激光测距
激光测距工作原理

激光测距工作原理激光测距是一种精确、高效的测量技术,广泛应用于工程测量、制造业、建筑、物流等领域。
本文将介绍激光测距的工作原理,并探讨其在实际应用中的优势和限制。
一、激光测距工作原理激光测距的基本原理是利用激光束的传播时间来计算被测物体与测距装置之间的距离。
激光测距装置通常由激光发射器、接收器、时钟和计算器等组成。
1.1 激光发射器激光发射器产生一束高亮度、狭窄束的激光线,发射出去的激光以近似平行的形式向被测物体传播。
1.2 接收器接收器用于接收被测物体反射回来的激光信号。
激光束照射到物体上后,一部分光线被反射回来并被接收器接收到,接收器将接收到的光信号转换为电信号。
1.3 时钟和计算器时钟和计算器用于测量激光从发射到接收的时间差,并根据光速和时间差计算出被测物体到激光测距设备的距离。
二、激光测距的优势激光测距具有以下几个显著的优势:2.1 高精度激光测距的精度可以达到亚毫米级别,远高于其他测距技术。
这使得激光测距成为精确测量和定位的首选工具。
2.2 高速测量激光测距设备的工作速度非常快,可以在几毫秒内完成一次测量。
这使得激光测距特别适用于大规模测量和批量生产环境下的快速测量需求。
2.3 非接触测量激光测距采用非接触式测量方式,无需与被测物体接触,避免了因接触而带来的测量误差和对被测物体的破坏。
2.4 长测距范围激光测距技术可以实现从几米到几百米乃至更远距离的测量。
这使得激光测距在各个领域中都能找到应用,如航天、船舶测量等。
三、激光测距的限制激光测距虽然具有许多优势,但也存在一些限制:3.1 对目标表面要求高激光测距对被测物体的表面要求较高,通常要求表面光洁度高且有一定反射能力。
如果被测物体表面粗糙或较暗,会导致激光信号被吸收或散射,从而影响测距的准确性。
3.2 受环境影响大激光传播过程中的大气湍流、尘埃、雾霾等环境因素会对激光传输造成散射和吸收,从而影响测距的准确性和稳定性。
因此,在一些恶劣的环境中,激光测距的性能可能会受到影响。
激光测距的原理

激光测距的原理
激光测距是利用激光器发出的高能量、高频率的光束进行测量的一种方法。
它基于光的传播速度是一个已知的常数,并且在真空中时速为299,792,458米每秒的原理。
激光测距仪由发射器、接收器以及控制电路组成。
发射器发出一个短脉冲的激光束,该激光束经过一定的光学器件后,瞄准待测距物体上的目标点。
当激光束照射到目标点上后,部分能量会被目标吸收,而另一部分则会被反射回来。
接收器接收到反射回来的光束,并将其转换为电信号。
控制电路会根据接收到的信号,计算出激光从发射到返回所经过的时间差,即“飞行时间”。
由于光的传播速度已知,通过时间差可以计算出激光从发射到返回所经过的距离。
在实际测量中,激光测距仪会通过多次发射-接收的循环进行测量,从而提高测量的准确性。
通过对多次测量结果的处理,可以得到目标点与测量仪之间的距离。
激光测距的原理基于光的传播速度的稳定性和高精度,因此在许多领域中得到了广泛的应用,例如地质勘探、建筑测量、工业制造等。
它具有测量速度快、精度高、非接触测量等优点,成为现代测量技术中不可或缺的一部分。
激光测距(非常详细)

一、激光测距方程
1、从测距仪发射的激光到达目标上的激光功率 1)对于点目标,目标面积小于激光照亮面积:
Pt Pt Kt At T / As 1
Pt——激光发射功率(W)
Tα ——大气单程透过率 Kt——发射光学系统透过率 At——目标面积(m2) As——光在目标处照射的面积(m2)
d ct 2
测距方法分类
脉冲测距法:测距仪发出光脉冲,经被测目标反射后,光 脉冲回到测距仪接收系统,测量其发射和接收光脉冲的时 间间隔,即光脉冲在待测距离上的往返传播时间t。脉冲法 测距精度大多为米的量级; 相位测距法:它是通过测量连续调制的光波在待测距离上 往返传播所发生的相位变化,间接测量时间t。这种方法测
我国卫星测距站
卫星激光测距应用
