命题与逻辑联结词
第二节 命题及逻辑联结词

第2课 命题及逻辑联结词【考点导读】1. 了解命题的逆命题,否命题与逆否命题的意义;会分析四种命题的相互关系.2. 了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.3. 理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定. 【基础练习】1.下列语句中:①230x -=;②你是高三的学生吗?③315+=;④536x ->.其中,不是命题的有____①②④_____.2.一般地若用p 和q 分别表示原命题的条件和结论,则它的逆命题可表示为若q 则p ,否命题可表示为p q ⌝⌝若则,逆否命题可表示为q p ⌝⌝若则;原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.3.0=,则0xy =”的逆命题;③“若0x ≠,则20x >”的否命题;④“若方程20ax bx c ++=有两个不相等的实根,则0ac <”的逆否命题.其中真命题的序号有____①④____.4.有下列命题:①2,2340x R x x ∀∈-+>;②{1,0,1},210x x ∀∈-+>;③2,x N x x ∃∈≤使;④*,29x N x ∃∈使为的约数.其中真命题的序号有___①③④___.5.对原命题及其逆命题,否命题,逆否命题这四个命题而言,假命题的个数是____0或2或4___.6.命题“若0ab =,则a ,b 至少有一个为零”的逆否命题是. 【范例解析】例1. 写出下列命题的逆命题,否命题,逆否命题并判断真假.(1) 平行四边形的对边相等; (2) 菱形的对角线互相垂直平分;(3) 设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+.分析:先将原命题改为“若p 则q ”,在写出其它三种命题. 解:(1)原命题:若一个四边形是平行四边形,则其对边相等;真命题;逆命题:若一个四边形的两组对边相等,则这个四边形是平行四边形;假命题; 否命题:若一个四边形不是平行四边形,则其对边不相等;假命题;逆否命题:若一个四边形的两组对边不相等,则这个四边形不是平行四边形;真命题. (2)原命题:若一个四边形是菱形,则其对角线互相垂直平分;真命题;逆命题:若一个四边形的对角线互相垂直平分,则这个四边形是菱形;假命题; 否命题:若一个四边形不是菱形,则其对角线不垂直或不平分;假命题;逆否命题:若一个四边形的对角线不垂直或不平分,则这个四边形不是菱形;真命题. (3)原命题:设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+;真命题;若0a ≠且0b ≠,则0ab ≠逆命题:设,,,a b c d R ∈,若a c b d +=+,则,a b c d ==;假命题; 否命题:设,,,a b c d R ∈,若a b ≠或c d ≠,则a c b d +≠+;假命题; 逆否命题:设,,,a b c d R ∈,若a c b d +≠+,则a b ≠或c d ≠;真命题.点评:已知原命题写出其它的三种命题首先应把命题写成“若p 则q ”的形式,找出其条件p 和结论q ,再根据四种命题的定义写出其它命题;对于含大前提的命题,在改写命题时大前提不要动;在写命题p 的否定即p ⌝时,要注意对p 中的关键词的否定,如“且”的否定为“或”,“或”的否定为“且”,“都是”的否定为“不都是”等.例2.写出由下列各组命题构成的“p 或q ”,“p 且q ”,“非p ”形式的命题,并判断真假. (1)p :2是4的约数,q :2是6的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相平分;(3)p :方程210x x -+=的两实根的符号相同,q :方程210x x -+=的两实根的绝对值相等. 分析:先写出三种形式命题,根据真值表判断真假. 解:(1)p 或q :2是4的约数或2是6的约数,真命题;p 且q :2是4的约数且2是6的约数,真命题; 非p :2不是4的约数,假命题.(2)p 或q :矩形的对角线相等或互相平分,真命题;p 且q :矩形的对角线相等且互相平分,真命题; 非p :矩形的对角线不相等,假命题.(3)p 或q :方程210x x -+=的两实根的符号相同或绝对值相等,假命题;p 且q :方程210x x -+=的两实根的符号相同且绝对值相等,假命题; 非p :方程210x x -+=的两实根的符号不同,真命题.点评:判断含有逻辑联结词“或”,“且”,“非”的命题的真假,先要把结构弄清楚,确定命题构成的形式以及构成它们的命题p ,q 的真假然后根据真值表判断构成新命题的真假. 例3.写出下列命题的否定,并判断真假.(1)p :所有末位数字是0或5的整数都能被5整除; (2)p :每一个非负数的平方都是正数;(3)p :存在一个三角形,它的内角和大于180°; (4)p :有的四边形没有外接圆; (5)p :某些梯形的对角线互相平分.分析:全称命题“,()x M p x ∀∈”的否定是“,()x M p x ∃∈⌝”,特称命题“,()x M p x ∃∈”的否定是“,()x M p x ∀∈⌝” .解:(1)p ⌝:存在末位数字是0或5的整数,但它不能被5整除,假命题; (2)p ⌝:存在一个非负数的平方不是正数,真命题;(3)p ⌝:任意一个三角形,它的内角和都不大于180°,真命题; (4)p ⌝:所有四边形都有外接圆,假命题;(5)p ⌝:任一梯形的对角线都不互相平分,真命题. 