(哈工大)系统辨识与自适应控制——第一讲..

合集下载

哈工大自动控制原理课件-第一章

哈工大自动控制原理课件-第一章

1.2自动控制系统的组成及原理
(4)反馈信号:是被控变量经由传感器等元 件变换并返回到输入端的信号,它要与输入信 号进行比较(相减)以便产生偏差信号,反馈信 号一般与被控变量成正比。 (5)扰动(信号)是加于系统上的不希望的外来 信号,它对被控变量产生不利影响,又称干扰 或“噪声”。
(6)反馈量(Feedback Variable): 通过检测 元件将输出量转变成与给定信号性质相同且数 量级相同的信号。
1.1自动控制的基本概念
近年来由于计算机与信息技术的迅速发展,控 制工程无论从深度上还是从广度上都在向其他 学科不断延伸与扩展,逐渐发展到以控制论、 信息论、仿生学为基础,以智能机为核心的智 能控制阶段。
本课程重点讲述经典控制理论,即本书的 前6章。
1.2自动控制系统的组成及原理
1.2自动控制系统的组成及原理
作业10% 作业共计5次 试验10% 一到两次试验 大作业10% 两次 期末考试70%
第1章 自动控制系统概述
本章主要内容:
自动控制的概念 自动控制系统的组成 自动控制系统的分类 对自动控制系统的基本要求及典型输入信号 自动控制理论的发展史
1.1自动控制的基本概念
自动控制作为重要的技术手段,在工业、农业、 国防、科学技术领域得到了广泛的应用。 自动控制:是指在无人干预的情况下,利用控制 装置(或控制器)使被控对象(如机器设备或生产过 程)的一个或多个物理量(如电压、速度、流量、液 位等)在一定精度范围内自动地按照给定的规律变 化并达到要求的指标。 例如,电网电压和频率自动地维持不变;数控机 床按照预定的程序自动地切削工件;火炮根据雷 达传来的信号自动地跟踪目标;人造卫星按预定 的轨道运行并始终保持正确的姿态等。这些都是 自动控制的结果。自动控制系统性能的优劣, 将 直接影响到产品的产量、 质量、 成本、 劳动条件 和预期目标的完成。

自动控制系统中的模型辨识与自适应控制策略

自动控制系统中的模型辨识与自适应控制策略

自动控制系统中的模型辨识与自适应控制策略引言自动控制系统是现代工程领域中很重要的一个研究方向,它涉及到各种各样的应用,如工业自动化、航天技术、机器人技术等。

在自动控制系统中,模型辨识和自适应控制策略是两个关键领域。

本文将讨论自动控制系统中的模型辨识和自适应控制策略的原理、方法和应用。

模型辨识模型辨识是自动控制系统中的一个重要研究领域,它旨在从系统的输入和输出数据中构建出一个有效的数学模型。

该数学模型能够描述和预测系统的动态行为,从而为系统设计和控制提供依据。

常用的模型辨识方法包括参数辨识、结构辨识和非参数辨识。

参数辨识方法是基于假设系统模型是已知结构的情况下进行的。

通过对系统的输入和输出数据进行拟合,参数辨识方法能够估计出系统模型中的参数。

这些参数可以被用于描述系统的动态性能,并且可以用于设计稳定的自适应控制器。

结构辨识方法是在没有先验知识的情况下,通过试探不同的系统结构来辨识系统模型。

这种方法常常使用组合算法和优化算法,通过对系统数据进行训练,筛选出最符合系统动态特性的模型结构。

结构辨识方法在辨识非线性系统和复杂系统方面具有很大的优势。

非参数辨识方法是一种基于经验分布函数和核函数的统计方法。

该方法不依赖于特定模型的假设,而是直接从数据中提取系统的动态信息。

非参数辨识方法可以用于辨识非线性系统和时变系统,适用范围广泛。

自适应控制策略自适应控制策略是一种可以根据系统的实时信息进行不断更新和优化的控制策略。

自适应控制器能够自动调整控制参数,以适应系统的变化和不确定性。

常用的自适应控制策略包括模型参考自适应控制和直接自适应控制。

模型参考自适应控制是一种基于模型参考思想的控制策略。

该策略通过引入一个参考模型来指导控制器的参数调整。

控制器的目标是使系统的输出与参考模型的输出保持一致。

模型参考自适应控制可以有效地抑制扰动和噪声的影响,提高系统的鲁棒性。

直接自适应控制是一种通过在线辨识系统模型的控制策略。

该策略通过对系统的输入和输出数据进行递归估计,不断更新模型参数。

系统辨识及自适应控制实验..

