高三数学第二轮复习教案

高三数学第二轮复习教案
高三数学第二轮复习教案

高三数学第二轮复习教案

第10讲 参数取值问题的题型与方法

(4课时)

求参数的取值范围的问题,在中学数学里比比皆是,这一讲,我们分四个方面来探讨。 一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。

例1.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。

分析:在不等式中含有两个变量a 及x ,其中x 的范围已知(x ∈R ),另一变量a 的范围即为所求,故可考虑将a 及x 分离。

解:原不等式即:4sinx+cos2x<45-a -a+5

要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。

f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3,

∴45-a -a+5>3即45-a >a+2

上式等价于??

?

??->-≥-≥-2)2(450450

2a a a a 或???≥-<-0

4502a a ,解得≤54a<8.

说明:注意到题目中出现了sinx 及cos2x ,而cos2x=1-2sin 2x,故若把sinx 换元成t,则

可把原不等式转化成关于t 的二次函数类型。

另解:a+cos2x<5-4sinx+45-a 即

a+1-2sin 2x<5-4sinx+45-a ,令sinx=t,则t ∈[-1,1], 整理得2t 2-4t+4-a+45-a >0,( t ∈[-1,1])恒成立。 设f(t)= 2t 2-4t+4-a+45-a 则二次函数的对称轴为t=1,

∴ f(x)在[-1,1]内单调递减。

∴ 只需f(1)>0,即45-a >a -2.(下同)

例2.已知函数f(x)在定义域(-∞,1]上是减函数,问是否存在实数k ,使不等式f(k -sinx)≥f(k 2-sin 2x)对一切实数x 恒成立?并说明理由。

分析:由单调性与定义域,原不等式等价于k -sinx ≤k 2-sin 2x ≤1对于任意x ∈R 恒成立,这又等价于

??

?

??----≥+-----+≤)

2()21(sin 41)1(sin 12

222x k k x k 对于任意x ∈R 恒成立。 不等式(1)对任意x ∈R 恒成立的充要条件是k 2≤(1+sin 2x)min =1,即-1≤k ≤1----------(3) 不等式(2)对任意x ∈R 恒成立的充要条件是k 2-k+

41≥[(sinx -21)2]max =4

9

, 即k ≤-1或k ≥2,-----------(4)

由(3)、(4)求交集,得k=-1,故存在k=-1适合题设条件。

说明:抽象函数与不等式的综合题常需要利用单调性脱掉函数记号。

例3.设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,试求

AP

PB

的取值范围.

分析:本题中,绝大多数同学不难得到:AP PB =B

A x x

-,但从此后却一筹莫展, 问题的

根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所

求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.

思路1: 从第一条想法入手,

AP PB =B

A x x

-已经是一个关系式,但由于有两个变量B A x x ,,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB 的斜

率k . 问题就转化为如何将B A x x ,转化为关于k 的表达式,到此为止,将直线方程代入椭圆方程,消去y 得出关于x 的一元二次方程,其求根公式呼之欲出.

解1:当直线l 垂直于x 轴时,可求得

5

1

-=PB AP ; 当l 与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l 的方程为:3+=kx y ,代入椭圆方程,消去y 得(

)

04554492

2

=+++kx x k ,

解之得 .4

95

9627222

,1+-±-=k k k x

因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.

当0>k 时,4

95

96272

21+-+-=k k k x ,4959627222+---=k k k x ,

所以 21x x PB AP -==5929592922-+-+-k k k k =59291812-+-k k k =2

5

929181k -+-.

由 (

)

049180)54(2

2

≥+--=?k k , 解得 9

52

k , 所以 5

15

92918112

-<-+-

≤-k ,

综上 5

1

1-≤≤-PB AP .

思路2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定k 的取值范围,于是问题转化为如何将所求量与k 联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于

2

1x x PB AP

-=不是关于21,x x 的对称关系式. 原因找到后,解决问题的方法自然也就有了,即我们可以构造关于21,x x 的对称关系式.

解2:设直线l 的方程为:3+=kx y ,代入椭圆方程,消去y 得

()

045544922

=+++kx x k

(*)

???

????

+=+-=+.4945,4954221221k x x k k x x 令λ=21

x x ,则,.2045324212

2+=++k k λλ 在(*)中,由判别式,0≥?可得 9

5

2

k ,

从而有 536204532442

2≤+≤k k ,所以5

36

214≤++≤λλ, 解得

551≤≤λ.结合10≤<λ得15

1

≤≤λ. 综上,5

1

1-≤≤-PB AP .

说明:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界

性法,函数的性质法,数形结合法等等. 本题也可从数形结合的角度入手,给出又一优美解法.

二、直接根据图像判断

若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。尤其对于选择题、填空题这种方法更显方便、快捷。

例4.(2003年江苏卷第11题、天津卷第10题)已知长方形四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB 的中点P 沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射角等于反射角).设P 4的坐标为(x 4,0).若1< x 4<2,则tan θ的取值范围是 ( )

(A)

)1,31

(

(B)

)3

2,31( (C)

)2

1,52( (D))3

2,52(

分析: 《高中数学课程标准》提倡让学生自主探索, 动手实践, 并主张在高中学课程设立“数

(0,0)

A 1

P 2

P 3P 4P B(2,0)

C(2,1)

D(0,2)P

x y 图1

2

P 2'

P 3'

P 4

P 4'

P C

D y

学探究”学习活动, 03年数学试题反映了这方面的学习要求,在高考命题中体现了高中课程标准的基本理念.本题可以尝试用特殊位置来解,不妨设4P 与AB 的中点P 重合(如图1所示),则P 1、P 2、P 3分别是线段BC 、CD 、DA 的中点,所以1

tan 2

θ=.由于在四个选择支中只有C 含有

1

2

,故选C . 当然,本题也可以利用对称的方法将“折线”问题转化

成“直线”问题来直接求解(如图2所示).

说明 由本题可见, 03年试题强调实验尝试, 探索猜想在

数学学习中的地位.这也是选择题的应有特点.

