激光测距仪系统设计

合集下载

用于相位法激光测距的电路系统设计

用于相位法激光测距的电路系统设计

用于相位法激光测距的电路系统设计激光测距是一种常用的非接触式测量技术,可以精确测量目标物体与测距仪的距离。

相位法激光测距是其中一种常见的方法,通过测量激光光波的相位差来计算距离。

下面将介绍一个基于相位法激光测距原理的电路系统设计。

1. 激光发射电路:设计一个激光二极管的驱动电路,可以通过电流控制二极管的发射光强。

使用一个恒流源以确保驱动电流的稳定性。

此外,还需要添加一个调节电路,可以根据需要调整激光发射的光功率。

2. 光电检测电路:将光电二极管作为光电检测元件接在测距仪上,用于接收激光反射光信号。

光电二极管产生的电流与光的强度成正比。

使用一个高增益的放大器将光电二极管产生的微弱电流信号放大。

3. 相位差测量电路:使用一个相位差测量电路来测量激光光波发射和接收之间的相位差。

该电路可以采用锁相放大器或频率调制技术。

在锁相放大器中,将激光发射的信号作为参考信号,将光电二极管接收到的信号作为待测信号输入。

锁相放大器可以精确测量相位差,并输出一个稳定的直流电压信号。

4. 距离计算电路:将锁相放大器输出的直流电压信号输入到距离计算电路中,根据相位差和激光波长的关系,计算出目标物体与测距仪之间的距离。

该电路可以通过编程芯片或者专门的测距芯片来实现距离计算。

以上是一个基于相位法激光测距原理的电路系统设计。

通过精心选择和设计各个电路模块,可以实现高精度和稳定的激光测距功能。

需要注意的是,在实际设计中还需考虑电路的抗干扰能力、功率稳定性和其他实际应用需要的因素。

在激光测距中,相位法是一种常用的方法,能够提供高精度和高稳定性的测距结果。

相位法激光测距的原理是通过测量激光发射和接收之间的光波相位差来计算目标物体与测距仪之间的距离。

在设计电路系统时,需要考虑到激光发射电路、光电检测电路、相位差测量电路和距离计算电路等各个环节。

首先,激光发射电路是相位法激光测距系统中的重要组成部分。

它负责驱动激光二极管发射具有稳定光强的激光光束。

《相位法激光测距仪设计》

《相位法激光测距仪设计》

《相位法激光测距仪设计》摘要:I.引言- 激光测距仪背景和应用- 相位法激光测距仪的优势II.相位法激光测距仪原理- 相位法基本原理- 激光测距仪系统构成III.相位法激光测距仪设计- 系统硬件设计- 激光发射器- 激光接收器- 数字鉴相器- 系统软件设计- 相位差计算- 距离计算IV.相位法激光测距仪应用- 军事领域- 民用领域V.结论- 相位法激光测距仪的优势- 发展前景正文:激光测距仪是一种利用激光技术测量物体距离的仪器,广泛应用于军事、民用等领域。

