2017-2018学年七年级下期末考试数学试卷(有答案)
17-18第二学期期末测试七年级数学答案

2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。
人教版2017-2018学年七年级(下册)期末数学试卷及答案

2017-2018学年七年级(下册)期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.的值等于()A.4 B.﹣4 C.±2 D.22.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣33.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b4.将不等式组的解集表示在数轴上,下面表示正确的是()A.BC.D.5.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.6.方程组的解是()A.B.C.D.7.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)10.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°二.填空题(共6小题,满分18分,每小题3分)11.﹣的立方根是.12.方程组的解是.13.用不等式表示:x与5的差不大于x的2倍:.14.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED 为°.16.关于x的不等式组有三个整数解,则a的取值范围是.三.解答题(共9小题,满分72分)17.(6分)(1)20170﹣|﹣sin45°|cos45°+﹣(﹣)﹣1(2).18.(6分)解二元一次方程组:.19.(7分)解不等式组.20.(7分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.21.(7分)如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.22.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED 交AB于点F,求∠AFE的度数.23.(10分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?24.(10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.25.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.的值等于()A.4 B.﹣4 C.±2 D.2【分析】根据表示16的算术平方根,需注意的是算术平方根必为非负数求出即可.【解答】解:根据算术平方根的意义,=4.故选A.【点评】此题主要考查了算术平方根的定义,关键是掌握算术平方根的概念:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为.2.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3【分析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可.【解答】解:把代入方程组得:,解得:,所以a﹣2b=﹣2×(﹣)=2,故选B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能得出关于a、b的方程组是解此题的关键.3.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.【点评】本题考查了不等式的性质,属于基础题.4.将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解集;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:﹣、、是有理数,π是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6.方程组的解是()A.B.C.D.【分析】利用代入法求解即可.【解答】解:,①代入②得,3x+2x=15,解得x=3,将x=3代入①得,y=2×3=6,所以,方程组的解是.故选D.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.7.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.10.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°【分析】先根据∠1=35°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出答案.【解答】解:∵AB⊥BC,∠1=35°,∴∠2=90°﹣35°=55°.∵a∥b,∴∠2=∠3=55°.故选C.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.二.填空题(共6小题,满分18分,每小题3分)11.﹣的立方根是﹣0.6.【分析】根据立方根的定义即可求解.【解答】解:﹣的立方根是﹣0.6,故答案为﹣0.6.【点评】本题主要考查了立方根的概念,如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根,比较简单.12.方程组的解是.【分析】根据观察用加减消元法较好,①+②消去y,解出x的值,再把x的值代入①,解出y.【解答】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.【点评】此题考查的是解二元一次方程组,解题的关键是用加减消元法求解.13.用不等式表示:x与5的差不大于x的2倍:x﹣5≤2x.【分析】x与5的差为x﹣5,不大于即小于等于,x的2倍为2x,据此列不等式.【解答】解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x【点评】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是把文字语言的不等关系转化为用数学符号表示的不等式,注意抓住关键词语,弄清不等关系.14.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成(4,3).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:确定平面直角坐标系中x轴为从下数第一条横线,y轴为从左数第一条竖线,小明的位置为原点,从而可以确定小浩位置点的坐标为(4,3).故答案为:(4,3).【点评】此题主要考查了根据坐标确定点的位置,由已知条件正确确定坐标轴的位置是解决本题的关键.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为114°.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114.