例5.当x ∈(1,2)时,不等式(x -1)2

分析:若将不等号两边分别设成两个函数,则左边为二次函数,图象是抛物线,右边为常见的对数函数的图象,故可以通过图象求解。

解:设y 1=(x -1)2,y 2=log a x,则y 1的图象为右图所示的抛物线,要使对一切x ∈(1,2),y 11,并且必须也只需当x=2时y 2的函数值大于等于y 1的函数值。

故log a 2>1,a>1,∴1

例6.函数y=(x -1)log 2

3a -6xlog 3a+x+1,其中在x ∈[0,1]时函数恒正,求a 的范围。

解:排除对数log 3a 的干扰,选x 为“主元”化函数为 y=f(x)=(log 32a -6 log 3a+1)x+1-log 32a, x ∈[0,1].

一次(或常数)函数恒正,被线段端点“抬在”x 轴的上方。故有:

.31log 1,3310

)1(0)0(0

33

<<-∴<

???>>>a a f f a

说明:给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于

ⅰ)???>>0)(0m f a 或ⅱ)???><0)(0n f a 亦可合并定成?

??>>0)(0)(n f m f

同理,若在[m,n]内恒有f(x)<0,则有()0

()0

f m f n

例7.对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围。 分析:在不等式中出现了两个字母:x 及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将p 视作自变量,则上述问题即可转化为在[-2,2]内关于p 的一次函数大于0恒成立的问题。

略解:不等式即(x -1)p+x 2-2x+1>0,设f(p)= (x -1)p+x 2-2x+1,则f(p)在[-2,2]上恒大于0,故有:

??

?>>-)2(0)2(f f 即?????>->+-0

10

3422

x x x 解得:???-<><>1113x x x x 或或 ∴x<-1或x>3.

例8.设f(x)=x 2-2ax+2,当x ∈[-1,+∞)时,都有f(x)≥a 恒成立,求a 的取值范围。 分析:题目中要证明f(x)≥a 恒成立,若把a 移到等号的左边,则把原题转化成左边二次函数在区间[-1,+∞)时恒大于0的问题。

解:设F(x)= f(x)-a=x 2-2ax+2-a.

ⅰ)当?=4(a -1)(a+2)<0时,即-2

???????

-≤--≥-≥?,12

20)1(0a

f 即???

??-≤≥+≥+-,10

30)2)(1(a a a a 得-3≤a ≤-2;

综合可得a 的取值范围为[-3,1]

说明:若二次函数y=ax 2

+bx+c=0(a ≠0)大于0恒成立,则有?

??00

a

若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求

解。 例9.关于x 的方程9x +(4+a)3x +4=0恒有解,求a 的范围。 分析:题目中出现了3x 及9x ,故可通过换元转化成二次函数型求解。

解法1(利用韦达定理):

设3x =t,则t>0.则原方程有解即方程t 2+(4+a)t+4=0有正根。

???

??>=?>+-=+≥?∴040)4(02

121x x a x x 即??

?-<≥-+4

016)4(2a a ???-<-≤≥∴48

0a a a 或 解得a ≤-8.

解法2(利用根与系数的分布知识):

即要求t 2+(4+a)t=0有正根。设f(x)= t 2+(4+a)t+4. 10.?=0,即(4+a )2-16=0,∴a=0或a=-8. a=0时,f(x)=(t+2)2=0,得t=-2<0,不合题意; a=-8时,f(x)=(t -2)2=0,得t=2>0,符合题意。 ∴a=-8.

20. ?>0,即a<-8或a>0时, ∵f(0)=4>0,故只需对称轴02

4>+-

a

,即a<-4. ∴a<-8

综合可得a ≤-8. 三、解析几何中确定参变量的取值范围历来是各级各类测试及高考命题的热点。由于此类问题综合性强,且确定参变量取值范围的不等量关系也较为隐蔽,因而给解题带来了诸多困难。为此,我们有必要总结和归纳如何寻找或挖掘不等量关系的策略和方法。

在几何问题中,有些问题和参数无关,这就构成定值问题,解决这些问题常通过取参数

和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式来证明该式是恒定的。

解析几何中的最值问题,一般先根据条件列出所求目标——函数关系式,然后根据函数关系式手特征选用参数法,配方法,判别式法,应用不等式的性质,以及三角函数最值法等求出它的最大值或最小值。

充分运用各种方法学会解圆锥曲线的综合问题(解析法的应用,数形结合的数学思想,圆锥曲线与圆锥曲线的位置关系,与圆锥曲线相关的定值问题,最值问题,应用问题和探索性问题)。

研究最值问题是实践的需要,人类在实践活动中往往追求最佳结果,抽象化之成为数学上的最值问题,所以最值问题几乎渗透到数学的每一章。

解析几何中的最值问题主要是曲线上的点到定点的距离最值,到定直线的距离最值,还有面积最值,斜率最值等,解决的办法也往往是数形结合或转化为函数最值。

而一些函数最值,反而可以通过数形结合转化为解析几何中的最值问题。

1.几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决。

2.代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值。求函数最值常用的方法有配方法、判别式法、重要不等式法、三角函数的值域法、函数的单调性法。

例10. 已知椭圆C:x y 2

2

28+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,

在线段AB 上取点Q ,使

AP PB AQ

QB

=-,求动点Q 的轨迹所在曲线的方程及点Q 的横坐标的取值范围.

分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。其实,应该想到轨迹问题可以通过参数法求解. 因此,首先是选定参数,然后想方设法将点Q 的横、纵坐标用参数表达,最后通过消参可达到解题的目的.

由于点),(y x Q 的变化是由直线AB 的变化引起的,自然可选择直线AB 的斜率k 作为参数,如何将y x ,与k 联系起来?一方面利用点Q 在直线AB 上;另一方面就是运用题目条件:

AP PB AQ QB =-来转化.由A 、B 、P 、Q 四点共线,不难得到)

(82)(4B A B

A B A x x x x x x x +--+=,要建立x 与k 的关系,只需将直线AB 的方程代入椭圆C 的方程,利用韦达定理即可.