相位法激光测距仪作为其中一种类型,具有高精度、高效率等优势,成为近年来研究的热点。

相位法激光测距仪基于相位法原理,通过检测发射光和反射光之间的相位差来检测距离。

其系统构成主要包括激光发射器、激光接收器、数字鉴相器等部分。

其中,激光发射器负责发射激光束,激光接收器负责接收反射光,而数字鉴相器则负责计算相位差。

在设计相位法激光测距仪时,需要考虑系统硬件和软件的设计。

在硬件方面,激光发射器和接收器需要具有较高的稳定性和精度,以保证测量结果的准确性。

此外,数字鉴相器的设计也非常重要,其性能直接影响到相位差计算的准确性。

在软件方面,相位差计算和距离计算的算法需要优化,以提高计算速度和精度。

相位法激光测距仪在军事和民用领域具有广泛的应用前景。

在军事领域,相位法激光测距仪可以应用于侦查、定位、导航等方面,提高作战效率和精度。

在民用领域,相位法激光测距仪可以应用于土地测量、建筑测量、无人机导航等领域,为生产生活提供便捷。

总之,相位法激光测距仪具有显著的优势,其设计和应用值得进一步研究和探讨。

《脉冲式半导体激光测距系统的设计》范文

《脉冲式半导体激光测距系统的设计》范文

《脉冲式半导体激光测距系统的设计》篇一一、引言随着科技的进步,激光测距技术已经广泛应用于各个领域,如工业自动化、机器人导航、地形测绘等。

其中,脉冲式半导体激光测距系统以其高精度、快速响应等优点,逐渐成为主流的测距方式。

本文将详细介绍脉冲式半导体激光测距系统的设计,以期为相关研究和应用提供参考。

二、系统概述脉冲式半导体激光测距系统主要由激光发射器、接收器、信号处理与控制系统等部分组成。

其中,激光发射器负责发射激光脉冲,接收器负责接收反射回来的激光脉冲,信号处理与控制系统则负责对接收到的信号进行处理,并输出测距结果。

三、系统设计1. 激光发射器设计激光发射器是脉冲式半导体激光测距系统的核心部件之一,其性能直接影响测距精度和速度。

设计时需考虑激光器的类型、功率、波长等因素。

为提高测距精度和速度,通常选用高功率、高稳定性的半导体激光器作为发射器。

此外,为确保激光脉冲的准确性和一致性,还需设计相应的驱动电路和调制电路。

2. 接收器设计接收器负责接收反射回来的激光脉冲,并将其转换为电信号。

设计时需考虑接收器的灵敏度、噪声抑制能力等因素。

通常采用高灵敏度的光电二极管作为接收器的主要部件,同时需设计相应的放大电路和滤波电路以提高信噪比。

3. 信号处理与控制系统设计信号处理与控制系统负责对接收到的电信号进行处理,并输出测距结果。

设计时需考虑信号处理的算法、控制系统的稳定性等因素。

通常采用数字信号处理技术对接收到的信号进行处理,以提高测距精度和速度。

此外,为确保系统的稳定性和可靠性,还需设计相应的控制系统,对系统的各个部分进行控制和监测。

四、系统实现在系统实现过程中,需根据设计要求进行硬件选型和制作、软件编程和调试等工作。

具体而言,需完成以下步骤:1. 根据设计要求选择合适的硬件器件,如激光器、光电二极管、放大器等;2. 设计并制作电路板,包括驱动电路、调制电路、放大电路、滤波电路等;3. 编写控制系统软件,实现系统的控制、监测和数据处理等功能;4. 对系统进行调试和测试,确保其性能达到设计要求。

激光测距系统的设计本科毕业论文

激光测距系统的设计本科毕业论文

激光测距系统的设计本科毕业论⽂本科毕业论⽂(设计)激光测距系统的设计Design of laser ranging system毕业设计(论⽂)原创性声明和使⽤授权说明原创性声明本⼈郑重承诺:所呈交的毕业设计(论⽂),是我个⼈在指导教师的指导下进⾏的研究⼯作及取得的成果。

尽我所知,除⽂中特别加以标注和致谢的地⽅外,不包含其他⼈或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历⽽使⽤过的材料。

对本研究提供过帮助和做出过贡献的个⼈或集体,均已在⽂中作了明确的说明并表⽰了谢意。

作者签名:⽇期:指导教师签名:⽇期:使⽤授权说明本⼈完全了解⼤学关于收集、保存、使⽤毕业设计(论⽂)的规定,即:按照学校要求提交毕业设计(论⽂)的印刷本和电⼦版本;学校有权保存毕业设计(论⽂)的印刷本和电⼦版,并提供⽬录检索与阅览服务;学校可以采⽤影印、缩印、数字化或其它复制⼿段保存论⽂;在不以赢利为⽬的前提下,学校可以公布论⽂的部分或全部内容。

作者签名:⽇期:学位论⽂原创性声明本⼈郑重声明:所呈交的论⽂是本⼈在导师的指导下独⽴进⾏研究所取得的研究成果。

除了⽂中特别加以标注引⽤的内容外,本论⽂不包含任何其他个⼈或集体已经发表或撰写的成果作品。

对本⽂的研究做出重要贡献的个⼈和集体,均已在⽂中以明确⽅式标明。

本⼈完全意识到本声明的法律后果由本⼈承担。

作者签名:⽇期:年⽉⽇学位论⽂版权使⽤授权书本学位论⽂作者完全了解学校有关保留、使⽤学位论⽂的规定,同意学校保留并向国家有关部门或机构送交论⽂的复印件和电⼦版,允许论⽂被查阅和借阅。