【点评】本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.16.关于x的不等式组有三个整数解,则a的取值范围是﹣<a≤﹣.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a 的范围.【解答】解:∵解不等式①得:x>2,解不等式②得:x<10+6a,∴不等式组的解集为2<x<10+6a,方程组有三个整数解,则整数解一定是3,4,5.根据题意得:5<10+6a≤6,解得:﹣<a≤﹣.故答案是:﹣<a≤﹣.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三.解答题(共9小题,满分72分)17.(6分)(1)20170﹣|﹣sin45°|cos45°+﹣(﹣)﹣1(2).【分析】(1)根据特殊角的函数值即可求出答案.(2)先化简原方程组,然后根据二元一次方程组的解法即可【解答】解:(1)原式=1﹣+3+4=8﹣=(2)原方程组化为①﹣②得:4x=﹣4x=﹣1将x=﹣1代入①中,y=解得:【点评】本题考查学生的计算能力,解题的关键熟练运用运算法则,本题属于基础题型.18.(6分)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(7分)解不等式组.【分析】分别求出求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式①,得x<1.解不等式②,得x≥0,故不等式组的解集为0≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(7分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了200名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为126度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示;(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300人故答案为:(1)200;(3)126【点评】本题考查统计问题,解题的关键是熟练运用统计学中的公式,本题属于基础题型.21.(7分)如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.【分析】根据同旁内角互补,两直线平行由∠1+∠2=180°得AB∥EF,再根据平行线的性质得∠B=∠EFC,而∠B=∠3,所以∠3=∠EFC,然后根据平行线的判定方法即可得到结论.【解答】证明:∵∠1+∠2=180°,∴AB∥EF,∴∠B=∠EFC,∵∠B=∠3,∴∠3=∠EFC,∴DE∥BC.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.22.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED 交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.23.(10分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?【分析】先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.【解答】解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x≤,x≤17,答:最多还能买词典17本.【点评】本题是一元一次不等式的应用,列不等式时要先根据“至少”、“最多”、“不超过”、“不低于”等关键词来确定问题中的不等关系,本题要弄清数量、单价、总价和书名,明确数量×单价=总价;在确定最后答案时,要根据实际意义,不能利用四舍五入的原则取整数值.24.(10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.25.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【点评】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.。
人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
2017-2018学年度第二学期期末考试初一数学试题及答案

2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。
2、从80减少到50,减少了()%;从50增加到80,增加了()%。
3、某班有60人,缺席6人,出勤率是()%。
4、如果3a=5b(a、b≠0),那么a:b=()。
5、一个圆锥的体积12dm3 ,高3dm,底面积是()。
6、甲、乙两数的比是5:8,甲数是150,乙数是()。
7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。
照这样的折扣,原价800元的西装,现价()元。
9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。
10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。
桶重()千克,油重()千克。
11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。
12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。
如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。
13、找出规律,填一填。
3,11,20,30,(),53,()。
二、判断题:对的在括号打√,错的打×。
(每小题1分共5分)1、0是负数。
()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。
()3、时间一定,路程和速度成正比例。
()4、栽120棵树,都成活了,成活率是120%。
()5、圆柱的体积大于与它等底等高的圆锥的体积。
()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。
2017-2018学年浙教版数学七年级(下册)期末考试试题及答案