通过这样的分析,可以看出,虽然我们还没有开始解题,但对于如何解决本题,已经做到心中有数.

在得到()k f x =之后,如果能够从整体上把握,认识到:所谓消参,目的不过是得到

关于y x ,的方程(不含k ),则可由1)4(+-=x k y 解得4

1

--=x y k ,直接代入()k f x =即可得到轨迹方程。从而简化消去参的过程。

解:设()),(),(,,2211y x Q y x B y x A ,,则由

QB

AQ

PB AP -=可得:x x x x x x --=--212144,

解之得:)

(82)(4212

121x x x x x x x +--+=

(1)

设直线AB 的方程为:1)4(+-=x k y ,代入椭圆C 的方程,消去y 得出关于 x 的一元二次方程:

()

08)41(2)41(412222

=--+-++k x k k x k

(2)

∴ ???

????

+--=+-=+.128)41(2,12)14(422

21221k k x x k k k x x 代入(1),化简得:.2

3

4++=

k k x (3) 与1)4(+-=x k y 联立,消去k 得:().0)4(42=--+x y x

在(2)中,由02464642

>++-=?k k ,解得

4

10

24102+<<-k ,结合(3)可求得

.9

10

216910216+<<-x 故知点Q 的轨迹方程为:042=-+y x (

9

10

216910216+<<-x ). 说明:由方程组实施消元,产生一个标准的关于一个变量的一元二次方程,其判别式、

韦达定理模块思维易于想到. 这当中,难点在引出参,活点在应用参,重点在消去参.,而“引参、用参、消参”三步曲,正是解析几何综合问题求解的一条有效通道.

例11.已知[0,)απ∈,试讨论α的值变化时,方程22

sin cos 1x y αα+=表示的曲线的形状。

解:(1)当0α=时,方程化为1y =±,它表示两条与x 轴平行的直线;

(2)当2

π

α=时,方程化为1x =±,它表示两条与y 轴平行的直线;

(3)当4

π

α

=

时,方程化为2

21x

y +=,它表示一个单位圆;

(4)当04π

α<<时,方程化为22111sin cos x y αα

+=,因为11

0sin cos αα>>,所以它表示一个焦点在x 轴上那个的椭圆;

(5)当42ππα<<时,方程化为22111sin cos x y αα

+=,因为11

0sin cos αα<<,所以它表示一个焦点在y 轴上那个的椭圆;

(6)当2π

απ<<时,方程化为22111sin cos x y αα

-=-,因为1

1

0,0sin cos αα

>-

>,所以它表示一个焦点在x 轴上那个的双曲线。

四、求参数的取值范围在解析几何中的应用

例12.一农民有田2亩,根据他的经验:若种水稻,则每亩每期产量为400公斤,若种花生,则每亩产量为100公斤,但水稻成本较高,每亩每期240元,而花生只要80元,且花生每公斤可卖5元,稻米每公斤只卖3元,现在他只能凑足400元,问这位农民对两种作物应各种多少亩,才能得到最大利润?

分析:最优种植安排问题就是要求当非负变量x 、y 满足条件2x y +≤和

40080240≤+y x 时,总利润P 达到最大,是线性规划问题。

解:设水稻种x 亩,花生种y 亩,则有题意得:

2≤+y x 0,0≥≥y x 即 2≤+y x 0,0≥≥y x

40080240≤+y x 53≤+y x

此不等式组的解为四边形区域(包括边界),这些解通常就叫做本问题的可行解,并称这个区域为问题的可行解区域。

而利润P =(3×400-200)x +(5×100-80)y =960x+420y 为二元函数,通常就叫做本问题的目标函数。故所求问题变为:要在此可行解区域内,找出(x ,y )点,使目标函数P =960x+420y 的值为最大,这类点就叫做本问题的最佳解。如何找出这类点呢?观察目标函数P ,我们知道:

(1)当P等于任意常数m时,m=960x+420y 都是-48/21的直线;

(2)若直线l:m=960x+420y与可行解区域相交,则对应于此直线的任一可行解,目标函数P的值皆为m;

(3)当直线l:m=960x+420y 即y=-48/21x+m/400过可行解区域,且纵截距最大时,m有最大值,即目标函数P有最大值。

由图可知,当直线l过B点时,纵截距最大。

解方程组

2

35

x y

x y

+=

?

?

+=

?

得交点B(1.5,0.5)

所以当x=1.5,y=0.5时,P max=960×1.5+420×0.5=1650(元)

即水稻种1.5亩,花生种0.5亩时所得的利润最大。

说明:很多数学应用题都与二元一次不等式组有关,而不等式组的解答往往很多,

在各种解答中,是否有一组为符合实际情况的最佳解答呢?求此类问题的解答为数学的一个重要分支——线性规划。线性规划是最优化模型中的一个重要内容,它具有适应性强,应用面广,计算技术比较简便的特点,它是现代管理科学的重要基础和手段之一。利用线性规划解决应用问题的方法可按下列步骤进行:

(1)根据题意,建立数学模型,作出不等式组区域的图形,即可行解区域;

(2)设所求的目标函数f(x,y)为m值;

(3)将各顶点坐标代入目标函数,即可得m的最大值或最小值,或求直线f(x,y)=m在y轴上截距的最大值(最小值)从而得m的最大值(最小值)。

例13.某汽车公司有两家装配厂,生产甲、乙两种不同型的汽车,若A厂每小时可完成1辆甲型车和2辆乙型车;B厂每小时可完成3辆甲型车和1辆乙型车。今欲制造40辆甲型车和乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最小?