卫星激光测距(Satellite Laser Ranging:SLR)是
随着现代激光、光电子学、 计算机和空间科学发展而建立
起来的一门崭新观测技术。由于它具有独特的测距方式和 较高的测量精度,已在地学领域广泛应用。目前,其观测资 料已可用于地球物理学、地球动力学、大地测量学、天文 学和地震预报等多种学科。
2、小的激光发散角: 措施:增大扩束准直系统的角放大率。 3、高透过率光学系统;
4、大的接收孔径角;
5、大目标对测距有利; 6、高灵敏度探测器。
二、光电读数
1 1 N 1 因为 s ct c f ( fT 为晶振频率;T ) T 2 2 fT 测距仪的最小脉冲正量δ为:
令N=1
SPAD
接收望远镜
箱
测距精度与激光脉宽
测距精度是由于激光脉冲前后沿时间差造成的; 因此激光脉冲宽度影响测距精度: L C t
激光测距仪

激光测距仪激光测距仪是一种用激光束来测量距离的工具,它使用光的速度来计算距离。
激光测距仪可以精确测量任何距离,从几厘米到几百米不等,精度高、速度快、使用方便。
工作原理激光测距仪通过激光器发出一束激光,然后通过一个光电二极管来接收反射光。
光电二极管将接收到的信号转化为电信号,然后通过一个微处理器进行计算,最终输出所需的距离。
应用领域激光测距仪广泛应用于建筑、造船、机械制造、航空等领域,几乎所有需要测量长度或距离的场合都可以使用激光测距仪。
例如:•建筑:用于测量房屋的面积、高度和长度,特别是在施工期间进行精确定位。
•造船:用于测量船舶的长度、高度、宽度、厚度和几何形状,以确保造船的正确性。
•机械制造:用于测量机器部分的尺寸和位置,以确保机器精度。
•航空:用于飞机的导航和测量目标的距离。
操作方法激光测距仪的使用非常简单,只需要按下按钮即可发射激光,并在屏幕上显示测量结果。
但在使用激光测距仪时需要注意以下几点:1.确保测量范围内没有遮挡物,否则可能会导致测量结果不准确。
2.在使用激光测距仪前,需要将其校准。
一般来说,只需要按照说明书上的步骤进行校准即可。
3.在测量时需要保持稳定,以确保激光的光束不偏离目标点。
如果手持激光测距仪进行测量,则需要尽量保持静止状态,以避免手部抖动。
型号分类目前市场上的激光测距仪可以分为以下几类:1.手持式激光测距仪:最常见的激光测距仪,易于携带,非常适用于户外测量。
2.台式激光测距仪:通常用于较大的测量范围,尤其是在建筑和制造领域。
3.精密激光测距仪:通常用于测量高精度工业部件的距离、长度、测量峰值、真实位置等测量位置的要求比较苛刻的场合。
结论激光测距仪是一款高精度、高效率、易于使用的工具,它在建筑、造船、机械制造等多个领域都有着广泛的应用。
尽管不同的应用场合需要不同的型号和规格的激光测距仪,但其功能和操作都是在相同的基础上,只需要根据实际需求进行选择。
激光测距原理

激光测距原理激光测距是一种利用激光束来测量目标距离的技术。
它主要应用于工业、建筑、地理测绘、军事等领域,具有测量精度高、速度快、非接触式测量等优点。
激光测距原理是基于光的传播速度和时间的关系,通过测量激光束从发射到接收的时间来计算目标距离。
下面我们来详细了解一下激光测距的原理。
1. 发射激光。
激光测距的第一步是发射激光。
激光器产生的激光束具有单色性、方向性和相干性,能够保持较小的束散。
这样就能够保证激光束在传播过程中能够保持一定的直线传播,从而保证测量的准确性。
2. 激光束传播。
激光束从激光器发射出来后,会沿着一定的方向传播。
在传播过程中,激光束会受到大气、地形等因素的影响,但由于激光束的单色性和方向性,这些影响相对较小,不会对测量结果产生显著影响。
3. 激光束照射目标。
激光束照射到目标后,会被目标表面反射或散射。
这时,激光束的能量会部分损失,但仍然能够保持一定的能量,以便接收器能够接收到足够的信号进行测量。
4. 接收激光。
接收器接收到目标反射或散射的激光束后,会将其转化为电信号。
这个过程需要非常快速和精确,以保证测量的准确性。
5. 计算距离。