2017-2018学年七年级(下)期末数学试卷一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的( )2•已知:如图,直线a , b 被直线c 所截,且a // b ,若/仁70°则/2的度数 是()D.D. 调查一架隐形战机的各零部件的质量情况8. 甲、乙两班学生植树造林,已知甲班每天比乙班多植所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据题意列出方程是() A 孔叫 B _ 'C 詆 ⑴D 山:U I5 9.已知x - =2,则代数式5X 2+ - 3的值为( ) 宣 xA . 27 B. 7C. 17 D . 2 10 .用如图①中的长方形和正方形纸板作侧面和底面, 做成如图②的竖式和横式 的两种无盖纸盒.现在仓库里有 m 张正方形纸板和n 张长方形纸板,如果做两 种纸盒若干个,恰好使库存的纸板用完,则m+n 的值可能是()A . 2013B . 2014 C. 2015 D . 2016二、填空题(每小题3分,共30分)11 .用科学记数法表示:0.00000706=—.12 .当x=—时,分式的值为0 .13 .如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC 的条件:—(一个即可). 7. A . 一儿一[i=2 1次方程组:「的解是() 5棵树,甲班植80棵树B .C - •&314 .某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是16•若多项式x2- kx+9是一个完全平方式,则常数k的值是_ .r“3&+2b a17 •计算: _ _ - -r~二=_____ •a a -b18. 若多项式x2- mx+n (m、n是常数)分解因式后,有一个因式是x- 2,则2m - n的值为___ •19. 已知:如图放置的长方形ABCD和等腰直角三角形EFG中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点F、G、D、C 在同一直线上,点G 和点D重合,现将△ EFG沿射线FC向右平移,当点F和点D重合时停止移动,若△ EFG与长方形重叠部分的面积是4cm2,则△ EFG向右平移了②若a=3,则b+c=9;③若C M0,则(1 - a) (1 - b) = +—a④若c=5,则a2+b2=15.其中正确的是____ (把所有正确结论的序号都填上)___ cm.,c满足a+b=ab=c,有下列结论:a^3ab+b =①若、解答题(共50 分)21 •计算下列各题(1)(-3) 1 2+ ( n+ 了)—2(2)(2x- 1) 2-(x- 1) (4x+3)(1)22 •解方程(组)3x+y=-2(2) ^― - : =2.' 72x-l l-2x23. 分解因式(1)2X2- 8(2)3灼-6xy2+3y3.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.1 本次接收随机抽样调查的男生人数为人,扇形统计图中良好”所对应的圆心角的度数为____________ ;2 补全条形统计图中优秀”的空缺部分;25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图2两幅不完整的统计图,请根据图中信息回答下列问题:合格 20% 不合格优秀30%(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到良好的人数.26. 为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A, B, C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套) 乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1) 问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元?(2) 求a, b的值.四、附加题(每小题10分,共20分)27. 已知:直线a// b,点A, B分别是a, b上的点,APB是a, b之间的一条折备用图备用图(1) ______________________________ 若/ 仁33°, / APB=74,则/2= 度.(2)若/ Q的一边与PA平行,另一边与PB平行,请探究/ Q,Z 1, 2间满足的数量关系并说明理由.(3)若/ Q的一边与PA垂直,另一边与PB平行,请直接写出/ Q,Z 1 , 2之间满足的数量关系.28•教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= ___ .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.参考答案与试题解析一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的()【考点】利用平移设计图案.【分析】根据平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等可得答案.【解答】解:根据平移可得B是平移可得到图形中的图案,故选:B.2•已知:如图,直线a,b被直线c所截,且a// b,若/仁70°则/2的度数是()A. 130°B. 110°C. 80°D. 70°【考点】平行线的性质.【分析】由a/b,根据两直线平行,同位角相等,即可求得/ 3的度数,又由邻补角的定义即可求得/ 2的度数.【解答】解:I a/ b,.•./ 3=Z 仁70°,vZ 2+Z 3=180°,•••/ 2=110°.3•分式打一有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 1【考点】分式有意义的条件.【分析】分母不为零,分式有意义,依此求解.【解答】解:由题意得X-1M0,解得X M 1.故选A.4. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a【考点】同底数幕的除法;同底数幕的乘法;幕的乘方与积的乘方.【分析】根据同底数幕的乘法、除法,积的乘方,幕的乘方,即可解答.【解答】解:A、a3x a4=a7,故本选项错误;B、a5* a=a\故本选项错误;C (ab2)3=a3b6,故本选项错误;D、正确;故选:D.5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y) =ax+ayB. x - 4x+4= (x- 2)C. 2a- 4b+2=2 (a-2b)D. x2- 16+3x= (x-4) (x+4) +3x【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【解答】解:A、结果不是整式的乘积的形式,不是因式分解,选项错误;B、是因式分解,选项正确;C 2a-4b+2=2 (a-2b+1),选项错误;D、结果不是整式的乘积的形式,不是因式分解,选项错误.故选B.6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查D. 调查一架隐形战机的各零部件的质量情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤半径,适合抽查,选项错误;B、了解全国中学生的身高情况,适合抽查,选项错误;C、对市场上某种饮料质量情况的调查,适合抽查,选项错误;D、调查一架隐形战机的各零部件的质量情况,适合全面调查,选项正确. 故选D.【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可.7.A .fx+2y=10,尸2葢的解是(D. *y=2['、尸2\ 7=4 C.把②代入①得:x+4x=10,即x=2, 把x=2代入②得:y=4, 则方程组的解为: 故选A .8.