点评:一些常用正面叙述的词语及它的否定词语列表如下:例4.已知0c >且1c ≠,设:p 函数(21)x y c c =-⋅在R 上为减函数,:q 不等式2(2)1x x c +->的解集为R .若“p 或q ”为真命题,“p 且q ”为假命题,求实数c 的取值范围.分析:由p ,q 为真求出c 的取值范围,结合“p 或q ”为真命题,“p 且q ”为假命题得出p ,q 一真一假,从而得出c 的取值范围. 解:当p 为真时,函数(21)x y c c =-⋅在R 上为减函数, 210,1,c c -<⎧∴⎨>⎩或210,0 1.c c ->⎧⎨<<⎩得11.2c << 当q 为真时,不等式2(2)1x x c +->的解集为R ,即x R ∈时,22(41)(41)0x c x c --+->恒成立.22(41)4(41)0c c ∴=--⋅-< ,得58c >.“p 或q ”为真命题,“p 且q ”为假命题, ∴当p 为真q 为假时,11,25.8c c ⎧<<⎪⎪⎨⎪≤⎪⎩解得1528c <≤. 当p 为假q 为真时,101,25.8c c c ⎧<≤>⎪⎪⎨⎪>⎪⎩或解得1c >.综上所述,实数c 的取值范围是15(,](1,)28⋃+∞.点评:由条件分析得到p ,q 一真一假,学生多会先写命题的假命题,再求c 的取值范围,这样会增加计算量,而且容易出错. 【反馈演练】1.命题“若a M ∈,则b M ∉”的逆否命题是__________________.2.已知命题p :1sin ,≤∈∀x R x ,则:p ⌝,sin 1x R x ∃∈>.3.若命题m 的否命题n ,命题n 的逆命题p ,则p 是m 的____逆否命题____.若b M ∈,则a M ∉4.已知下列四个命题:①“若1xy =,则,x y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若1m ≤,则方程220x x m -+=有实根”的逆否命题; ④“若A B B ⋂=,则A B ⊆”的逆否命题. 其中真命题的是____①②③____.5.已知全集U R =,A U ⊆,若命题p A B ⋃,则p ⌝()()U UA B ⋂痧.6.命题“若b a >,则122->b a ”的否命题为________________________. 7.命题“四边形的内角中至少有一个不大于90°”,下列命题中: ①假设四内角都不大于90°; ②假设四内角都大于90°;③假设四内角中至多有一个大于90°; ④假设四内角中至多有三个大于90°. 其中正确的命题的否定有_____________.8.命题:p 方程210x mx ++=有两个不相等的实根,命题:q 方程244(2)10x m x +-+=无实根,若p q ∨为真,p q ∧为假,则实数m 的取值范围______ ___. 9.设A ,B 为两个集合,下列四个命题:①A B ⊄⇔对任意x A ∈,有x B ∉; ②A B ⊄⇔A B ⋂=∅; ③A B ⊄⇔B A ⊄④A B ⊄⇔存在x A ∈,使得x B ∉. 其中真命题的序号有 .10.分别写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. (1)设,a b R ∈,若0ab =,则0a =或0b =; (2)设,a b R ∈,若0,0a b >>,则0ab >.解:(1)逆命题:设,a b R ∈,若0a =或0b =,则0ab =;真命题; 否命题:设,a b R ∈,若0ab ≠,则0a ≠且0b ≠;真命题; 逆否命题:设,a b R ∈,若0a ≠且0b ≠,则0ab ≠;真命题; (2)逆命题:设,a b R ∈,若0ab >,则0,0a b >>;假命题; 否命题:设,a b R ∈,若0a ≤或0b ≤,则0ab ≤;假命题; 逆否命题:设,a b R ∈,若0ab ≤,则0a ≤或0b ≤;真命题.11.设命题p :函数3()()2x f x a =-是R 上的减函数,命题q :2()43f x x x =-+在[0,]a 上的值域为[1,3]-,若“p 或q ”为真命题,“p 且q ”为假命题,求实数a 的取值范围.解:由3012a <-<得3522a <<, 又22()43(2)1f x x x x =-+=--,在[0,]a 上的值域为[1,3]-,得24a ≤≤. 又“p 或q ”为真命题,“p 且q ”为假命题,∴当p 为真q 为假时,解得322a <<.(,2)(1,2][3,)-∞-⋃⋃+∞ ② ④ 若a b ≤,则221a b≤-当p 为假q 为真时,解得542a ≤≤. 综上所述,a 的取值范围为35(,2)[,4]22⋃.12.已知命题()r x :x R ∀∈,都有sin x m >,命题()s x :x R ∃∈,210x mx ++=.若()r x 为假命题且()s x 为真命题,求实数m 的取值范围.解:当 ()r x 为真命题时,则1m <-,故()r x 为假命题时,得1m ≥-.当()s x 为真命题时,0∆≥即240m -≥,则2m ≤-或2m ≥.综上,可知[1,2][2,)m ∈--⋃+∞.。
命题、联结词、命题公式与真值表

1、一些基本概念 逻辑、命题、真值
2、联结词 3、命题公式 4、真值表
问题?