分析:这是一个如何安排生产才能发挥最佳效率的问题。最优工作时数的安排问题就是A、B两厂生产甲、乙两种不同型号的汽车数不得低于甲型40辆、乙型20辆时,总工时最少。

解:设A厂工作x小时,B厂生产y小时,总工作时数为T小时,则它的目标函数为T=x+y 且x+3y≥40 ,2x+y≥20 ,x≥0 ,y≥0

可行解区域,而符合问题的解答为此区域内的格子点(纵、横坐标都是整数的点称为格子点),于是问题变为:要在此可行解区域内,找出格子点(x,y),使目标函数T =x +y的值为最小。由图知当直线l:y=-x+T过Q点时,纵截距T最小,但由于符合题意

的解必须是格子点,我们还必须看Q 点是否是格子点。

解方程组340

220

x y x y +=??

+=? 得Q (4,12)为格子点,

故A 厂工作4小时,B 厂工作12小时,可使所费的总工作时数最少。

说明:也可以用凸多边形性质去寻找最佳解,要注意到有时符合题意的解仅限于可行解区域内的格子点,此时如果有端点并非格子点,这些点就不符合题意,不是我们要找的解;如果所有的端点都是格子点,所有的端点全符合题意,我们就可用凸多边形性质去找出最佳解。

符合本题的解仅为可行解区域内的格子点,其可行解区域的端点P (40,0),Q (4,12)R (0,20)都是格子点,都符合题意,而它们所对应的目标函数值如下表所示:

故Q (4,12)即为所要找的点。

例14.私人办学是教育发展的方向。某人准备投资1200万元兴办一所完全中学,为了考虑社会效益和经济效益,对该地区教育市场进行调查,得出一组数据列表如下(以班级为单位):

根据物价部门的有关文件,初中是义务教育阶段,收费标准适当控制,预计除书本费、办公费以外每生每年收取600元,高中每生每年可收取1500元。因生源和环境等条件的限制,办学规模以20至30个班为宜。教师实行聘任制。初中、高中的教育周期均为三年。请你合理地安排找生计划,使年利润最大,大约经过多少年可以收回全部投资?

解:设初中编制为x 个班,高中编制为y 个班。 则??

?≤+≤+≤1200

582830

20y x y x (x>0,y>0,x,y ∈Z )。

计年利润为s ,那么s =3x+6y-2.4x-4y ,即s =0.6x+2y

作出不等式表示的平面区域。问题转化为求直线0.6x+2x -s =0截距的最大值。过点A 作0.6x+2y=0的平行线即可求出s 的最大值。

联立??

?=+=+1200

582830

y x y x 得A (18,12)。

将x =18,y =12代入s =0.6x+2y 求得S max =34.8。

设经过n 年可收回投资,则11.6+23.2+34.8(n -2)=1200,可得n =33.5。

学校规模初中18个班级,高中12个班级,第一年初中招生6个班300人,高中招生4个班160人。从第三年开始年利润34.8万元,大约经过36年可以收回全部投资。

说明:本题的背景材料是投资办教育,拟定一份计划书,本题是计划书中的部分内容。要求运用数形结合思想,解析几何知识和数据处理的综合能力。通过计算可知,投资教育主要是社会效益,提高整个民族的素质,经济效益不明显。

五、强化训练

1.(南京市2003年高三年级第一次质量检测试题)

若对n 个向量n a a a Λ,,21存在n 个不全为零的实数n k k k ,,,21Λ,使得02211=+++n n a k a k a k Λ成立,则称向量

n a a a Λ,,21为“线性相关”

.依此规定, 能说明1(1,0)a =u r ,2(1,1)a =-u u r ,3(2,2)a =u u r

“线性相关”的实数321,,k k k 依次可以取 (写出一组数值即可,不必考虑所有情况).

2.已知双曲线12

2:22=-x y C ,直线l 过点()

0,2A ,斜率为k ,当10<

π

时,f(cos 2θ+2msin θ)+f(-2m -2)>0恒成立,求实数m 的取值范围。

4.已知关于x 的方程lg(x 2

+20x) -lg(8x -6a -3)=0有唯一解,求实数a 的取值范围。 5.试就k 的不同取值,讨论方程2

2

(2)(6)(6)(2)k x k y k k -+-=--所表示的曲线形状,并

指出其焦点坐标。

6.某公司计划在今年内同时出售变频空调机和智能型洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大。已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:

试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?

7.某校伙食长期以面粉和大米为主食,而面食每100克含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100克含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?

8.发电厂主控室的表盘,高m 米,表盘底边距地面n 米。问值班人员坐在什么位 置上,看得最清楚?(值班人员坐在椅子上眼睛距地面的高度一般为1.2米)

9. 某养鸡厂想筑一个面积为144平方米的长方形围栏。围栏一边靠墙,现有50米铁丝网,筑成这样的围栏最少要用多少米铁丝网?已有的墙最多利用多长?最少利用多长?

六、参考答案

1.分析:本题将高等代数中n 维向量空间的线形相关的定义,移植到平面向量中,定义了n 个平面向量线性相关.在解题过程中,首先应该依据定义,得到1122330k a k a k a ++=u u r u u r u u r r

即123(1,0)(1,1)(2,2)0k k k +-+=r ,于是12323(2,2)0k k k k k ++-+=r ,所以1

232320,20.

k k k k k ++=??-+=?即13234,2.

k k k k =-??=?则123::4:2:1k k k =-.所以,123,,k k k 的值依次可取4,2,c c c -(c 是不等于零的任意实数).

2.分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=?. 由此出发,可设计如下解题思路:

()10)

2(:<<-=k x k y l

k k kx y l 2222:'-++=

把直线l ’的方程代入双曲线方程,消去y ,令判别式0=?

直线l ’在l 的上方且到直线l 的距离为

2

的值解得k

解题过程略.

分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:

21

222

2=+-+-k k

x kx ()10<

于是,问题即可转化为如上关于x 的方程. 由于10<>+2

2,从而有

.222222k x kx k x kx +++-=-+-

于是关于x 的方程()*

?)1(22222

+=

+++-k k x kx

?()

???

??>+-++-+=+02)1(2,)2)1(2(22

2222kx k k kx k k x

?()

()()???