甲、乙两班学生植树造林,已知甲班每天比乙班多植 5棵树,甲班植80棵树 所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据 题意列出方程是( )A 80B 80 _ 70C 80 JOD 80^ 70.乂:.二 二 1 .工 ” £ 工.工 乙 1【考点】由实际问题抽象出分式方程.【分析】设甲班每天植树x 棵,则乙班每天植树(x -5)棵,根据甲班植80棵 树所用的天数与乙班植70棵树所用的天数相等,列方程即可.【解答】解:设甲班每天植树x 棵,则乙班每天植树(x - 5)棵, +日石亠何 80 70由题意得, = .x 故选D .1 o 59.已知x - =2,则代数式5x 2+ - 3的值为( )A . 27 B. 7C. 17 D . 2【考点】完全平方公式.【分析】原式前两项提取5,利用完全平方公式变形,将已知等式代入计算即可 求出值.【解答】解:I x-—=2,•••原式=5 (只+丁)- 3=5[ (x - ) 2+2] - 3=30-3=27,故选A【解答】解:{囂笄10 .用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒•现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是()A. 2013B. 2014C. 2015D. 2016【考点】二元一次方程组的应用.【分析】设做竖式和横式的两种无盖纸盒分别为x个、y个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x、y的系数表示出m+n并判断m+n为5的倍数,然后选择答案即可.【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得丄+〉:一I x+2y=in,两式相加得,m+n=5 (x+y),••• x、y都是正整数,••• m+n是5的倍数,••• 2013、2014、2015、2016四个数中只有2015是5的倍数,• m+n的值可能是2015.故选C.、填空题(每小题3分,共30 分)11.用科学记数法表示:0.00000706= 7.06X 10「6【考点】科学记数法一表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a x 10「n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000706=7.06X 10「6,故答案为:7.06X 10「6.12•当x=】时,分式1的值为0.—3—x+2【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零进行判断.【解答】解:•••分式」一的值为0,x+z••• 3x-仁0,且x+2工0,解得 , X M- 2,即x=.故答案为:—13. 如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC的【考点】平行线的判定.【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【解答】解:T AD和BC被BE所截,•当/ EADN B 时,AD / BC.故答案为:/ EADN B.14. 某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是0.4 .【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率二频数宁数据总和计算出成绩在90.5〜95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20) =50人,其中在90.5〜95.5这一分数段有20人,则成绩在90.5〜95.5这一分数段的频率是.=0.4.50故本题答案为:0.4.15. 计算:(6a2- 10ab+4a)*( 2a) = 3a-5b+2 .【考点】整式的除法.【分析】根据多项式除以单项式的运算方法求解即可.【解答】解:(6a2- 10ab+4a)-( 2a)=(6a2)*( 2a)-( 10ab)*( 2a) + (4a)*( 2a)=3a- 5b+2故答案为:3a- 5b+2.16. 若多项式x2- kx+9是一个完全平方式,则常数k的值是土6 .【考点】完全平方式.【分析】先根据两平方项项确定出这两个数是x和3,再根据完全平方公式求解即可. 【解答】解:••• x2- kx+9=W- kx+32,解得k=± 6. 故答案为:土 6.17.计算:3a+2b a 2【考点】分式的加减法.【分析】根据同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,求解即可.2(a+b) (a+b) (a-b) =2 a-b .故答案为:18. 若多项式x 2- mx+n (m 、n 是常数)分解因式后,有一个因式是 x - 2,则 2m - n 的值为 4.【考点】因式分解的意义.【分析】设另一个因式为x -a ,因为整式乘法是因式分解的逆运算,所以将两 个因式相乘后结果得x 2- mx+ n ,根据各项系数相等列式,计算可得 2m - n=4 .【解答】解:设另一个因式为x -a ,由①得:a=m - 2③,把③代入②得:n=2 ( m - 2), 2m - n=4, 故答案为:4 .19.已知:如图放置的长方形 A BCD 和等腰直角三角形EFG 中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点 F 、G 、D 、C 在同一直线上,点 G 和点 D【解答】 解:贝卩 x 2- mx+n= (x - 2) (x - a )=« - ax - 2x+2a=x^ -(a+2) x+2a , 了且+21>-且重合,现将△ EFG 沿射线FC 向右平移,当点F 和点D 重合时停止移动,若△ EFG 与长方形重叠部分的面积是4cm 2,则厶EFG 向右平移了 3 cm .【分析】首先判断出平移厶EFG 经过长方形ABCD 对角线的交点时,重叠面积是 长方形的面积的一半即面积为 4cm 2,然后求出平移的距离. 【解答】解:•••长方形AB=2cm, AD=4cm, •••长方形的面积为8cm 2,•••△ EFG 与长方形重叠部分的面积是 4cm 2,• △ EFG 边DE 经过长方形ABCD 对角线的交点, ••• FG=4 CD=2 •;( FG+CD ) =3,• △ EFG 向右平移了 3cm , 故答案为3.20. 已知实数a ,b ,c 满足a+b=ab=c,有下列结论:② 若 a=3,则 b+c=9;③ 若 C M 0,贝U( 1-a ) (1 - b ) = + ; ④ 若 c=5,则 a 2+b 2=15. 其中正确的是 ①③④(把所有正确结论的序号都填上).【考点】分式的混合运算;实数的运算.【分析】①由题意可知:a+b=ab=cM 0,将原式变形后将a+b 整体代入即可求出 答案.②由题意可知:a+b=ab=3,联立方程后,可得出一个一元二次方程,由于△< 0,所以a 、b 无解,①若0,2a+7 ab+2b 2; ■; 等腰直角三角形.③分别计算(1 - a)(1 - b)和一+a E>④由于a+b=ab=5,联立方程可知△> 0,所以由完全平方公式即可求出a2+b2的值.