接收到激光信号后,系统会通过计算激光从发射到接收的时间来确定目标距离。
由于光在真空中的传播速度是一个已知的常数,因此通过测量激光的时间,就可以准确地计算出目标距离。
总结。
激光测距原理是利用激光束的传播速度和时间的关系来实现对目标距离的测量。
通过发射激光、激光束传播、照射目标、接收激光和计算距离等步骤,可以实现对目标距离的快速、准确测量。
激光测距技术在工业、建筑、地理测绘、军事等领域有着广泛的应用前景,随着技术的不断发展和完善,相信激光测距技术会在未来发挥更加重要的作用。
激光测距(非常详细)-文档在线预览

卫星激光测距系统
卫星激光测距系统按照各部分用途大致分为:激光发射、激光接收、 信息处理和信息传输四大部分。 • 激光发射部分的作用是产生峰值功率高,光束发散角小的脉冲激光, 使其经过发射光学系统进一步准直后,射向所测卫星。 • 激光接收部分是接收从被测卫星反射回来的微弱激光脉冲信号,经 接收光学系统聚焦后,照在光电探测器的光敏面上,使光信号转变 为电信号并经过放大。 • 信息处理部分的主要作用是进行卫星测站预报,跟踪卫星,测量激 光脉冲从测距系统到被测卫星往返一次的时间间隔t,并准确显示 和记录在计算机硬盘上,再由人工或自动方式形成标准格式。
设计时要求αmax≤[W
]
0
例:设接收系统W=25×10-3rad,
则αmax=8.53°>W
=5°
0
解决这个矛盾的办法是减小接收系统的相对孔径
大探测器面积。
,或增
8.3 多周期脉冲激光测距
一、问题的提出 则脉冲激光测距中最小脉冲当量的公式:
可知:δ与填充时钟脉冲的频率fT成反比,
例,设fT=150MHz,C=3×108m/s
若已知脉冲激光单脉冲能量E(J),和脉宽τ(s),
则可由下式求其峰值功率P 。 t P =E /τ tt 例:对YAG激光器:已知τ=5ns=5×10-9sec, E =10mJ=10×10-3J t
但增大单脉冲能量必须提阈值电压,这将导致: 1)能耗上升,2)电磁干扰增大,3)氙灯寿命减少。
2、小的激光发散角: 措施:增大扩束准直系统的角放大率。 3、高透过率光学系统;
四、测距仪光学原理框图
五、激光接收光学系统
(一)激光接受光学系统的两种基本型式 1、出瞳探测系统
场镜的作用是减小探测器口径,并使孔径光栏成像在光 电探测器上
激光测距的原理

激光测距的原理激光测距是一种利用激光技术进行距离测量的方法,它通过测量光脉冲的往返时间来确定目标物体与测距仪之间的距离。
激光测距技术在工业、建筑、地质勘测、军事等领域都有着广泛的应用,其原理简单而又精准,成为现代测距领域中的重要手段。
激光测距的原理基于光的传播速度恒定不变这一基本规律。
光在真空中的传播速度约为每秒30万公里,而在大气中的传播速度也非常接近这个数值。
因此,当激光束发射出去并被目标物体反射回来时,测距仪可以通过测量光脉冲的往返时间来计算目标物体与测距仪之间的距离。
在实际应用中,激光测距仪通常由激光发射器、接收器、时钟和数据处理器等部件组成。
首先,激光发射器向目标物体发射一束激光束,然后接收器接收到被目标物体反射回来的激光脉冲。
接收器会记录下激光脉冲的发射时间和接收时间,然后将这两个时间差转化为距离值。
最后,数据处理器会对接收到的距离数值进行处理和分析,得出最终的测距结果。
激光测距技术具有测量精度高、测距范围广、测量速度快等优点。
它可以在不同环境下进行测距,无论是室内还是户外、平坦地面还是复杂地形,都能够获得精确的测距结果。
而且,激光测距仪可以实现对多个目标物体的同时测距,大大提高了测量效率。
除此之外,激光测距技术还可以应用于三维测绘、地图制作、航空航天等领域。
在建筑工程中,激光测距技术可以用于测量建筑物的高度、距离等参数,为工程设计和施工提供精准的数据支持。
在地质勘测中,激光测距技术可以用于测量地形的高程、地貌的特征等,为地质勘探提供重要的信息。
总的来说,激光测距技术以其精准、快速、全面的测量能力,成为现代测距领域中的重要技术手段。