?

?>+-+=--++-++-.

02)1(2,022)1(22)1(2212

2

2

222kx k k k

k

x k k k x k

由10<

)

()()

022)1(22)1(2212

2

2

2

2

=--++

-++-k k

x k k

k

x k 的二根同正,

故02)1(22

>+-+kx k k 恒成立,于是()*等价于

()

(

)()

022)1(22)1(2212

2

2

2

2

=--++

-++-k k

x k k k x k

.

由如上关于x 的方程有唯一解,得其判别式0=?,就可解得 5

5

2=

k . 说明:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.

3.分析与解:从不等式分析入手,易知首先需要判断f(x)的奇偶性和单调性,不难证明,在R 上f(x)是奇函数和增函数,由此解出cos 2θ+2msin θsin <2m+2. 令t=sin θ,命题转化为不等式t 2-2mt+(2m+1)>0,t ∈[0,1]--------------------(*) 恒成立时,求实数m 的取值范围。

接下来,设g(t)=t 2-2mt+(2m+1),按对称轴t=m 与区间[0,1]的位置关系,分类使g(t)min >0,综合求得m>12

-

.

本题也可以用函数思想处理,将(*)化为2m(1-t)>-(t 2+1),t ∈[0,1] ⑴当t=1时,m ∈R;

⑵当0≤t<1时,2m>h(t)=2-[(1-t)+

t

-12],由函数F (u)=u+u 2

在(-1,1]上是减函数,

易知当t=0时,h(x)max =-1, ∴m>12

-,

综合(1)、(2)知m>21-。

说明:本题涉及函数的奇偶性、单调性、二次函数的条件极值、不等式等知识,以及用

函数的思想、数形结合、分类讨论、转化和化归的思想方法解题,是综合性较强的一道好题。

4.分析:方程可转化成lg(x 2+20x)=lg(8x -6a -3),从而

得x 2+20x=8x -6a -3>0,注意到若将等号两边看成是二次函数

y= x 2+20x 及一次函数y=8x -6a -3,则只需考虑这两个

函数的图象在x 轴上方恒有唯一交点即可。

解:令y 1= x 2+20x=(x+10)2-100,y 2=8x -6a -3,则如

图所示,y 1的图象为一个定抛物线,y 2的图象是一条斜率为定值8,而截距不定的直线,要使y 1和y 2在x 轴上有唯一

交点,则直线必须位于l 1和l 2之间。(包括l 1但不包括l 2)

当直线为l 1时,直线过点(-20,0)此时纵截距为-6a -3=160,a=6

163

-

; 当直线为l 2时,直线过点(0,0),纵截距为-6a -3=0,a=2

1-

∴a 的范围为[6163

-

,2

1-)。

5.解:(1)当2k =时,方程化为0y =,表示x 轴。

(2)当6k

=时,方程化为0x =,表示y 轴

(3)当2,6k ≠时,方程为标准形式:

22

1(*)62

x y k k +=--

①当624k k k -=-?=时,方程化为222x y +=为半径的圆。

②当2k

<时,方程(*)表示焦点在x 轴上的双曲线,焦点为(

③当24k <<时,方程(*)表示焦点在x 轴上的椭圆,焦点为(

④当46k <<时,方程(*)表示焦点在y 轴上的椭圆,焦点为(0,

⑤当6k

>时,方程(*)表示焦点在y 轴上的双曲线,焦点为(0,

6.解:设空调机、洗衣机的月供应量分别是x 、y 台,总利润是P ,则P =6x+8y 由题意:30x+20y ≤300 5x+10y ≤110 x ≥0,y ≥0 x 、y 均为整数

画图知直线 y =-3/4x +1/8P 过M (4,9)时,纵截距最大,这时P 也取最大值P max =6×4+8×9=96(百元)

故:当月供应量为:空调机4台,洗衣机9台时,可获得最大利润9600元。

7.解:设每盒盒饭需要面食x (百克),米食y (百克) 则目标函数为S =0.5x+0.4y

且x ,y 满足 : 6x+3y ≥8 4x+7y ≥10 x ≥0 ,y ≥0 画图可知,直线 y =-5/4x+5/2S

过A (13/15,14/15)时,纵截距5/2S 最小,即S 最小。 故每盒盒饭为13/15百克,米食14/15百克时既科学又费用最少。 8.解答从略,答案是: 值班人员的眼睛距表盘距离为)2.1)(2.1(-+-=

n m n x

(米)。本题材料背景:仪表及工业电视,是现代化企业的眼睛,它总是全神贯注地注视着生产内部过程,并忠实地把各种指标显示在值班人员的面前。这就要在值班人员和仪表及工业电视之间,建立某种紧密的联系,联系的纽带是值班人员的眼睛!因此只有在最佳位置上安排值班人员的座位,才能避免盲目性。

9.解:假设围栏的边长为x 米和玉米,于是由题设可知x >0,y >0,且

xy =144 (1) 2x+y ≤50 (2)

双曲线xy =144在第一象线内的一支与直线2x +y =50的交点是A

33725,233725+-),B (33725,2

337

25-+),满足条件(1)、(2)的解集是在双曲线xy =144(

2

337

25233725+≤≤-x ),这一段上的点集(即如图中双曲线A 、

B 之间的一段),当过双曲线A 、B 之间上的任一点作一点作直线2x +y =k (k >0)就是相应需用铁丝网的长度,直线2x+y=k (k >0)与双曲线xy =144相切。这时,相应的k 值最小,消去y 得x 的二次方程: 014422

=+-kx x ,从△=0得0144242

=??-k , 即k =242(米)所需用铁丝网的最短长度为242米。从图中知,利用已有墙的最大长度由点A 的纵坐标给出,即33725+米,利用墙的最短长度由B 纵坐标给出,即33725-米。