【解答】解:①T甘0,--ab M 0•'a+b_3比 _此£ 乩__2rb 2a+b=ab,•原式=—円性—= 士?5!= 三巳匕=—上朋2(a+b)+7ab 2ab+7ab 9ab 9 故①正确;②••• c=3,二ab=3,••• a+b=3,化简可得:b2- 3b+3=0,•/△< 0,•该方程无解,c=3时,a、b无解,故②错误;③••• C M 0,--ab M 0,a+b=ab•( 1 - a) (1 - b) =1 - b- a+ab=1,一==1二卜吕. ,•( 1 - a) (1 - b) = +| ,故③正确;④••• c=5,• a+b=ab=5,化简可得:b2- 5b+5=0,a2+b2= (a+b) 2- 2ab=15,故④正确故答案为:①③④三、解答题(共50分)21 •计算下列各题(1)(—3) 2+ ( n+ 匚)°—(—=) 2(2)(2x—1) 2—(X—1) (4x+3)【考点】多项式乘多项式;实数的运算;完全平方公式;零指数幕;负整数指数幕. 【分析】(1)原式利用乘方的意义,零指数幕、负整数指数幕法则计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=9+1 —4=6;(2)原式=4x2—4x+1 —4x2—3x+4x+3= —3x+4.22 •解方程(组)f2x+7y=5(1)I -(2)" —「严・【考点】解分式方程;解二兀一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1) ②X 7 —①得:19x=— 19, 即卩x=- 1,把x=—1代入①得:y=1,则方程组的解为;y=l(2)去分母得:x+2=4x—2,解得:x=.,经检验X=f是分式方程的解.23•分解因式(1)2X2- 8(2)3灼-6xy2+3y3.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式2,进而利用平方差公式分解因式得出答案;(2)首先提取公因式3y,进而利用完全平方公式分解因式得出答案.【解答】解:(1) 2x2- 8=2 (x2- 4)=2 (x+2) (x- 2);(2) 3灼-6xy2+3y3=3y (x2- 2xy+y2)=3y (x-y) 2.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.【考点】平行线的判定与性质;垂线.【分析】(1)先根据AD丄BE, BC丄BE得出AD// BC,故可得出/ ADE=Z C,再由/ A=Z C得出/ADE=Z A,故可得出结论;(2)由AB//CD得出/C的度数,再由直角三角形的性质可得出结论.【解答】解:(1) AB// CD.理由:••• AD丄BE, BC丄BE,••• AD// BC,•••/ ADEN C.vZ A=Z C,•••/ ADE=Z A ,••• AB// CD;(2)v AB// CD,Z ABC=120,•••Z C=180 - 120°60°,•••Z BEC=90- 60°=30o .25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图 2两幅不完整的统计图,请根据图中信息回答下列问题: (1) 本次接收随机抽样调查的男生人数为 40人,扇形统计图中 良好”所对 应的圆心角的度数为 162° ;(2) 补全条形统计图中 优秀”的空缺部分;(3) 若该校七年级共有男生480人,请估计全年级男生体质健康状况达到 良好” 的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)合格人数除以所占的百分比即可得出所调查的男生总人数, 用良好 的人数除以总人数再乘以360°即可得出 良好”所对应的圆心角的度数;合格 20% 不吕格优秀 30%(2)用40 - 2 -8 - 18 即可;(3)用480乘以良好所占的百分比即可.【解答】解:(1)8- 20%=40(人),18-40X 360°=162°(2)优秀”的人数=40- 2-8 - 18=12, 如图,(3)良好”的男生人数:話X480=216 (人),答:全年级男生体质健康状况达到良好”的人数为216人.26.为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A,B,C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套)乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1)问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元? (2)求a,b的值.【考点】二元一次方程组的应用.【分析】(1 )设甲型垃圾桶的单价是x元/套,乙型垃圾桶的单价是y元/套.根据图表中的甲型、乙型垃圾桶的数量和它们的总价列出方程组并解答.(2)根据图表中的数据列出关于 a b 的二元一次方程,结合 a b 的取值范围 来求它们的值即可.【解答】解:(1 )设甲型垃圾桶的单价是x 元/套,乙型垃圾桶的单价是y 元/套. |y=240 答:甲型垃圾桶的单价是140元/套,乙型垃圾桶的单价是240元/套. (2)由题意得:140a+240b=2580, 整理,得 7a+12b=129, 因为a 、b 都是正整数, 所以或(a=15 . b=9 b~2 四、附加题(每小题10分,共20分) 27.已知:直线a // b ,点A ,B 分别是a ,b 上的点,APB 是a ,b 之间的一条折 弦,且/ APN<90° Q 是a ,b 之间且在折线APB 左侧的一点,如图.(1) 若/ 仁33°, / APB=74,则/2= 41 度.(2) 若/ Q 的一边与PA 平行,另一边与PB 平行,请探究/ Q ,Z 1, 2间满足 的数量关系并说明理由.(3) 若/ Q 的一边与PA 垂直,另一边与PB 平行,请直接写出/ Q ,Z 1 , 2之 间满足的数量关系.【考点】平行线的性质.【分析】(1)图1,过P 作PC//直线a ,根据平行线的性质得到/ 仁/APC, / 2=Z BPC 于是得到结论;依题意得:10x+8y=33205x+9y=2860 x=140 解得* 备用图 葺■甲图(2)如图2,由已知条件得到四边形MQNP是平行四边形,根据平行四边形的性质得到/ MQN=Z P=Z 1 + Z2,根据平角的定义即可得到结论;(3)由垂直的定义得到/ QEP=90,由平行线的性质得到/ QFE=/ P,根据平角的定义得到结论.【解答】解:(1)图1,过P作PC//直线a,••• PC// b,•••/ 1=/ APC / 2=/BPC•••/ 2=/ APB- / 1=41°故答案为:41;(2)如图2,v QM // PB, QN// PA•••四边形MQNP是平行四边形,•••/ MQN=/ P=/ 1 + /2,•••/ EQN=180-/ MQM=180 -/ 1 -/ 2;即/ Q=/ 1 + / 2=180°-/ 1 -/ 2;(3):QE丄AP,•••/ QEP=90,••• QF// PB,•••/ QFE=/ P,•••/ EQF=90-/ QFE=90-/ 1 -/ 2,•••/ EQG=18°—/ EQF=90+/ 1+/2 .A7 a28 .