本⼈授权⼤学可以将本学位论⽂的全部或部分内容编⼊有关数据库进⾏检索,可以采⽤影印、缩印或扫描等复制⼿段保存和汇编本学位论⽂。

涉密论⽂按学校规定处理。

作者签名:⽇期:年⽉⽇导师签名:⽇期:年⽉⽇注意事项1.设计(论⽂)的内容包括:1)封⾯(按教务处制定的标准封⾯格式制作)2)原创性声明3)中⽂摘要(300字左右)、关键词4)外⽂摘要、关键词5)⽬次页(附件不统⼀编⼊)6)论⽂主体部分:引⾔(或绪论)、正⽂、结论7)参考⽂献8)致谢9)附录(对论⽂⽀持必要时)2.论⽂字数要求:理⼯类设计(论⽂)正⽂字数不少于1万字(不包括图纸、程序清单等),⽂科类论⽂正⽂字数不少于1.2万字。

激光测距仪系统设计毕业设计论文

激光测距仪系统设计毕业设计论文
2.体积小,重量轻,携带方便
军事上装备的激光测距仪,重量一般为10kg左右,最小的只有0.36k用巨大的天线就可以发射极窄的光束。
3.分辨率高,抗干扰能力强
窄的光束和短的脉冲宽度,不仅使横向和纵向目标分辨率大大提高,而且不受电磁干扰和地波干扰,例如在导弹的初始阶段,微波测距由于严重的地波干扰而不能使用,激光测距却能得心应手。
德国博世(BOSCH)公司研制生产的手持式高精度激光测距仪,体积小巧,携带方便,广泛适用于房地产、室内装潢、建筑施工、测量测绘等众多领域。该公司研制生产的DLE150激光测距仪不但可以测量、校正、计算,而且可以非常快速地进行探测。它的测量范围为0.3m-150m,测量精度<±3mm,测量时间一般<0.5秒,测量分辨率为lmm,它采用先进技术,能测量高度,面积,数量,角度或斜面;可持续测量,用于测定固定参考点的最大或最小距离;间接测量功能,能对一些不能直接测量的距离,例如,房屋的墙高等进行间接测量;存储检索,检索最新存储的资料和最近20个测量结果:“显示激光光束”模式,激光光束会在测量过程中一直处于显示状态,可以快速准确地寻找测量目标;使用万能尾件可以对角落、平面和边缘进行测量;防尘防水设计。
Keywords:Laser ranging;Phase;Phase locked loop;Frequencymixer; Frequencydivider;Single chip microcomputer
第1章 绪论
1.1
随着科学技术的不断发展,人类在民用和军事领域,对距离量的测量要求非常广泛。测量范围和测量精度的要求都在不断增加,因此人类在不停研究新的测量方法和理论。近年来,激光技术迅速发展和完善,导致了光学及其应用技术的巨大革命,促进了物理学和相关学科的发展。激光器已被确认为20世纪最重要的发明之一。而激光技术的发展,标志着人们掌握和利用光波进入了一个新阶段。激光技术出现后,很快被应用到各种测量(大地测量、地形测量、工程测量、航空摄影测量以及人造地球卫星的观测和月球的光学定位等航天测量)中。与此同时,现代电子技术的飞速发展和光电器件性能的不断提高,使激光测距仪成为距离测量的主要仪器之一。