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高三数学一轮复习---解斜三角形(复习)公开课教案

解斜三角形(复习)公开课教案 [教学目标] 一:巩固对正弦、余弦、面积公式的掌握,并能熟练地运用公式解决问题。 二:培养学生分析、演绎和归纳的能力。 [教学重点] 正弦、余弦、面积公式的应用。 [教学难点] 选择适当的方法解斜三角形。 [教学过程] 一:基本知识回顾: 1.1、正弦定理及其变形; 正弦定理:2sin sin sin a b c R A B C ===(R 是三角形外接圆的半径) 变式一:sin 2a A R =、sin 2b B R =、sin 2c C R = 变式二:sin :sin :sin A B C ::a b c = 1.2、余弦定理及其变形; 余弦定理:2 2 2 2cos a b c bc A =+-,变式:222 cos 2b c a A bc +-= 2 2 2 2cos b a c ac B =+-, 222 cos 2a c b B ac +-= 2 2 2 2cos c a b ab C =+-。 222 cos 2a b c C ab +-= 1.3、面积公式 二:例题分析: 1、正弦定理 (1)在△ABC 中,已知 ,则 sin B= ( ) (2)在△ABC 中,若a = 2 ,b =0 30A = , 则B 等于60?或120? 111sin sin sin 222S ab C bc A ac B ===4,303 a b A ===?

2、余弦定理 (1)在△ABC 中,满足 ,则A = 60° (2)已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为 A .4 1 - B .41 C .3 2 - D . 3 2 3、三角形解的个数 (1)在△ABC 中,已知 , 这个三角形解的情况是:( C ) A.一解 B.两解 C.无解 D.不能确定 (2)△ABC 中,∠A ,∠B 的对边分别为a ,b ,且∠A=60°,4,6== b a ,那么 满 足条件的△ABC ( ) A .有一个解 B .有两个解 C .无解 D .不能确定 4、判断三角形形状 (1)若c C b B a A cos cos sin = =则△ABC 为( ) A .等边三角形 B .等腰三角形 C .有一个内角为30°的直角三角形 D .有一个内角为30°的等腰三角形 (2)关于x 的方程02 cos cos cos 2 2=-??-C B A x x 有一个根为1,则△AB C 一定是 A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形 5、正余弦定理的实际应用 (1)有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要 伸长( ) A .1公里 B .sin10°公里 C .cos10°公里 D .cos20°公里 (2) 10105/4/o C v v B AB o 某渔船在航行中遇险发出呼救信号,我海军舰艇在A处获悉后立即测出该渔船在方向角为北偏东45,距离海里的处,渔船沿着方位角为的方向以海里小时的速度向小岛靠拢,我海军艇舰立即以海里小时的速度前去营救。设艇舰在处与渔船相遇,求方向的方位角的正弦值 18,20,150a b A ===?222a b c bc =+-

[精品]新高三数学第二轮专题复习概率与统计优质课教案

高三数学第二轮专题复习:概率与统计 高考要求 概率是高考的重点内容之一,尤其是新增的随机变量这部分内容要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法 重难点归纳 本章内容分为概率初步和随机变量两部分第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验第二部分包括随机变量、离散型随机变量的期望与方差 涉及的思维方法观察与试验、分析与综合、一般化与特殊化主要思维形式有逻辑思维、聚合思维、形象思维和创造性思维 典型题例示范讲解 例1有一容量为50的样本,数据的分组及各组的频率数如下 [10,15]4 [30,35)9 [15,20)5 [35,40)8 [20,25)10 [40,45)3 [25,30)11 (1)列出样本的频率分布表(含累积频率); (2)画出频率分布直方图和累积频率的分布图 命题意图本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法

知识依托频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法 错解分析解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别 技巧与方法本题关键在于掌握三种表格的区别与联系 解 (1)由所给数据,计算得如下频率分布表 数据段频数频率累积频率 [10,15) 4 0.08 0.08 [15,20) 5 0.10 0.18 [20,25)10 0.20 0.38 [25,30)11 0.22 0.60 [30,35)9 0.18 0.78 [35,40)8 0.16 0.94 [40,45) 3 0.06 1 总计50 1 (2)频率分布直方图与累积频率分布图如下

最新人教版高一必修1数学教案:精品全套名师优秀教案

人教版高中数学必修1精品教案(整套) 课题:集合的含义与表示(1) 课型:新授课 教学目标: (1)了解集合、元素的概念,体会集合中元素的三个特征; (2)理解元素与集合的“属于”和“不属于”关系; (3)掌握常用数集及其记法; 教学重点:掌握集合的基本概念; 教学难点:元素与集合的关系; 教学过程: 一、引入课题 军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本P2-P3内容 二、新课教学

(一)集合的有关概念 1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们 能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。 3. 思考1:判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数; (2)我国的小河流; (3)非负奇数; (4)方程 的解; (5)某校2007级新生; (6)血压很高的人; (7)著名的数学家; (8)平面直角坐标系内所有第三象限的点 (9)全班成绩好的学生。 对学生的解答予以讨论、点评,进而讲解下面的问题。 4. 关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)无序性:给定一个集合与集合里面元素的顺序无关。 (4)集合相等:构成两个集合的元素完全一样。 5. 元素与集合的关系; (1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a A 例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A 4 A,等等。 6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。 7.常用的数集及记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+;

全国名校高三数学经典压轴题100例(人教版附详解)

好题速递1 1.已知P 是ABC ?内任一点,且满足AP xAB yAC =+u u u r u u u r u u u r ,x 、y R ∈,则2y x +的取值范围是 ___ . 解法一:令1x y AQ AP AB AC x y x y x y ==++++u u u r u u u r u u u r u u u r ,由系数和1x y x y x y +=++,知点Q 在线段 BC 上.从而1AP x y AQ +=>?? +