教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= (m+1) (m - 5) .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.【考点】因式分解的应用;非负数的性质:偶次方.【分析】(1)根据阅读材料,先将m2- 4m-5变形为m2- 4m+4- 9,再根据完全平方公式写成(m- 2) 2-9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2- 4a+6b+18转化为(a- 2) 2+ (b+3) 2+5,然后利用非负数的性质进行解答;(3)利用配方法将多项式a2- 2ab+2b2- 2a-4b+27转化为(a- b- 1) 2+(b-3)2+17,然后利用非负数的性质进行解答.【解答】解:(1)m2- 4m - 52=m - 4m+4- 9=(m- 2)2- 9=(m- 2+3)(m- 2- 3)=(m+1)(m- 5).故答案为(m+1)(m- 5);(2)v a F+b2- 4a+6b+18= (a-2) 2+ (b+3) 2+5,•••当a=2, b=- 3 时,多项式a2+b2- 4a+6b+18 有最小值5;(3)v a2- 2ab+2b2-2a- 4b+27=a2- 2a(b+1) +(b+1) 2+(b- 3) 2+17=( a- b- 1 ) 2+( b- 3) 2+17,•••当a=4, b=3 时,多项式a2- 2ab+2b2- 2a- 4b+27 有最小值17.2017年4月18日A. 130°B. 110°C. 80°D. 70°33. 分式——有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 14. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y)=ax+ayB. X - 4X+4=(x- 2)C. 2a- 4b+2=2 (a- 2b)D. X*2-16+3X=(X- 4)(X+4)+3X6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查。
人教版2017-2018学年七年级下期末数学试卷含答案解析

人教版2017-2018学年七年级下期末数学试卷含答案解析1. 下列说法正确的是()A. 有且只有一条直线垂直于已知直线B. 互补的两个角一定是邻补角C. -2的绝对值是-22. 已知是方程kx+y=3的一个解,那么k的值是()A. 7B. 1C. -13. 在-2,,,3.14,,,这6个数中,无理数共有()A. 4个B. 3个C. 2个4. 下列说法正确的是()A. 同位角相等B. 在同一平面内,如果a⊥b,b⊥c,则a⊥cC. 相等的角是对顶角5. 若x>y,则下列式子错误的是()A. x-3>y-3B. 3-x>3-yC. x+3>y+26. 下列各式中,是一元一次不等式的是()A. 5+4>8B. 2x-1C. 2x≤57. 如图的两个统计图,女生人数多的学校是()A. 甲校B. 乙校C. 甲、乙两校女生人数一样多8. 如果∠A与∠B的两边分别平行,∠A比∠B的3倍少36°,则∠A的度数是(A. 18°B. 126°C. 18°或126°16. 求符合下列各条件中的x的值。
(1)(x-4)^2=4解:(x-4)^2=4x-4=±2x=4±2x=6或2(2)(x+3)^2-9=0解:(x+3)^2-9=0(x+3-3)(x+3+3)=0(x+0)(x+6)=017. 解不等式组,并把解集在数轴上表示出来。
-3<x-1<2x+3解:-3<x-1,x-1<2x+3-2<x,-1<x<418. 若5a+1和a-19是数m的平方根,求m的值。
解:5a+1和a-19是数m的平方根,则m^2=5a+1,m^2=a-195a+1=a-19+m^24a+20=m^2(m-2)(m+10)=0m=2或m=-10由m^2=5a+1,得m=2,代入可得a=5。
19. 如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
2017-2018学年度人教版七年级下数学期末测评试卷有答案

期末测评( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( )4.下列各数1.414,√2,-13A.1.414B.√2D.0C.-135.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49. ( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11. ( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作.13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有人.14.若实数x满足等式( x+4 )3=-27,则x= .15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为.三、解答题( 共66分 )17. ( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x -1.5x 0.3+3x -2x4=6,x 2+x -13=24.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.20. ( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图22. ( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B 的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O1,B1的坐标.( 2 )三角形AOB的面积.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?24. ( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?期末测评答案解析( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( A )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( D )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( D )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( B )4.导学号14154138下列各数1.414,√2,-13A.1.414B.√2C.-1D.035.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( A )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( D )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( D ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49.