《脉冲式半导体激光测距系统的设计》范文

《脉冲式半导体激光测距系统的设计》范文

《脉冲式半导体激光测距系统的设计》篇一一、引言随着科技的不断进步,测距技术已成为众多领域不可或缺的技术手段。

在众多测距技术中,脉冲式半导体激光测距系统因其高精度、高速度和远距离测量的特点,在工业自动化、无人驾驶、地形测绘等领域得到了广泛应用。

本文将详细介绍脉冲式半导体激光测距系统的设计原理、系统架构及实现方法。

二、系统设计原理脉冲式半导体激光测距系统主要基于激光测距原理,通过发射激光脉冲并接收反射回来的光信号,计算激光往返时间差来确定距离。

该系统主要由激光发射器、光信号接收器、信号处理单元及控制系统等部分组成。

1. 激光发射器:选用高功率、高稳定性的脉冲式半导体激光器作为发射器,以产生精确的激光脉冲。

2. 光信号接收器:采用高灵敏度、高响应速度的光电探测器接收反射回来的光信号。

3. 信号处理单元:对接收到的光信号进行放大、滤波和数字化处理,以提取出有用的距离信息。

4. 控制系统:负责控制激光发射器的发射时机和光信号接收器的数据采集,同时与上位机进行通信,将测得的距离数据传输给上位机进行处理。

三、系统架构设计脉冲式半导体激光测距系统的架构设计主要包括硬件设计和软件设计两部分。

(一)硬件设计1. 激光发射模块:包括激光二极管及驱动电路,负责产生精确的激光脉冲。

2. 光信号接收模块:包括光电探测器及预处理电路,负责接收并预处理反射回来的光信号。

3. 信号处理模块:包括放大器、滤波器和模数转换器等,负责对光信号进行进一步的处理和数字化。

4. 控制系统模块:包括微处理器及其外围电路,负责控制整个系统的运行并处理与上位机的通信。

(二)软件设计软件设计主要包括控制系统的程序设计。

程序设计应具备以下功能:1. 控制激光发射器的发射时机,确保激光脉冲的精确性。

2. 控制光信号接收器的数据采集,并将接收到的数据进行初步处理。

3. 与上位机进行通信,将处理后的距离数据传输给上位机。

4. 具备友好的人机交互界面,方便用户操作和查看测距结果。

手持式激光测距仪系统方案

手持式激光测距仪系统方案

手持式激光测距仪系统方案一.系统主要功能(1)通过“脉冲测距法”来完成激光测距仪对距离的测量。

(2)完成面积测量,体积测量,连续测量,存储测量数据等功能。

(3)还可完成对测量距离的加、减运算。

二.主要技术资料1.电源:3伏直流电2.测量范围:5cm至200m,从前端起5cm,最大识别距离750m,不含目标板传统测量范围:白色砌石墙面,70m;水泥,50m;砖墙,50m。

最大测量距离由以下条件而定:(1)目标物表面的反射性(2)周围环境光照条件。

3.精确度:一般情况下,测量一次或多次的精确度为±1.5mm。

4.最小显示单位:1mm5.光束直径:在10m处小于6mm,在50m处小于30mm,在100m处小于60mm。

6.基本操作模式:单一测量,连续测量,计算/功能7.显示:液晶显示器,显示操作情况及电池情况。

8.激光:可见光,620-690nm,激光等级2级,输出功率<1mw。

三.系统测量原理激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。

本系统采用脉冲法,需要对时间进行精确测量,采用了高精度时间测量芯片TDC-GP2。

在脉冲激光测距中,使用激光器对被测目标发射一个光脉冲,然后接收目标反射回来的光脉冲,通过用TDC-GP2测量光脉冲往返所经历2S的时间t,就可以算出目标的距离,即:S=v*t/2,式中v为光速,v=3×108m/s。

1.TDC-GP2的时间测量原理1.1内部结构TDC-GP2内部主要有脉冲产生器、数据处理单元、时间数字转换器、温度测量单元、时钟控制单元、配置寄存器以及与单片机相接的SPI接口组成。