高三数学公开课教案,等差数列的证明与判定

等差数列及其前n 项和(二) 什邡中学数学组 廖美 重点:等差数列的判定与证明. 难点:①如何选择恰当的方法来证明或者判定等差数列; ②证明或者判定过程中如何根据已知条件化简. 教学目标:教会学生掌握简单的等差数列的证明与判定方法. 相关知识点: 1.证明等差数列的方法 ①定义法:d n d a a n d a a n n n n )(2()1(11≥=-≥=--+或为常数) ②等差中项法: )2(2)1(21112≥=+≥=+-+++n a a a n a a a n n n n n n 或 2.判定等差数列的方法 ①定义法:d n d a a n d a a n n n n )(2()1(11≥=-≥=--+或为常数) ②等差中项法: )2(2)1(21112≥=+≥=+-+++n a a a n a a a n n n n n n 或 ③通项公式法:是常数)b a b an a n ,(+= ④前n 项和公式法:是常数)b a bn an S n ,(2+= 例1.在数列{}n a 中,),2.(12,53*11N n n a a a n n ∈≥-==-,数列{}n b 满足1 1-=n n a b )(*N n ∈ (1) 求证:数列{}n b 是等差数列; (2) 求数列{}n a 中的最大项和最小项,并说明理由.

训练1.(01天津,2)设n S 是数列{}n a 的前n 项和,且2 n S n =,则{}n a 是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列 训练2.数列{}n a 中,),2(112.1,2*1 121N n n a a a a a n n n ∈≥+===-+, 则其通项公式为=n a _________. 训练3.数列{}n a 的前n 项和为n S ,若31=a ,点),(1+n n S S 在直线11+++= n x n n y ()*N n ∈上. (1)求证:数列? ???? ?n S n 是等差数列; (2)求n S .

[精品]新高三数学第二轮专题复习分类讨论思想优质课教案

高三数学第二轮专题复习:分类讨论思想 高考要求 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论” 重难点归纳 分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则分类讨论常见的依据是 1由概念内涵分类如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类 2由公式条件分类如等比数列的前n项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等 3由实际意义分类如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论 在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论 典型题例示范讲解

例1已知{a n }是首项为2,公比为2 1的等比数列,S n 为它的前n 项和 (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立 命题意图 本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力 知识依托 解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质 错解分析 第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223 技巧与方法 本题属于探索性题型,是高考试题的热点题型 在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想 即对双参数k ,c 轮流分类讨论,从而获得答案 解 (1)由S n =4(1–n 21),得221)2 11(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *)故只要23S k –2<c <S k ,(k ∈N *) 因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥2 3S 1–2=1 又S k <4,故要使①成立,c 只能取2或3 当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不

高三数学立体几何经典例题

高三数学立体几何经 典例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

厦门一中 立体几何专题 一、选择题(10×5′=50′) 1.如图,设O 是正三棱锥P-ABC 底面三角形ABC 的中心, 过O 的动平面与P-ABC 的三条侧棱或其延长线的交点分别记 为Q 、R 、S ,则 PS PR PQ 1 11+ + ( ) A.有最大值而无最小值 B.有最小值而无最大值 C.既有最大值又有最小值,且最大值与最小值不等 D.是一个与平面QRS 位置无关的常量 2.在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 ( ) A.??? ??ππ-,1n n B.??? ??ππ-,2n n C.??? ??π2,0 D.? ? ? ??π-π-n n n n 1,2 3.正三棱锥P-ABC 的底面边长为2a ,点E 、F 、G 、H 分别是PA 、PB 、BC 、AC 的中点,则四边形EFGH 的面积的取值范围是 ( ) A.(0,+∞) B.???? ??+∞,332a C.??? ? ??+∞,632a D.??? ??+∞,212a 4.已知二面角α-a -β为60°,点A 在此二面角内,且点A 到平面α、β的距离分别是AE =4,AF =2,若B ∈α,C ∈β,则△ABC 的周长的最小值是 ( ) A.43 B.27 C.47 D.23 5.如图,正四面体A-BCD 中,E 在棱AB 上,F 在棱CD 上, 使得 FD CF EB AE ==λ(0<λ<+∞),记f (λ)=αλ+βλ,其中αλ表示EF 与AC 所成的角,βλ表示EF 与BD 所成的角,则 ( ) A.f (λ)在(0,+∞)单调增加 B.f (λ)在(0,+∞)单调减少 C.f (λ)在(0,1)单调增加,在(1,+∞)单调减少 D.f (λ)在(0,+∞)为常数 6.直线a ∥平面β,直线a 到平面β的距离为1,则到直线a 的距离与平面β的距离都等于5 4 的点的集合是 ( ) A.一条直线 B.一个平面 C.两条平行直线 D.两个平面 7.正四棱锥底面积为Q ,侧面积为S ,则它的体积为 ( ) A.)(6 122Q S Q - B. )(31 22Q S Q - C. )(2 122Q S Q - D. S Q 3 1 8.已知球O 的半径为R ,A 、B 是球面上任意两点,则弦长|AB |的取值范围为 ( ) 第1题图 第5题图

高中数学《指数函数(一)》优质课比赛教案设计

指数函数(一) 教学目标: 知识与技能: 理解指数函数的概念和意义,掌握指数函数的图像和性质,并能自觉、灵活地应用其性质(单调性、底数变化图像的变化规律、中介值)比较大小。 过程与方法: (1). 体会从特殊到一般再到特殊的研究问题的方法,培养学生 观察、猜想、归纳、概括的能力。 (2). 从数和形两方面理解指数函数的性质,体会数形结合、分 类讨论的数学思想方法,提高思维的灵活性,培养学生直 观、严谨的思维品质。 情感、态度与价值观: (1). 体验从特殊到一般再到特殊的学习规律,认识事物之间的 普遍联系与相互转化,培养学生用联系的观点看问题,激 发学生自主探究的精神,在探究过程中体验合作学习的乐 趣。 (2). 让学生在数形结合中感悟数学的统一美、和谐美,进一步 培养学生的学习兴趣。 教学重点:指数函数的图像和性质。 教学难点:指数函数的底数a对图像的影响。