导学号14154139( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( A )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( B )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11.导学号14154140( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为150°.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作( 21,-3 ).13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有400人.14.若实数x满足等式( x+4 )3=-27,则x=-7.15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为( 505,-504 ).三、解答题( 共66分 )17.导学号14154141( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.2a+1的平方根是±3,3a+2b-4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×( -8 )+8=64,∴4a-5b+8的立方根是4.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x-1.5x0.3+3x-2x4=6, x2+x-13=24.{2x-17x=24,①3x+2x=146,②②×2-①×3,得55y=220,解得y=4.把y=4代入①,得2x-68=24,解得x=46,原方程组的解为{x =46,x =4.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.①,得x ≤135,解不等式②,得x ≥-47,∴不等式组的解集为-47≤x ≤135. ∴不等式组的整数解是0,1,2.20.导学号14154142( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.AB ∥DF ,∴∠D+∠BHD=180°, ∵∠D+∠B=180°, ∴∠B=∠DHB , ∴DE ∥BC.DE ∥BC ,∠AMD=75°,∴∠AGB=∠AMD=75°, ∴∠AGC=180°-∠AGB =180°-75° =105°.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表节目人数百分根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图解( 1 )2030( 2 )中国诗词大会的人数为20,补全条形统计图,如图所示学生最喜欢的节目人数条形统计图( 3 )根据题意,得1000×40%=400( 名 ),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.导学号14154143( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O 1,B 1的坐标.( 2 )三角形AOB 的面积.点O 1的横坐标为0+( 3-2 )=1;纵坐标为0+[-1-( -2 )]=1;点B 1的横坐标为-4+( 3-2 )=-3;纵坐标为2+[-1-( -2 )]=3;所以点O 1的坐标为( 1,1 ),点B 1的坐标为( -3,3 );( 1 )三角形AOB 的面积为12×1×2+12×1×2=2.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米. ( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?根据题意,得{x -x =100,5x =6x .( 2 ){x -x =100,5x =6x ,解得{x =600,x =500.答甲队每天铺设600米,乙队每天铺设500米.24.导学号14154144( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A ,B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7 800万元,改扩建3所A 类学校和1所B 类学校共需资金5 400万元. ( 1 )改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?( 2 )该县计划改扩建A ,B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A ,B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?设改扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意,得{2x +3x =7800,3x +x =5400,解得{x =1200,x =1800.答改扩建一所A 类学校和一所B 类学校所需资金分别为1200万元和1800万元.( 2 )设今年改扩建A 类学校a 所,则改扩建B 类学校( 10-a )所,由题意,得{( 1200-300 )x +( 1800−500 )( 10−x )≤11800,300x +500( 10−x )≥4000,解得3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案方案一改扩建A类学校3所,B类学校7所;方案二改扩建A类学校4所,B类学校6所;方案三改扩建A类学校5所,B类学校5所.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x = −1 x=4 x=2 B . x = −2 C. D. A. y = 2 y = −3 y = 1 y = 3 5.已知a>b,则下列不等式一定成立的是( ) A.-a<-b B.a-1<b-1 C.a+2<b+2 D.2a<2b 6.如图,直线a、b被直线c所截,a∥b,∠2=∠3.若∠1=80°, 则∠4等于( ) A.20° B.40° C.60° D.80° 7.在平面直角坐标系中,将点A(m-1,n+2)先向右平移3个单位, 再向上平移2个单位,得到点A′.若点A′位于第二象限,则m、n的取值范围分别是( ) A.m<0,n>0 B.m<0,n<-2 C.m<-2,n>-4 D.m<1,n>-2 8.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3 km,平路每小时走4 km,下坡 每小时走5 km,那么从甲地到乙地需54 min,从乙地到甲地需42 min.设从甲地到乙地的上坡 路程长为x km,平路路程长为y km,依题意列方程组正确的是( )
14.如图, 不添加辅助线,请写出一个能判定DE∥BC的条件___________.