TDC-GP2的工作电压:输入输出为1.8~5.5V,核电压为1.8~3.6V,所以可以采用电池供电。

同时和单片机由4线的SPI相连,可以把TDC-GP2作为单片机的一个外围设备来操作。

通过单片机的控制由TDC-GP2采样脉冲激光的发射和接收,通过内部ALU单元计算出时间间隔,并将结果送入结果寄存器保存起来。

激光测距系统的设计

激光测距系统的设计
探测器
一 、引言
随着激光技术的发展 ,激光的应用越来越广泛 , 尤其是在军事上 ,激光测距机的诞生 ,对军队的作战 和训练等产生了革命性的影响 。在激光测距机出现 以前 ,坦克炮 、地炮 、高炮和舰炮等通常用光学测距 机测距 。光学测距机无论是合象式的还是体视式 的 ,其测试精度随距离而变化 ,测程越远 ,精度越差 , 操作也比较复杂 , 而且仪器的体积受基线长短的限 制 。针对上述光学测距存在的问题 , 本文设计了激 光测距光学系统 。该系统突出的优点是 : (1) 测距精 度高 ,并且与测程远近无关 ; (2) 仪器体积小 ,测距迅 速 ; (3) 便于数字信息处理 ; (4) 角分辨力高 , 抗干扰 能力强等 。
输出功率 15mW
重复频率 90pps (每秒钟的周期数或脉冲
数)
接收探测器 硅雪崩光电二极管
接收镜孔径 18~100mm
四 、应用与展望
随着激光 、红外 、电视 、微光 、光纤 、多光谱和全 息等现代光学技术的不断发展以及它们与电子技 术 、计算机技术等日益密切的结合 ,使得光电子技术 在侦察 ,测距 、火控 、导航 、制导 、指挥 、控制 、通讯等 军事领域的应用日益广泛 。精确测距 、精确制导的 导弹 、炮弹和炸弹等武器 ,攻击目标广 ,命中精度高 , 是现代战争中的重大威胁力量 。预计激光测距以及 激光武器将是未来战略威胁力量的一个重要组成部 分。
激光测距系统进一步发展的主要环节应该是以 下几个方面 :一是大视场 ;二是由于激光束的漂移 , 加之激光束的发散角极窄 ,因而难以捕获目标 ,为此 必须解决激光束稳定问题 , 所以采用高稳定度的 CO2 激光器 ;三是频移调制器 ;四是快速扫描的双轴 机械扫描器 。
参考文献
[ 1 ] 张承铨. 国外军用激光仪器手册. 兵器工业出版社 ,1989 [ 2 ] Dang K V , Kauff man1CL ,Derzko ZI1SPIE ,1992 ,1686 [ 3 ] 贺安之 ,阎大鹏. 激光瞬态干涉度量学. 机械工业出版社 ,1993
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、纲要 激光测距仪系统设计
整体 设计 方案
系统 硬件 部分
性能 要求
技术 特点
单激 片光 机发 的射 选部 型分
回信 波号 接处 收理 部部 分分
系统 软件 设计
机械 结构 设计
发 接信 射 收号 程 程处 序 序理 设 设程 计 计序
外支测 部架距 整结仪 体构外

3、 创新思路
• 1.根据相位式激光测距原理,采用测尺组合频率和差频测相的 方法完成测量,提高测量精度。
• 2. 提高整体的稳定性,降低消耗。 • 3. 采用模块形式提高电路的分辨率,克服电路系统中各个频率
的干扰。 • 4. 优化系统结构,采用支架式结构避免测量时系统晃动现象的
产生。
驱动L1
+
锁相产生 15.01MHz信号 作为本振1
15MHz有源晶 振信号作为主 振1
4、设计原理图
CPLD分频产 生1.5MHz信号 作为主振2
锁相产生 1.501MHz信号 作为本振2
光电转换器
1.5MHz回 波信号滤 波放大
15MHz回波 信号滤波放 大
混频器1
混频器2
10KHz滤波 放大
10KHz滤波 放大

正弦波变方 波
正弦波变方 波
用CPLD测量 15MHz信号发 射波与回波的相 差
混频器3
10KHz滤波 放大
正弦波变方 波
混频器4
激光测距仪系统设计
System Design of a Laser Range Finder
专 业: 学 号: 姓 名: 指导老师:
1、背景
• 目前空间目标距离的激光测量主要使用脉冲式激光测距方法和 相位式激光测距方法。脉冲式激光测距法主要是运用于长距离 的测量,但其精度不高。而相位测距法主要运用于短距离的测 量,但其测程较短。本设计采用多测尺测量法解决了测程和精 度的矛盾。
10KHz滤波 放大
正弦波变方 波
89C51单片 机处理数据 和控制显示
LED4位数显示
用CPLD测量 1.5MHz信号发射 波与回波的相差
5、电路图
6、VCO及整形电路图
7、发射电路图
8、接收电路图
9、鉴相电路
10、实体图
11、测距仪外型设计
相关文档
最新文档