系统辨识及自适应控制实验..

Harbin Institute of Technology系统辨识与自适应控制实验报告题目:渐消记忆最小二乘法、MIT方案与卫星振动抑制仿真实验专业:控制科学与工程姓名:学号: 15S******指导老师:日期: 2015.12.06哈尔滨工业大学2015年11月本实验第一部分是辨识部分,仿真了渐消记忆递推最小二乘辨识法,研究了这种方法对减缓数据饱和作用现象的作用;第二部分是自适应控制部分,对MIT 方案模型参考自适应系统作出了仿真,分别探究了改变系统增益、自适应参数的输出,并研究了输入信号对该系统稳定性的影响;第三部分探究自适应控制的实际应用情况,来自我本科毕设的课题,我从自适应控制角度重新考虑了这一问题并相应节选了一段实验。

针对挠性卫星姿态变化前后导致参数改变的特点,探究了用模糊自适应理论中的模糊PID 法对这种变参数系统挠性振动抑制效果,并与传统PID 法比较仿真。

一、系统辨识1. 最小二乘法的引出在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。

设单输入-单输出线性定长系统的差分方程为:()()()()()101123n n x k a x k a k n b u k b u x k n k +-+⋯+-=+⋯+-=,,,, (1.1) 错误!未找到引用源。

式中:()u k 错误!未找到引用源。

为控制量;错误!未找到引用源。

为理论上的输出值。

错误!未找到引用源。

只有通过观测才能得到,在观测过程中往往附加有随机干扰。

错误!未找到引用源。

的观测值错误!未找到引用源。

可表示为: 错误!未找到引用源。

(1.2)式中:()n k 为随机干扰。

由式(1.2)得错误!未找到引用源。

()()()x k y k n k =- (1.3)将式(1.3)带入式(1.1)得()()()()()()()101111()nn n i i y k a y k a y k n b u k b u k b u k n n k a k i n =+-+⋯+-=+-+⋯+-++-∑ (1.4)我们可能不知道()n k 错误!未找到引用源。

系统辨识及自适应控制 教学大纲

系统辨识及自适应控制   教学大纲

系统辨识及自适应控制一、课程说明课程编号:090148Z10课程名称:系统辨识及自适应控制/ System Identification and Adaptive Control课程类别:专业课学时/学分: 32/2(其中实验学时:6 )先修课程:自动控制理论、线性代数适应专业:自动化、测控技术与仪器、智能科学与技术、电气工程及其自动化教材、教学参考书:1.杨承志、孙棣华等.系统辨识与自适应控制.重庆:重庆出版社.2003年;2.徐湘元.自适应控制理论与应用.北京:电子工业出版社.2007年;3.庞中华,崔红.系统辨识与自适应控MATLAB 仿真.北京:北京航空航天大学出版社.2009年二、课程设置的目的意义系统辨识与自适应控制是电气信息类专业大学本科高年级学生的一门专业选修课程,是现代控制理论的一个重要组成部分。

通过该课程的学习,帮助学生了解系统辨识与自适应控制的基本原理和算法,掌握系统数学模型的建立方法及自适应控制系统的设计方法和技巧,为培养学生成为控制学科的高级工程技术人才奠定基础。

三、课程的基本要求知识:掌握系统辨识与自适应控制的基本概念和基本原理,最小二乘参数辨识方法,最小方差自校正控制方法,广义最小方差自校正控制方法,极点配置自校正控制方法,自校正PID控制方法,自校正内膜控制方法,自校正模型算法控制方法,基于Lyapunov稳定性理论的模型参考自适应控制方法等。

能力:从实际应用的角度出发,针对具有一定程度不确定性的被控对象,能够运用上述方法和知识设计一般的自适应控制系统,满足控制系统的基本控制要求。

素质:拓展学生在控制工程领域的设计思路,丰富学生对控制系统的设计方法;通过对不确定性被控对象特点的分析、难于控制问题的解决培养学生发现问题、分析问题、解决问题的科研素养。