随着科技的不断发展,相信激光测距技术在未来会有更加广阔的应用前景,为各个领域的测量工作带来更多的便利和效率。
激光扫描测距原理

激光扫描测距原理
激光扫描测距是一种利用激光束测量物体距离的技术。
它利用激光器发射出的激光束照射到目标物体上,并通过接收器接收反射回来的激光信号。
通过测量激光信号的发射时间与接收时间间隔,可以计算出目标物体与测量仪的距离。
激光扫描测距的原理是基于激光的时间-距离关系。
激光在空气中传播速度很快,大约为每秒299,792,458米。
当激光器发射出激光束照射到目标物体上,激光束会在物体表面反射或散射。
接收器会接收到反射回来的激光信号,并记录下信号的发射时间与接收时间。
根据激光在空气中传播的速度,可以根据发射时间与接收时间的差值计算出激光在空气中传播的时间。
由于光在空气中传播的速度是恒定的,可以根据时间与速度的关系,计算出激光在空气中传播的距离。
然而,在实际应用中,还需要考虑到激光束的展宽效应和目标物体表面特性对激光的吸收、散射等因素的影响。
因此,需要校正这些因素对测量结果的影响,以获得更精确的测量结果。
综上所述,激光扫描测距是利用激光的时间-距离关系,通过测量激光信号的发射时间与接收时间,计算出目标物体与测量仪的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
:在脉冲式激光测距仪的设计当中,时差测量(time of flight measurement)成为了一个影响整个测量精度最关键的因素。
德国acam 公司设计的时间数字转换芯片TDC-GP2为激光测距的时间测量提供了完美的解决方法。
本文着重介绍了应用TDC-GP2 在设计激光测距电路当中的优势,以及在应用中给出一些建议和提出了需要注意的一些问题。
1. 概述在当今这个科技发达的社会,激光测距的应用越来越普遍。
在很多领域,电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等都可以用到激光测距仪。
激光测距仪一般采用两种方式来测量距离:脉冲法和相位法脉冲式激光测距仪是通过测量激光从发射到返回之间的时间来计算距离的。
因此时间测量对于脉冲式激光测距仪来说是非常重要的一个环节。
由于激光的速度特别快,所以发射和接收到的激光脉冲之间的时间间隔非常小。
例如要测量1 公里的距离,分辨率要求1cm,则时间间隔测量的分辨率则要求高达67ps。
德国acam 公司的时间数字转换器TDC-GP2 单次测量分辨率为典型65ps,功耗超低,集成度高,测量灵活性高,是脉冲式激光测距仪时差(TOF)测量非常理想的选择。
2. TDC-GP2 激光测距原理TDC-GP2 的激光测距基本原理如图1 所示:图1:TDC-GP2 激光测距原理激光发射装置发射出光脉冲同时将发射脉冲输入到TDC-GP2 的start 端口,触发时差测量。
一旦从物体传回的反射脉冲达到了光电探测器(接收电路)则给TDC 产生一个Stop 信号,这个时候时差测量完成。
那么从Start 到Stop 脉冲之间的时差被TDC-GP2精确记录下来,用于计算所测物体与发射端的距离。
在这个原理中,单片机对于TDCGP2进行寄存器配置以及时间测量控制,时间测量结果传回给单片机通过算法进行距离的精确计算,同时如果有显示装置的话,将距离显示出来。
在这个原理当中距离的测量除了与TDC-GP2 的时差测量精度有关外还与很多其他因素有关系:- 激光峰值功率- 激光束发散程度- 光学元件部分- 光传输的媒体(空气,雨天,雾天等)- 物体的光反射能力- 光接收部分的灵敏程度等等被测物体特性以及传输媒介的铁性一般是由应用的条件给出的,那么可以根据应用的条件来选择激光的发射器(波长,驱动条件,光束的特性等)和接收器(类型,灵敏度,带宽等)。
测量的范围在激光峰值功率更高以及信噪比更高的情况下也会相应增加。
那么时差测量的精度除了与TDC-GP2 芯片本身测量精度有关系外还与激光的脉冲特性有关,比如脉冲的形状(宽度,上升下降沿的时间),以及探测器带宽和信号处理电路。