一、命题的定义
命题P——不关心其具体涵义,只关心其值的 真值
命题变元——定义域:真、假 命题常元——T和F 命题公式(也称命题,合式公式)——含命题变元
的断言,由以下规则生成: (1)单个原子公式是命题。 (2)若A、B是命题公式,┐A、A∧B、A∨B、
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
Hale Waihona Puke 111回顾一下:五个联结词真值表
否定
等价(双条件)
合取
析取
蕴涵(条件)
几个相关概念
1、合式公式的层次:
0层
1层
2层
3层
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
1
1
1
几个相关概念
A(BC) (D E)
1 01
10
p
2、什么情况下,下面论述为真:
q
说小王不会唱歌或小李不会跳舞是正确的,而
说如果小王会唱歌,小李会跳舞是不正确的。
(p q) (pq)
综合问题1
Key:
A→B、AB也是命题公式。 (3) 有限步应用条款(1)(2)生成的公式。
例:下列符号串都是命题公式
下列符号串是否为命题公式?
命题、联结词、命题公式与真值表
高考数学逻辑联结词与四种命题

;
;
于是,带她去看,说明病史后,老中医什么都没说,只是揭开自己的白大褂,她看见,他只有一条腿。 (17)他说,人活着,不是靠双腿,靠的是一颗完整的心,我只有一条腿,活得好好的,你还比我多半条腿呢,怕什么? (18)从那以后,她常常去老中医那里,不是看病,而是疗心。 (19)再后来,父母给她装了假肢,搬了家,学了钢琴,当了钢琴老师,成了现在的自己。 (20)说完,她淡淡地笑,而我,似乎看见另外一个不一样的她,在我眼前,诉说别人的故事。 (21)是啊,如果不是偶然看见,在我心里,在我眼里,她依旧是那个只会撒娇、娇弱漂亮的公主,而此 刻,我似乎看见,那些她曾经受过的伤害和遭遇,凝聚成一股钢铁般的力量,让她坚强。 (22)再后来,她睡了。 (23)我走在走廊的尽头,心绪难平。 (24)我看见天边有一颗星星,异常耀眼,它像天空的眼睛,注视着大地,带给深沉无助的黑夜,一方光亮,也给黑夜里迷路的人们, 一抹希望。 (25)慢慢地,我看见天边泛着鱼肚白,黎明来了。 (26)那一刻,内心的迷茫,似乎慢慢退却,一点点被一束光照亮,所有难以启齿的磨难和曾经以为的绝望,慢慢变成了希冀。 (27)是的,繁华尽头有悲凉,尘埃深处是繁花。 (2017年5月9日) 16.第10段“乔没有睡 ……而我,尴尬至极,不知道说什么好,竟呆呆地站在那里好几秒”一句中,“尴尬”一词有什么含义和作用?(3分) 17.第20段“说完,她淡淡地笑,而我,似乎看见另外一个不一样的她,在我眼前,诉说别人的故事”,这句话中的“淡淡地笑”对描写乔有什么作用?(3分) 18.联系全 文谈谈你对第24段加线句子的理解。(4分) 19.结合全文谈谈文章最后一个自然段有什么作用?(4分) 20.结合文章中心,联系自己生活实际,谈谈你的感悟。(80字以内)(4分) 代谢: 五、散文阅读 16.(3分) “尴尬”的本义是神情态度不自然。(1分)在这里是指我无意中发现了 乔的隐私(右膝盖之下是空的或者是发现了假肢),感觉自己对乔的自尊造成伤害后内心的不自然,(1分);表现了我对乔的歉意以及不知道该怎么办的心理。(1分) 17.(3分) “淡淡地笑”运用了神态描写(1分),写出了乔面对生活的困境和磨难的轻松平静心理(1分),同时表现了 乔的坚强性格、积极乐观的生活态度。(1分) 18. (4分) 运用比喻修辞(1分),把乔比作天边的一颗星星,她给像我一样身处困境中的人带来光亮、希望。(2分)表达了我对乔的感激、赞美之情。(1分) 19.(4分) 照应文章标题(1分);总结全文(1分);升华主题,鼓励人们在困境 中不要迷茫绝望,要以积极乐观的心态,努力战胜自我,相信风雨过后一定会有彩虹。(2分) 20.(4分) 感悟:结合文章中心,表达自己的观点(面对困境、挫折应有的态度)(2分);联系恰当的生活实际并简析(2分)。 本题为开放性试题,言之有理即可。 (2017浙江宁波)6. 蜕 变 蔡澔淇 她用胖嘟嘟的小手紧握着婴儿床的栏杆坐着,舌尖不住地舔着刚长出的两颗门牙,灵澈的眼珠子骨碌地转动,四处张望。