四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求通过实验,帮助学生巩固、加深理解课堂所学基本理论知识,在Matlab/SimuLink仿真计算平台中实现系统模型参数辨识和含噪声干扰系统的自六、考核方式及成绩评定1、平时成绩占40%:包括作业、上机实验考核以及平时上课考核;七、大纲主撰人:大纲审核人:。

控制系统中的系统辨识与自适应控制

控制系统中的系统辨识与自适应控制

控制系统中的系统辨识与自适应控制在控制系统中,系统辨识与自适应控制是两个关键的方面。

系统辨识是指通过实验或推理的方法,从输入和输出的数据中提取模型的参数和结构信息,以便更好地理解和控制系统的行为。

而自适应控制是指根据系统辨识得到的模型参数和结构信息,实时地调整控制器的参数以适应系统变化,以提高控制性能。

一、系统辨识1.1 参数辨识参数辨识是指确定系统动态模型中的参数。

常用的方法包括最小二乘法、极大似然估计法等。

最小二乘法是一种常见的参数辨识方法,通过最小化实际输出与模型输出之间的误差平方和来确定参数。

1.2 结构辨识结构辨识是指确定系统动态模型的结构,包括确定系统的阶数、输入输出关系等。

常用的结构辨识方法有ARX模型、ARMA模型等。

ARX模型是指自回归外部输入模型,适用于输入输出具有线性关系的系统。

ARMA模型是指自回归滑动平均模型,适用于输入输出关系存在滞后效应的系统。

二、自适应控制自适应控制是根据系统辨识得到的模型参数和结构信息,动态地调整控制器的参数以适应系统的变化。

常用的自适应控制方法有模型参考自适应控制、模型预测控制等。

2.1 模型参考自适应控制模型参考自适应控制是建立在系统辨识模型基础上的控制方法。

通过将系统输出与参考模型输出进行比较,通过调整控制器参数来减小误差。

常见的模型参考自适应控制方法有自适应PID控制、自适应模糊控制等。

2.2 模型预测控制模型预测控制是一种基于系统辨识模型的控制策略,通过对系统未来的状态进行预测,以求得最优控制输入。

模型预测控制可以同时考虑系统的多个输入和多个输出,具有较好的控制性能。

三、应用案例3.1 机械控制系统在机械控制系统中,系统辨识和自适应控制可以被应用于伺服控制系统。

通过系统辨识可以得到伺服电机的动态模型,然后利用自适应控制方法调整PID控制器的参数,以提高伺服系统的响应速度和稳定性。

3.2 化工控制系统在化工控制系统中,系统辨识和自适应控制可以被应用于控制某个反应器的温度。

哈工大系统辨识实验一教材

哈工大系统辨识实验一教材

实验1 白噪声和M序列的产生实验报告哈尔滨工业大学航天学院控制科学与工程系专业:自动化班级:110410420姓名:日期:2014 年10 月12 日1.实验题目:白噪声和M序列的产生3、M 序列生成原理用移位寄存器产生M 序列的简化框图如下图所示。

该图表示一个由4个双稳态触发器顺序连接而成的4级移位寄存器,它带有一个反馈通道。

当移位脉冲来到时,每级触发器的状态移到下一级触发器中,而反馈通道按模2加法规则反馈到第一级的输入端。

1、生成均匀分布随机序列(1)利用混合同余法生成[0, 1]区间上符合均匀分布的随机序列,并计算该序列的均值和方差,与理论值进行对比分析。

要求序列长度为1200,推荐参数为a=65539,M=2147483647,0<x 0<M 。

(2)将[0, 1]区间分为不重叠的等长的10个子区间,绘制该随机序列落在每个子区间的频率曲线图,辅助验证该序列的均匀性。

(3)对上述随机序列进行独立性检验。

(该部分为选作内容)2、生成高斯白噪声利用上一步产生的均匀分布随机序列,令n=12,生成服从N(0,1)的白噪声,序列长度为100,并绘制曲线。

3、生成M 序列M 序列的循环周期取为63126=-=P N ,时钟节拍Sec 1=∆t ,幅度1=a ,逻辑“0”为a ,逻辑“1”为-a ,特征多项式65()F s s s =⊕。