A.
B. )
C.
D.
3.下列调查活动中适合用全面调查的是( A.“奔跑吧,兄弟”节目的收视率 C.某种品牌节能灯的使用寿命 x + y =1 4.方程组 的解为( ) 2 x + y = 5
x − m < 0 有4个正整数解,则m的取值范围为___________. 15.若关于x的不等式组 7 − 2 x ≤ −1
A. 3
x y = 54 4 x + y = 42 5 4 +
x + 2 y = 1 3x − 2 y = 11
5 x + 2 y = 12 (2) 2 x + 3 y = 7
18.(本题10分)解不等式(组),并在数轴上表示解集: x-3(x-2)≥4 2 5 + 1 x − x (2)1+2x (1) +1 ≥ 4 6 3 >x-1
得分 50<n≤60 60<n≤70 70<n≤80 80<n≤90 90<n≤100
期间,一宾馆有二人间、三人间、四人间三种客房供游客租住.某15人的旅 备同时租 三种客房共5件.如果每个房间都注满,租房方案有( 种 -2}= B.3种 C.2种 ) D.1种
19.(本题10分)七年级数学研究学习小组在某十字路口随机调查部分市民对“社会主义核心价值 观”的了解情况,统计结果后绘制了如图的两副不完整的统计图,请结合图中相关数据回答下 列问题:
2017-2018学年下学期期末考试七年级数学试卷
一、选择题(每小题3分,共30分) 1.9的算术平方根是( ) A.±3 B.3 x<4 2.不等式组 的解集在数轴上表示为( x ≥ 3 C.-3 ) D. 6
13.已知x和y满足方程组
3x + y = 6 ,则x-y=___________. x + 3y = 4
有理数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,例如:
-2.已知min{ 30 ,a}=a,min{ 30 ,b}= 30 ,且a和b为两个连续正整数,则a-b的立 方根为( ) C.-2 D.2 (1) 本次调查的总人数为________人,在扇形统计图中“C”所在扇形的圆心角的度数为________; (2) 补全频数分布图; (3) 若在这一周里,该路口共有20000人通过,请估计得分超过80的大约有多少人? A.-1 B.1 二、填空题(每小题3分,共18分) 11. − 5 的绝对值为__________. 12.若点M(a-3,a+4)在y轴上,则a=___________.
22.(本题10分)已知:点E、点G分别在直线AB、直线CD上,点F在两直线外,连接EF、FG (1) 如图1,AB∥CD,求证:∠AEF+∠FGC=∠EFG; (2) 若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD 如图2,请探索 ∠AEF、∠FGC、∠EFG之间的数量关系?并说明理由.
2 S △BOD ≥S △AOD ,求出m的取值范围. 3
21.(本题10分)某小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车 位和1个地下停车位共需0.5万元;新建3个地上停车位和2个地下停车位共需1.1万元 (1) 该小区新建1个地上停车位和1个地下停车位各需多少万元? (2) 若该小区投资超过10万元的金额新建停车位,且地上的停车位要求不少于30个,问共有几种 建造方案? (3) 对(2)中的几种建造方案中,哪一种方案的投资最少?并求出最少投资金额?
20.(本题10分)如图,已知∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,点E在BC的延长线上 (1) 求证:CD∥AB; (2) 若∠A=∠ACB+30°,求∠D的度数.
的动点 (1) 求△AOB的面积; (2) 如图1,点P、点T分别是线段OA、x轴正半轴上的动点,过T作TE∥AB,连接TP.若∠ABO=n°, 请探究∠APT与∠PTE之间的数量关系?(注:可用含n的式子表达并说明理由) (3) 若
B.调查乘坐飞机的旅客是否带了违禁物品 D.了解武汉市中学生课外阅读的情况
16.在长为20 m、宽为16 m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形 花圃,其示意图如图所示,则每个小长方形花圃的面积是___________m2 三、解答题(共8题,共72分) 17.(本题10分)解方程组: (1)
EA
B. 3
x
y = 42 4 x + y = 54 5 4 +
3 C.
x
y 54 = 4 60 x + y = 42 5 4 60 +
3 D.
x
y 42 = 4 60 x + y = 54 4 5 60 +
9.五一 行 团 准 用这 A.4 10.对于 min{1, A B C D E