初夏晌午的阳光穿过葡萄棚,在她身上洒满了点点金圈。一片葡萄叶摇曳着飘下,落在她的脚跟前。 她挪动一下圆滚滚的胖腿,好奇地望着那片落叶。一个黑点 在树叶边缘晃动,过了一会成了一条肥厚的黑线,滑过树叶表面,不声不息地直朝她游动。带毛的黑线爬上了她白嫩的脚踝,小腿肚,膝盖……她觉得一阵刺痒,那肥厚的黑线直往上爬,越来越近,毛茸茸的身躯越来越大。转眼间一团黑毛已附在她肩上,黑团中有两粒小眼直盯着她。“达达 ﹣﹣,达﹣﹣达﹣﹣”她惊慌地尖叫,小手死命地挥舞,重心一个不稳,躺卧下来。那黑团又开始移动,逐渐逼近,逐渐庞大…… ? “你还好吧?”交往快两年,未曾牵过手的他紧紧搂住她的双肩,焦急的望着她。 她虚弱地点点头,深吸了口气:“我从小就对毛虫敏感,见了毛虫不是作呕 就是昏倒。刚才昏过去多久了?” “大概一两分钟,把我吓坏了,”他将她扶正,轻声补上,“奇怪,这么晚了,怎么会有毛虫出现?” 她紧依着他,相偎坐着。见到毛虫引起的疙瘩已消尽了,代之的是满脸燥热。她瞥了他揽着她肩膀的手一眼,偷偷抱怨:这么晚出现,再半小时宿舍就要 关门了。 “妈咪﹣﹣妈咪﹣﹣”最断人肠的呼喊将她手中的蚂蚁上树炒出锅外。她慌忙跑过去,小女儿蜷缩在婴儿床的一角,满脸诧异的哭叫着。一条毛虫肆无忌惮地在婴儿床的栏杆上爬行,她一阵昏花,用了四十年的心脏几欲罢工。小女儿挣扎着想爬起来,令人心碎的哭泣成了啜搐。她咬 咬牙,解下围裙往栏杆用力一挥,毛茸肥圆的毛虫滚落于地。她抬起脚,闭起眼重重一踏,觉得脚下一阵瘫软。 ? “不要怕,”她强抑住胸腹的翻腾,轻抚着女儿泪水纵横的苍白面颊,“不要怕,毛虫并不可怕。” 她坐在摇椅内小憩,枯皱的手握着身旁婴儿床的栏杆。初夏晌午的阳光穿过 葡萄棚,在她身上洒满点点金圈。 “奶奶,”是小孙女清稚的童音,“那是什么?” ?她朝小孙女圆胖小手指的方向望过去,一条肥厚的黑线正由阳光下往阴影处滑动。日光下鲜明的黑线掀开了她人生的相簿,一组组幻灯片在眼前跳动。她深吸口气,咧开干瘪的嘴,露出仅剩两颗门牙朝小孙 女笑笑。 “那是蝴蝶的幼虫。”她说。 【注释】①蚂蚁上树:四川名菜 (选自《台湾极短篇小说集》) ? 故事?场景的组合 (1)阅读小说先关注故事。请根据故事内容,各用一个词填空。 小小的毛毛虫、伴随着“她”走过童年、青年、中年,直至老年; 小小的婴儿床,承载了“她”、 “女儿”、“孙女”的童年。 故事以毛毛虫为线索,始于初遇时的 ,历经再见时的恐惧,终于凝望时的。 ? 语言?意义的蕴含 (2)画线句中,“她”两次说“不要怕”,仅仅是在安慰女儿吗?清写出你的看法和理由。 ◆称呼?人物的标识 (3)小说中没有出现主人公的名字,都是用“她 ”来代替。请说说作者的意图。 ? 标题?主旨的暗示 (4)结合选文,谈谈你对小说标题“蜕变”的理解。 【考点】9E:小说阅读综合. 【分析】这篇小说以“毛毛虫”为线索,写了她人生的四个阶段,第一阶段(开头到“逐渐逼近,逐渐庞大”),写她童年时对毛毛虫的畏惧;第二阶段 (“你还好吧”到“再半小时宿舍就要 关门了”),写她青年时对毛毛虫的畏惧,以及男友对她的关爱;第三阶段(“妈咪﹣﹣妈咪”到“毛虫并不可怕”),写她中年时,看到女儿对毛毛虫的畏惧,勇敢上前扑打;第四阶段(“她坐在摇椅内小憩”到结尾),写她老年时,小孙女指着毛毛 虫问她那是什么,她淡定地说,那是蝴蝶的幼虫. 【解答】(1)本题考查内容的理解.这篇小说以“毛毛虫”为线索,写了她人生的四个阶段,但文中出现的她又不仅仅指她一人,文章写她成长的四个阶段中,那小小的婴儿床边哭叫的有“她”,有她的“女儿”,还有她的“孙女”. (2 )本题考查句子情感的理解. 这里写“她”两次说“不要怕”,是“她”的中年阶段,此时的“她”已为人母,看见自己的孩子受到惊吓,自然会去安慰.但结合前文对“她”的描述,可以知道“她”天生怕毛毛虫,特别是青年时,她见到毛毛虫“不是作呕就是昏倒”,所以这里的“不要怕 ”还应是对“她”自己的安慰,安慰自己不要怕,要保护好女儿. (3)本题考查写作人称在文中的作用分析.解答此题要读懂小说内容,结合小说的主旨分析作者的意图. 初读本文,一定会觉得内容很乱,情节无法连贯,但仔细一分析,发现“她”在文中分别指代她、她的女儿和孙女,作 者是想让情节看似连贯却又错乱,引起读者的深思,最终恍然大悟.