态空间数学模型 2.3 系统辨识模型
1、连续/离散系统的输入输出模型
连续系统
u ( t)
连续信号 t
被控 对象
被控 对象
y ( t)
连续信号 t
u(t)
y(t)
离散系统
u(k)
离散信号
y(k)
t
离散信号
t
1、连续/离散系统的输入输出模型 (一) 连续型输入输出模型 连续系统输入输出模型的基本形式是常微分方程:
z n x(k ) x(k n) 则有:
2、状态空间模型 (一) 连续型状态空间模型
● SISO线性时不变连续系统状态空间表达式为:
x (t ) Ax(t ) bu (t ) y(t ) cx(t )
1 ● 对应状态空间模型的传递函数为: G(s) c(sI A) b
扩展自回归滑动平均模型(ARMAX模型)。
x(k 1) Ax(k ) bu(k ) y(k ) cx(k )
● 对应状态空间模型的传递函数为:
G( z 1 ) c( zI A)1 b
3、系统辨识模型
确定性模型: 所有物理量是确定量。
随机性模型: 数学模型中包含有随机变量。 过程噪声 噪声: 输入测量噪声 输出测量噪声
● 状态空间模型的基本特征: 可控性、可观性
Qc [b Ab
An1b]
Qo [cT ATcT
( AT )n1 cT ]T
(1)完全可(能)控 (2)完全可(能)观
rankQc n
rankQo n
2、状态空间模型 (二) 离散型状态空间模型
● SISO线性时不变离散系统状态空间模型为:
3、系统辨识模型
不带控制的模型:u(k)=0
自回归模型(AR模型): 平均滑动模型(MA模型): 自回归平均滑动模型(ARMA模型):
C ( z 1 ) y (k ) v(k )
y (k ) D( z 1 )v(k )
C ( z 1 ) y (k ) D( z 1 )v(k )
● 离散系统的脉冲传递函数形式:
G ( z 1 ) bn z b( z ) b0 b1 z bn 1 z a ( z 1 ) 1 a1 z 1 an 1 z n 1 an z n
sTs
1
1
n 1
n
z变换与 z反变换
ze
迟延算子 z控制模型:u(k)≠0
带控制自回归模型(CAR模型),扩展自回归模型(ARX):
A( z 1 ) y (k ) z d B ( z 1 )u (k ) v(k )
带控制自回归平均滑动模型(CARMA模型):
A( z 1 ) y (k ) z d B( z 1 )u (k ) D( z 1 )v(k )