对于tdc-gp2 而言,脉冲信号的速度越快,带宽越宽,则测量精度相应得会越高。
那么上面所述的一些需要注意的问题在这里我们并不做讨论,我们假设其他方面都已经解决,那么这里我们着重介绍一下如何应用单片机和TDC-GP2 来控制时间测量。
对于tdc-gp2 而言,这颗芯片本身有两个测量范围,测量范围1 和测量范围2。
测量范围1 的时间测量从0ps-1.8us,相对于距离来讲大约为0-270m。
测量范围2 的测量范围从2 倍的高速时钟周期到4ms.也就是说最高的距离测量可以到25 公里以外.那么我们下面就以不同的测量范围来进行介绍.测量范围1:0ps-1.8us在这个测量范围下,TDC-GP2 芯片的测量工作全部是由TDC 高速测量单元完成的。
在这个测量范围中,gp2 的start 通道,stop1,stop2 通道都可用。
每个stop 通道有4 个脉冲的测量能力。
在这个测量范围下,测量结果可以选择校准结果(32 位)或者非校准结果16 位。
推荐使用32 位的校准结果,也就是每次测量都对TDC 测量单元进行一次校准。
需要引起注意的问题:- 对于TDC-GP2 来讲触发它的脉冲宽度必须要大于2.5ns。
- 在start 通道的触发边沿与第一个stop 通道的脉冲边沿之间的时间间隔要大于3.5ns。
- 推荐自动校准结果,并且选择每次测量完成后进行自动校准。
这个功能通过设置寄存器0 的自动校准位为0 来开启。
- 如果计算stop1 和stop2 通道的脉冲时差的话,脉冲的时差范围可以降低到0。
Start 到最后一个stop 脉冲的距离不能够超过1.8us,这是由于硬件本身所限制的。
在这个测量模式下测量流程以及典型的寄存器设置如下:单片机与tdc-gp2 的通信是通过spi 串口完成的,那么对于测量范围1 的一个典型的测量过程为:void gp2config(){SPIwrite8 (0x50); //上电复位//配置寄存器:SPIwrite32 (0x80000420) ; //选择测量范围1,自动校准,晶振上电后一直起振。
SPIwrite32 (0x81014100) ;//stop1 接受1 个脉冲,定义计算方法,用stop1 通道的第一个脉冲减去start 脉冲SPIwrite32 (0x82E00000) ; // 开启所有中断源SPIwrite32 (0x83000000) ;SPIwrite32 (0x84200000) ;SPIwrite32 (0x85080000) ;}//测量循环:void measurement(){SPIwrite8 (0x70) ;//初始化测量,通知gp2 进入测量准备状态Check INTN=0?SPIwrite32 (0xb4) ; //发送命令读状态寄存器SPIread8 (STAT) ;STAT&0x0600>0?//=>说明有测量溢出,有问题SPIwrite32(0xb0) ; //发送命令读reg0 结果SPIread32(reg0) ;}那么单片机在从gp2 读取完数据之后,可以对数据进行处理,来计算脉冲来回的距离。
在上面的测量过程中如果gp2 在被初始化之后,并没有接受到任何start 信号,测量将不会发生。
也不会产生中断。
只有start 信号被接受后,测量才被触发,那么无论是测量正常还是在规定时间内没有接受到stop 脉冲,在gp2 的INTN 管脚都会有中断信号产生,通过判断状态寄存器的内容来判断测量是否正常。
注:在接受start,stop 脉冲之前,必须要将gp2 的管脚en_start,en_stop 置高平,否则start,stop 通道则不会被选通,测量也不会被触发!!应用平均提高精度的方法:上面所说的情况为,你的激光start 脉冲给tdc-gp2 的start 通道,激光的返回脉冲给tdcgp2的stop 通道的情况。
在这种情况下,gp2 的单次测量精度为65ps。