生成M 序列的结构图如下所示。

x(j+1)=x(j);endx(1)=temp;endfor i=1:Npif(y(i)==0)y(i)=a;elsey(i)=-a;endendfigure(5)stairs(y);ylim([-1.5,1.5]);7.实验结果及分析实验1.1程序运行计算出序列的均值:mean_r =0.4897,与理论值0.5很接近;序列的方差var_r =0.0824,与理论值1/12很接近使用混合同余法得到生成的0-1均布随机序列如下所示:得到的该随机序列落在10个子区间的频率曲线图如下:从上图可以发现用混合同余法得到的随机序列平均分布性较好。

系统辨识和自适应控制 绪论

系统辨识和自适应控制 绪论
• b. • c.状态方程 • 可从如下几个方面对数学模型进行划分: • (1 • (2 • (3 • (4 • (5)连续时间模型与离散与分布参数模型。 • 0.1.2 系统辨识的基本方法 • (1)机理建模 • (2)系统辨识(实验建模) • (3)机理分析和系统辨识相结合的建模方
• 1.2 系统描述的数学模型 • 1.3 随机信号的描述与分析 • 1.4 白噪声与伪随机码 • 1.5 系统辨识的步骤与内容 • 1.6 系统辨识的基本应用 • 第2章 系统辨识的经典方法 • 2.1 阶跃响应法系统辨识 • 2.2 频率响应法系统辨识 • 2.3 相关分析法系统辨识
• 第3章 系统辨识的最小二乘算法 • 3.1 最小二乘法原理 • 3.2 最小二乘估计的递推算法 • 3.3 慢时变参数的最小二乘递推算法 • 3.4 广义最小二乘法 • 3.5 辅助变量法 • 3.6 参数和状态的联合估计 • 3.7 多变量系统的最小二乘辨识 • 第4章 系统辨识的随机逼近法、极大似然
• 第12章 多变量自校正控制 • 12.1 多变量自校正调节器 • 12.2 多变量自校正控制器 • 12.3 多变量极点配置自校正控制器 • 12.4 多变量系统自校正解耦控制 • 第13章 自适应控制系统的发展及应用 • 13.1 自适应控制技术的发展 • 13.2 工业锅炉的加权广义预测自校正控制 • 13.3 大滞后系统自校正智能极点配置内模
• 第10章 自校正控制(一) • 10.1 自校正控制概述 • 10.2 单步输出预测自校正控制 • 10.3 控制加权自校正控制 • 第11章 自校正控制(二) • 11.1 极点配置自校正控制 • 11.2 自校正PID控制 • 11.3 专家式自校正PID控制器 • 11.4 广义预测控制

系统建模与仿真讲义-哈尔滨工业大学

系统建模与仿真讲义-哈尔滨工业大学
5
第一章 绪论
概述
系统辨识是控制论的一个分支,系统辨识、状态 估计、控制理论构成了现代控制论的三大支柱。 经典控制理论中蕴含着系统辨识:用试验法确定 系统传递函数。20世纪60年代,系统辨识发展成现代 控制论的一个活跃分支。 目前,系统辨识被推广至其他广泛领域,如气象 学、生物学、生态学和社会经济学等。
11
模型的含义: 所谓模型(model)就是把关于实际系统的本质的 部分信息简缩成有用的描述形式。
是分析系统和预报、控制系统行为特性的有力工具。
是根据使用目的对实际系统所作的一种近似描述。
12

模型的表现形式
(1)直觉模型:开车、指挥战斗
13
(2) 物理模型:根据相似原理把实际系统加以缩小的 复制品,或是实际系统的一种物理模拟。
哈尔滨工业大学
控制与仿真中心
1
教学与考核方式
教学方式
总学时 授课学时 上机学时 24 16 8
目的:掌握系统辨 识的基本原理方法,
提高解决问题能力
和编程能力。
考核方式
期末考试 实验
60分 开卷 40分 (3个实验,10+15+15分)
2
主要内容安排
第一章 绪论 第二章 系统辨识常用输入信号 第三章 系统数学描述及经典辨识法 第四章 最小二乘法辨识
23
(3)在目的方面的可信性:从实践的观点出发,假如 运用一个模型能达到预期的目标,那么这个模型就是成 功的、可信的。一个模型只有在它用于原定的目标时, 它才真正的发出光来。
1.1.5 建模过程 建模过程总的来说可以用下图来描述。
24
先验 知识
演绎分析 目 标 协 调 归 纳 程 序
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 系统辨识的基本概念
一、什么是系统辨识?
1. 机理分析建模方法 (白箱法)
图1 单级倒立摆实验装置 2010-02-20 控制理论与制导技术研究中心 第2 页
Harbin Institute of Technology– HIT