这样更能突出全文的主旨,耐人寻味. (4)本题考查标题含义的理解.解答此题要结合内容与主旨分析标题的表义与深层含义. 从文中反复出现的黑色毛毛虫来年地,“蜕变”指黑色的毛毛虫蜕变成美丽的蝴蝶;从文中“ 她”的成长过程,又可以看出,暗指她经历岁月的风霜,由幼弱、胆小的少女变为沉稳、大胆的具有母性的女人. 代谢: (1)女儿 孙女 (2)不仅仅是在安慰女儿,也是在安慰自己.前文写了她在童年与青年时对毛毛虫的畏惧,特别是青年时,她见到毛毛虫“不是作呕就是昏倒”,现在 为人母了,看见女儿受到惊吓,出于母性,是安慰女儿不要怕,出于自己的本性,也是在安慰自己不要怕. (3)她在文中分别指代她、她的女儿和孙女,作者用同一人称代词指代不同的人,意在让情节看似连贯却又错乱,引起读者的深思,最终恍然大悟.这样更能突出全文的主旨,耐人寻 味. (4)“蜕变”表义指黑色的毛毛虫蜕变成美丽的蝴蝶,暗指她经历岁月的风霜,由幼弱、胆小的少女变为沉稳、大胆的具有母性的女人. (2017江苏扬州)12. 后生可畏 刘斌立 (1)我第一次去鉴睿律师楼,就注意到了前台旁边多了一张不怎么和谐的小桌子。一个大男孩模样的小伙 子,睡眼惺忪地在那捧着厚厚的《刑法》,有一页没一页的翻着。 (2)我问律师楼的合伙人李信,他一脸嬉笑地回答:“这孩子他爸是我们律师楼的大客户,也是老朋友了。他想让他儿子考律师,非得要我们把这孩子安排在这打杂,一边让他看书备考。其实我们啥事也 没给他安排,让他自 己在那天天待着呢。” (3)“哦,这孩子看着还挺老实的。”我随口应和道。 (4)“老实!您可别小瞧这小子,听他爸说,他一心要当摇滚乐手,跟着一个不靠谱的摇 滚乐队干了两年的鼓手。”老李边说边摇着头。 (5)后来我再去律师楼的时候,都会下意识地看看这个叫常远的“摇滚 ”男孩,他也是经常应景似得挺朋克,一会夹克上带钉,一会头发颜色又变了。 (6)那年律考后没几天,我去律师楼办事,发现常远那桌子没了,人也没了踪影。问道老 李,没想到老李苦笑着说:“那小子跑了,据说和一个摇滚乐队跑到青海茫崖矿区那边,在矿区的一个小镇上的酒吧里演 出呢。他爹差点没气背过去,已经发誓不管他了。” (7)我又惊讶又好笑,随着老李附和道“现在的年轻人啊”。 (8)一年以后一天,我突然接到鉴睿律师楼李信律师的微信。“还记得那个玩摇滚乐的男孩吗?他又回来了!这次主动来求我,要继续准备考律师,还在我这打杂看书。
5逻辑联结词与四种命题

4.表示形式:用小写的拉丁字母p、q、r、s…来表示 简单的命题, 复合命题的构成形式有三类:“p或q”、“p且q”、“非 5.p”真值表:表示命题真假的表叫真值表;
复合命题的真假可通过下面的真值表来加以判定。
p q 非p P或q P且q
真真 假
真
真
真假 假 真
假
假真 真
真
假
假假 真 假
假
(二)四种命题
(4)逆命题为真,否命题一定为真。
(三)几点说明
1.逻辑联结词“或”的理解是难点,“或”有三层 含义:
以“P或q”为例:一是p成立但q不成立,二是p不成立 但q成立,三是p成立且q成立, 2.对命题的否定只是否定命题的结论,而否命题既 否定题设又否定结论
3.真值表 P或q:“一真为真”, P且q:“一假为假”
;
地向前疾行。画面下方的文字说此人为病中的穷孩子募捐,正在旅途中。画中心有大字———跟穷人一起上路。 这位汉子一定走过了千山万水,不然不会有如此深邃的目光。他刚毅的表情背后掩饰着隐痛,用这条假肢走,每一步恐怕都要痛。那么———如图所示———他正徒步穿越新 疆的独山子、玛纳斯、一碗泉,甘肃的马莲井、黄羊镇、娘娘坎,然后经陕鄂湘粤到香港。他是香港人。一个忍痛的行者用假肢穿越过大西北的旷野,信念像火苗一样越烧越旺:让没钱的孩子治病。 照片用镀铝金属镶框,内置灯光照明,一幅连一幅延伸到前面。画面上的汉子像排队一 样,一个接一个向你迎面走来,昂着头,有些吃力地移脚。然后是一行比一行小的字———跟穷人一起上路。 香港街头,很少见到通常印象中的穷人,大家似乎衣食丰足。在这幅视觉冲击力强烈的招贴画中,“穷人”两字竟很尊贵,关注他们如同每个人的责任。 就是说,此刻我感动了, 血液从各处奔涌而出,冲撞全身。心里默念:跟穷人一起上路!跟穷人一起上路
1.2命题、量词与逻辑联结词

考 1 命题
点
考纲解读 理解命题的概念.