当测量的输出频率并不是非常重要的情况下,比如每秒钟输出1 到2 次结果,那么这个时候为了提高测量精度,我们可以通过多次测量平均的方法来消除系统误差。
为了使gp2 能够通过平均的方法来大大的减少误差,那么下面推荐的测量设计是非常有效的,可以将系统误差的峰峰值降低到10ps 一下。
如下图所示:如上图所示,在这个情况下我们使用的是测量范围1,激光的发射和接收脉冲信号是给到stop1 和stop2 的,而在tdc-gp2 的start 通道,start 信号是由单片机给出的一个不参与测量的start 信号。
测量过程如下:首先由单片机发出一个不参与测量的但是要触发测量用的dummy start.需要这个信号是因为start 通道的这个信号是告诉gp2 现在开始进入测量状态了。
那么在至少50ns 后,单片机触发激光器产生发射信号同时将这个信号输入到stop1 通道。
那么接收到的laser脉冲信号则输入到stop2 通道。
也就是说用stop1 和stop2 来测量激光发射和接收的时间差,而start信号是由单片机给出来触发gp2 的。
那么之所以这样的原因是在tdc-gp2 的内部,有一个噪声单元,通过寄存器设置可以触发这个噪声单元。
噪声单元将会在gp2 的start 通道脉冲上加任意分布噪声,那么这样做的目的是为了在平均的时候,可以大大消除量化误差和系统误差。
那么这个一位的设置为寄存器5 中的EN_STAR TNOISE 设置。
没有平均的情况下:这样做的好处为:1.stop1 和stop2 的时间间隔测量可以最低到0。
2.通过这个测量之后如果平均gp2 的测量结果,可以大大消除系统误差,跟据平均的次数不同,最多可以使gp2 的精度提高至小于6ps.3.对于温度变换是相当稳定的那么需要注意的是由单片机给的start 信号与激光的start 信号(也就是stop1 信号)的时间要在50ns 以上,这个时间是为了给start 信号加噪声。
在这个情况下的测量过程中需要将上面的寄存器1 的配置稍作修改:SPIwrite (0x81194900) ; ;//stop1 和stop2 通道分别接受一个脉冲,定义计算方法,用stop2 的第一个脉冲减去stop1 的第一个脉冲。
在应用我们的gp2 评估测量系统测试情况,测量1us 时间间隔在平均1000 次后,噪声曲线如下:在平均1000 次的情况下,输出的峰峰值噪声降低到10ps 以内,相当于分辨1mm 的距离。
那么通过这种平均的方式提高测量精度,对于测量频率不高的激光测距应用是非常有帮助的。
测量范围2:2xTref-4ms在测量范围2 当中,测量是通过TDC 测量单元和一个预计数器共同完成的。
如图所示:在测量时差相对较大的时候,tdc 的内部核心测量单元只测量如图所示从start 信号开始到下一个参考时钟周期的上升沿,然后测量stop 信号上升沿到下一个参考时钟周期的上升。
那么中间的时间,则由数时钟周期coarse count 来得出。
因此在测量范围2 结果的计算公式为上面图中的公式,其中Tref 为时钟周期,clkhsdiv 为分频因数,Cc 为coarse count 所数的周期个数,Fc1 为start 信号开始到下一个参考时钟周期的上升沿时间,Fc2 为stop 信号上升沿到下一个参考时钟周期的上升沿时间,cal1 和cal2 为tdc 核心测量参考时钟周期,做校准用。
在这个模式下TDC-GP2 应用一个内部的计数器将测量范围扩展到了4ms。
那么选择这个测量范围后,测量只能够在start 通道和stop1 通道中进行,stop1 通道最多接受的脉冲数为3 个。
那么测量的时差范围从2 倍的内部时钟周期最大到4ms 的时差。
在这个精度下的典型精度保持不变,还是65ps。
需要引起注意的问题:- 对于GP2 来讲触发它的脉冲宽度必须要大于3.5ns。
- 在start 脉冲触发之后stop 脉冲和start 脉冲间隔至少要大于2倍的内部参考时钟周期。