m
u
M
F
r
O
图2 单级倒立摆示意图 2010-02-20 控制理论与制导技术研究中心 第3 页
Harbin Institute of Technology– HIT
图中所示变量名的物理含义如表1所示。
2010-02-20
控制理论与制导技术研究中心
第4 页
Harbin Institute of Technology– HIT
步骤一:对小车进行受力分析,小车的受力分析如图3所 P 示。
u M
N
F
r
图3 小车受力分析图
图中,P表示摆杆对小车水平方向上的作用力,单位N; N 表示摆杆对小车垂直方向上的作用力,单位(N)。 根据牛顿定律,小车水平方向上的力平衡方程为:
2010-02-20 控制理论与制导技术研究中心 第5 页
Harbin Institute of Technology– HIT
步骤四:化成状态空间描述。
1 x 2 x 2 m 2 l 2 x2 cos x1 sin x1 m lucos x1 x 4 m l cos x1 ( M m)m glsin x1 ( M m) fx2 x 2 ( M m)(J m l2 ) m 2 l 2 cos2 x1 3 x4 x 2 m lfx2 cos x1 m 2 l 2 g sin x1 cos x1 ( J m l2 ) x 4 ( J m l2 )m lx2 sin x1 ( J m l2 )u 4 x ( M m)(J m l2 ) m 2 l 2 cos2 x1
Harbin Institute of Technology– HIT
系统辨识与自适应控制
黄显林、班晓军 控制理论与制导技术研究中心 哈尔滨工业大学 banxiaojun@
2010-02-20
控制理论与制导技术研究中心
第1 页
Harbin Institute of Technology– HIT
将式(1-3)合并可得下式,
cos m l 2 sin u F M r m r m l cos m l 2 sin r u M r m r m l cos m l 2 sin m l u ( M m) r r
1 x 2 x ( M m)m glx 1 ( M m) fx 2 m lx4 m lu x 2 ( M m)(J m l2 ) m 2 l 2 x3 x 4 m 2 l 2 gx1 m lfx2 ( J m l2 ) x 4 ( J m l2 )u 4 x ( M m)(J m l2 ) m 2 l 2
2010-02-20 控制理论与制导技术研究中心 第9 页
Harbin Institute of Technology– HIT
步骤五:线性化处理: ,并且假设 当选取的状态变量为 x1 ; x2 ; x3 r ; x4 r 不计干扰力矩 w 时,(11)式可化为以上一阶非线性方程组, 在 0 附近对以上方程组进行线性化处理可得(12)式,
d 2r uF PM 2 dt
dr F dt
步骤二:对摆杆进行受力分析,摆杆的受力如图4所示。
θ
N
mg P
图4 摆杆受力分析图
摆控制理论与制导技术研究中心 第6 页
Harbin Institute of Technology– HIT
d2 P m 2 (r l sin ) dt d cos ) l m (r dt cos l 2 sin ) m( r l cos m l 2 sin m r m l
cos u ml 2 sin r ml (M m) r
2010-02-20 控制理论与制导技术研究中心 第7 页
Harbin Institute of Technology– HIT
摆杆垂直方向上的力平衡方程式如下,
d2 N m g m 2 (l cos ) dt 2 cos sin ) m l(
2 cos sin ) N mg ml(
摆杆的转矩平衡方程式如下,
w J Nl sin Pl cos f
将3、7式代入8式并化简得
J f w cos ml2 mglsin ml r
化简得
mglsin f w cos (ml2 J ) ml r
2010-02-20 控制理论与制导技术研究中心 第8 页
Harbin Institute of Technology– HIT
步骤三:由5式与10式连列即得到单级倒立摆动力学非线性方程组。
2 m glsin f w m l r cos ( m l J ) cos u m l 2 sin r ( M m ) r m l
相关文档
最新文档