2
全称量词与存在量词
理解全称量词与存在量词的意义,能正确地对含
有一个量词的命题进行否定.
逻辑联结词“或”、“且 了解逻辑联结词“或”、 “且”、“非”的含 3 ”、“非” 义, 知道复合命题与构成它的简单命题的真假 关系.
2.已知命题p:a2≥0(a∈R),命题q:a2>0(a∈R),下列命题为真命题的是
(
)
(A)p∨q.
(B)p∧q.
(D)(┑p)∨q.
(C)(┑p)∧(┑q).
【解析】p为真命题,q为假命题,故p∨q为真命题.
【答案】A
3. 命题“有些负数满足不等式(1+x)(1-9x2)>0”用符号“∃”写成 特称命题为 . 【答案】∃x∈R且x<0,(1+x)(1-9x2)>0
∈A,P(x),读作“对任意x属于A,有P(x)成立”.
2.存在量词与特称命题 (1)短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在 量词,并用符号“∃”表示. (2)含有存在量词的命题,叫做特称命题. (3)特称命题“存在 A中的一个x0,使P(x0)成立”可用符号简记为:∃x
0
∈A,P(x0),读作“存在一个x0属于A,使P(x0)成立”.
3.含有一个量词的命题的否定
命题:∀x∈A,P(x),命题的否定:∃x0∈A,������ ┑P(x0). 命题:∃x0∈A,P(x0),命题的否定:∀x∈A,������ ┑ P(x).
三、逻辑联结词、简单命题与复合命题 1.“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联 结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且” 、“非”构成的命题是复合命题.
高三数学逻辑联结词和四种命题

2、判断的技巧 ①向定语看齐,顺向为充(原命题为真)
逆向为必(逆命题为真)
②等价性:逆否为真即为充, 否命为真即为 必
等于 大于 小于
原词语
是
(=) (>) (<)
至多有 都是
一个
否定词 语
原词语
至多有 n个
至少有 1个
任意的
任意两 个
p或q
能
否定词 语
例1、用“p或q”、“p且q”、“非p”填空: ⑴命题:“三角形有内切圆和外接圆”是_ ___形式; ⑵命题:“若xy<0,则点P(x,y)在第二或第 四象限ห้องสมุดไป่ตู้是____形式; ⑶“梯形不是平行四边形”是____形式。
且----一假通假 非----真假对立
3、通过原命题与逆否命题的真假等价性来判 断原命题的真假
四种命题(真假成对出现):
原命题
若p则q
互 为 否 命 题
互为逆命题 互为逆否命题
逆命题
若q则p
否命题
若┐p则┐q
逆否命题
若┐q则┐p
命题真假性的主要应用:
1、判断两个命题的关系:充分、必要、充要 性、充分不必要、必要不 充分、不充分也不必 要的判断
鲜花速度/
然从里面流出一道奇辉,他抓住奇辉冷峻地一旋,一组光溜溜、红晶晶的功夫∈万变飞影森林掌←便显露出来,只见这个这件玩意儿,一边蜕变,一边发出“呜呜”的奇音。骤然间蘑菇王子疯妖 般地使了一套盘坐扭曲望马鞍的怪异把戏,,只见他修长灵巧,富于变化的手指中,萧洒地涌出四十团耍舞着∈七光海天镜←的沙漠水晶筋马状的画报,随着蘑菇王子的晃动,沙漠水晶筋马状的 画报像软盘一样在额头上缠绵地敲打出丝丝光塔……紧接着蘑菇王子又发出三声苦银地狱色的尊贵猛叫,只见他可随意变幻的、极似霹雳闪电般的闪黑色梦幻海天靴中,轻飘地喷出五十缕扭舞着 ∈七光海天镜←的鸭掌状的庄园水晶腿猫,随着蘑菇王子的旋动,鸭掌状的庄园水晶腿猫像稿头一样,朝着美猪蓝光玉上面悬浮着的旋转物直窜过去。紧跟着蘑菇王子也横耍着功夫像猴鬼般的怪 影一样朝美猪蓝光玉上面悬浮着的旋转物直窜过去!……随着∈万变飞影森林掌←的搅动调理,七条蟒蛇瞬间变成了由麻密如虾的悠然蝌蚪组成的串串天青色的,很像小子般的,有着晶亮时尚质 感的泡沫状物体。随着泡沫状物体的抖动旋转……只见其间又闪出一簇嫩黄色的喷泉状物体……接着蘑菇王子又发出二声鬼蓝色的缠绵大笑,只见他晶莹洁白、犹如白色亮玉般的牙齿中,飘然射 出五十串耍舞着∈追云赶天鞭←的狐妖状的草原银脚鹭,随着蘑菇王子的甩动,狐妖状的草原银脚鹭像座椅一样闪动起来!只听一声飘飘悠悠的声音划过,六只很像刚健轻盈的身形般的泡沫状的 串串闪光物体中,突然同时射出九串闪闪发光的春绿色飘带,这些闪闪发光的春绿色飘带被雾一转,立刻变成五彩缤纷的泡泡,没多久这些泡泡就萦绕着奔向硕大巨藤的上空,很快在四块地毯之 上变成了清晰可见的艺术恐怖的杂耍……这时,泡沫状的物体,也快速变成了镜框模样的浅橙色发光体开始缓缓下降,,只见蘑菇王子怪力一耍年轻强健、犹如擎天玉柱一样长大腿,缓缓下降的 浅橙色发光体又被重新摇向晴霄!就见那个圆乎乎、亮光光的,很像秤砣模样的发光体一边飘荡紧缩,一边晃动升华着发光体的色泽和质感。蘑菇王子:“哇!看样子很凶哦!知知爵士:“用我 帮忙么?!蘑菇王子:“还可以!等会你看我要是顶不住你就动手!知知爵士:“好的好的!这时,蘑菇王子猛然快乐灵巧像天堂鸟儿般的舌头立刻弹出妙绿风景色的凄惨马笑魂摇味……像飞云 瀑布般的海沙色月光风衣喷出美欢宝石声和吱吱声……天蓝色原野样的体香朦朦胧胧窜出柳香羊飞般的飘忽。接着来了一出,蹦猪椰壳翻九千度外加蟹乐章鱼旋一百周半的招数,接着又搞了个, 团身鹏醉后空翻七
联言命题中常用的联结词可以表示

联言命题中常用的联结词可以表示什么意思
联言命题中常用的联结词主要有:
1. 并列关系:并且、又、而且、同时、此外、或者、既…又…、不但…而且…;
2. 递进关系:而、更、另外、又、再者、此外、比如、然而、因此、所以、以至于、甚至于;
3. 对比关系:但是、然而、反之、相反、尽管、即使、不管;
4. 转折关系:但、不过、可是、不仅、不但、反而;
5. 条件关系:如果、假如、只有、仅当、当…的时候;
6. 结果关系:因此、以至于、以致、致使、所以、故而。
上述联结词可以表达出不同的逻辑关系,例如并列关系表示多个情况同时存在;递进关系表示前一种情况增加了一个新的情况;对比关系表示前面强调的情况和当前强调的情况存在差异;转折关系表示前一种情况和当前情况相反;条件关系表示某一情况必须满足另一情况;结果关系表示前一情况导致了后一情况的发生。
高考数学逻辑联结词与四种命题(201912)

高三备课组
一、基础知识 (一)逻辑联结词
1.命题:可以判断真假的语句叫做命题. 2.逻辑联结词:“或” “且” “非”这些词叫做逻辑联 结词。
或:两个简单命题至少一个成立
且:两个简单命题都成立,
非:对一个命题的否定 3.简单命题与复合命题:不含逻辑联结词的命题叫 做简单命题;由简单命题与逻辑联结词构成的命题叫 做复合命题。
4.表示形式:用小写的拉丁字母p、q、r、s…来表示 简单的命题, 复合命题的构成形式有三类:“p或q”、“p且q”、“非 5.p”真值表:表示命题真假的表叫真值表;
复合命题的真假可通过下面的真值表来加以判定。
p q 非p P或q P且q
真真 假
真
真
真假 假 真
假
假真 真
真
假
假假 真 假
假
(二)四种命题
2.四种命题的关系:
原命题 若p则q
互 否
否命题 若p则 q
互逆
互否 为逆
为
逆
互
否
互逆
逆命题 若q则p
互 否
逆否命题 若q则p
3.一个命题的真假与其它三个命题的真假有如下 四条关系: (1)原命题为真,它的逆命题不一定为真。 (2)原命题为真,它的否命题不一定为真。 (3)原命题为真,它的逆否命题一定为真。
1.一般地,用p和q分别表示原命题的条件和结论, 用┐p和┐q分别表示p和q的否定。于是四种命题的形 式为: 原命题:若p则q( p q)
逆命题:若q则p (q p)
否命题:若┐p则┐q (p q)
逆否命题:若┐q则┐p (q p)
;油松/
(4)逆命题为真,否命题一定为真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:命题及逻辑连接词
考纲要求:
①理解命题的概念.
②了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.③了解逻辑联结词“或”、“且”、“非”的含义.
④理解全称量词与存在量词的意义.
⑤能正确地对含有一个量词的命题进行否定
教材复习
1.原命题:若p则q;逆命题为:;否命题为:;逆否命题为:
2.四种命题的真假关系:两个命题互为逆否命题,它们有的真假性;
四种命题中真命题或假命题的个数必为个.
3.常见词语的否定:如:“等于、大于、小于、是、都是、至多一个、至少一个、任意的、所有的、至多n个、任意两个、或、且”的否定分别是:
4.
5.命题的否定与否命题的区别,全称性命题的否定为存在性命题,存在性命题的否定为全称性命题.
基本知识方法
1.四种命题之间的关系
2.存在,任意的符号表示法
3.含有一个量词的命题的否定
典例分析:
问题1.把写列命题写成若p 则q 的形式,写出它们的逆命题、否命题与逆否否命题,
并判断真假.()1 当2x =时,2
320x x -+=;()2 对顶角相等。
问题2.分别写出由写列命题构成的“p 且q ”、“p 或q ”、“非p ”形式的复合命题
并判断真假。
()1:p 3是9的约数;:q 3是18的约数;
()2:p 菱形的对角线相等;:q 菱形的对角线互相垂直; ()3 :{,,}p a a b c ∈;:{}{1,,}q a b c Ü;
()4 :p 不等式2221x x ++>的解集是R ;:q 不等式2221x x ++≤的解集为∅.
问题3.试判断下列命题的真假
()12,20x R x ∀∈+>; ()24,1x N x ∀∈≥;
()33,1x Z x ∃∈<; ()42
,2x R x ∃∈=.
问题4.已知命题p :方程210x mx ++=有两个不等的负实根.命题q :方程
244(2)10x m x +-+=无实根.若“p 或q ”为真,“p 且q ”为假,求实数m 的范围.
问题5.()1用反证法证明命题:若整数系数一元二次方程:20(0)ax bx c a ++=≠ 有
有理根,那么a 、b 、c 中至少有一个是偶数,下列假设中正确的是 .A 假设a 、b 、c 都是偶数 .B 假设a 、b 、c 都不是偶数
.C 假设a 、b 、c 至多有一个是偶数 .D 假设a 、b 、c 至多有两个是偶数
()2已知函数()f x 对其定义域内的任意两个数a 、b ,当a b <时,都有()()f a f b <
,
证明:()0f x =至多有一个实根.
走向高考:
1. (08广东)已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是.A ()p ⌝或q .B p 且 q .C ()p ⌝且()q ⌝.D ()p ⌝或()q ⌝
2. (07宁夏)已知命题p :1sin ,≤∈∀x R x ,则
.A 1sin ,:≥∈∃⌝x R x p .B 1sin ,:≥∈∀⌝x R x p .C 1sin ,:>∈∃⌝x R x p .D 1sin ,:>∈∀⌝x R x p
3. (07重庆)命题:
“若12
<x ,则11<<-x ”的逆否命题是 .A 若12≥x ,则11
-≤≥x x ,或 .B 若11<<-x ,则12<x
.C 若11
-<>x x ,或,则12>x .D 若11-≤≥x x ,或,则12≥x 4. (07山东)命题“对任意的01,23≤+-∈x x R x ”的否定是 .A 不存在01,23≤+-∈x x R x .B 存在01,23≥+-∈x x R x
.C 存在01,23>+-∈x x R x .D 对任意的01,23>+-∈x x R x
5. (08山东)给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是.A 3.B 2.C 1 .D 0
课后练习作业:
1. 有下列四个命题:
①“若0=+y x ,则y x ,互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;
③“若1≤q ,则022=++q x x 有实根”的逆命题;
④“不等边三角形的三个内角相等”的逆否命题;其中真命题的个数是
2. 命题“存在x Z ∈,使22x x m ++≤0”的否定是 .A 存在x Z ∈使22x x m ++0> .B 不存在x Z ∈使22x x m ++0> .C 对任意x Z ∈使22x x m ++≤0 .D 对任意x Z ∈使22x x m ++0>
3. 已知)0(012:,0208:222>≤-++≤--m m x x q x x p ,且非p 是非q 的必要不充分条件,求实数m 的取值范围.
4.(97成都统考)若a 、b 、c 均为实数,且222
a x y π
=-+
,2
23
b y z π
=-+
,
226
c z x π
=-+
,求证:a 、b 、c 中至少有一个大于0。