教学过程: (一)、概念引入: 1. 某种细胞分裂时,由一个分裂成两个,两个分裂成四个,四个分裂成八个,以此类推,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数关系式是什么? 2.一种放射性物质不断变化为其它物质,每经过一年剩余质量约是原来的12 ,设该物质的初始质量为1,经过x 年后的剩余质量为y ,你能写出,x y 之间的函数关系式吗? 1. 2()x y x N +=∈ 2. 1()()2x y x N +=∈ 上述两个函数都是正整数指数函数,但在实际问题中指数不一定都是正整数,比如在实例(2)中,我们除了关心1年、2年、3年后该物质的剩余量外,还想知道3个月、一年半后该物质的剩余量,这就需要对正整数指数函数的定义域进行扩充,结合指数概念的的扩充,我们也可以将正整数指数函数的定义域扩充至全体实数,这样就得到了一个新的函数——指数函数。 一般地,函数(01x y a a a =>≠且)叫做指数函数,其中x R ∈。 结合指数的运算,引导学生分析为什么规定01a a >≠且,加深学生对概念的理解。 你能举出指数函数的例子吗? 练习1:判断下列函数是否为指数函数。 (1)3x y -= (2)2y x = (3)23x y += (4)(2)x y =-

2015届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

基本不等式 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例: 当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离、换元

高中数学优秀教学案例设计汇编(上册)

高中数学教学设计大赛获奖作品汇编 (上部)

目 录 1、集合与函数概念实习作业…………………………………… 2、指数函数的图象及其性质…………………………………… 3、对数的概念………………………………………………… 4、对数函数及其性质(1)…………………………………… 5、对数函数及其性质(2)…………………………………… 6、函数图象及其应用…………………………………… 7、方程的根与函数的零点…………………………………… 8、用二分法求方程的近似解…………………………………… 9、用二分法求方程的近似解…………………………………… 10、直线与平面平行的判定…………………………………… 11、循环结构 ………………………………………………… 12、任意角的三角函数(1)………………………………… 13、任意角的三角函数(2)…………………………………… 14、函数sin()y A x ω?=+的图象………………………… 15、向量的加法及其几何意义……………………………………… 16、平面向量数量积的物理背景及其含义(1)……………… 17、平面向量数量积的物理背景及其含义(2)…………………… 18、正弦定理(1)…………………………………………………… 19、正弦定理(2)…………………………………………………… 20、正弦定理(3)……………………………………………………

21、余弦定理……………………………………………… 22、等差数列……………………………………………… 23、等差数列的前n项和……………………………………… 24、等比数列的前n项和……………………………………… 25、简单的线性规划问题……………………………………… 26、拋物线及其标准方程……………………………………… 27、圆锥曲线定义的运用………………………………………

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

高中数学经典50题(附问题详解)

高中数学题库 1. 求下列函数的值域: 解法2 令t =sin x ,则f (t )=-t 2 +t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离 地球相距m 万千米和 m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为3 2 π π 和 ,求该慧星与地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为1 22 22=+b y a x (图见教材P132页例1)。

当过地球和彗星的直线与椭圆的长轴夹角为 3 π 时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ ππ=∠=∠xFA xFA 或。作m FA FB Ox AB 3 221B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(3 4)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,323 1c c c m c a m a c m =-==∴?= 代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。 3. A ,B ,C 是我方三个炮兵阵地,A 在B 正东6Km ,C 在B 正北偏西ο 30,相距4Km ,P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B ,C 两地比A 距P 地远,因此4s 后,B ,C 才同时发现这一信号,此信号的传播速度为1s Km /,A 若炮击P 地,求炮击的方位角。(图见优化设计教师用书P249例2) 解:如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则 )32,5(),0,3(),0,3(--C A B ,因为PC PB =,所以点P 在线段BC 的垂直平分线上。 因为3-=BC k ,BC 中点)3,4(-D ,所以直线PD 的方程为)4(3 13+= -x y (1) 又,4=-PA PB 故P 在以A ,B 为焦点的双曲线右支上。设),(y x P ,则双曲线方程为 )0(15 42 2≥=-x y x (2)。联立(1)(2),得35,8==y x , 所以).35,8(P 因此33 83 5=-= PA k ,故炮击的方位角北偏东?30。 说明:本题的关键是确定P 点的位置,另外还要求学生掌握方位角的基本概念。 4. 河上有抛物线型拱桥,当水面距拱顶5米时,水面宽度为8米,一小船宽4米,高2

《高三数学一轮复习课-直线与圆的位置关系优质课比赛教学设计》

直线与圆的位置关系(1) 课型:高三数学一轮复习课 课题:直线与圆的位置关系 课时:第一课时 教材:苏教版 对教材内容的理解分析: 1、本节内容在全书及章节的地位: 直线与圆的位置关系是高中数学新教材“圆的方程”的综合课. 2、本节课的复习内容: 本节课的主要内容是直线与圆的位置关系及判定方法,它是高考中的热点内容之一. 3、教材的地位与作用: 本节课是平面解析几何学的基础知识,它既复习了前面刚学过的直线与圆的方程,又为今后学习直线与圆锥曲线的位置关系奠定基础.它虽然是解析几何中较为简单的内容,但有着广泛的应用,也具有较强的综合性,有利于培养学生分析问题和解决问题的能力. 教学反思: 1、通过小组合作学习,组织学生对问题进行讨论,激发学生的求知欲望,使大部分学生在学习过程中始终处于积极思考、探索的状态,真正成为主动学习的主体. 2、利用计算机辅助教学,显示了事物从静态到动态的运动过程,培养学生用运动变化这一辩证唯物主义观点分析问题、解决问题的能力.用几何画板可以很好地体现数形结合的思想,使较为复杂的问题明了化.教案的简介:直线与圆的位置关系(1),高三数学一轮复习课、扬州市优秀公开课,并获一等奖. 关键字:位置关系、广义几何法、狭义几何法、代数法. 参赛者简介:扬州市特级教师,扬州市学科带头人,扬州市优秀班主任,高邮市中青年专家,高邮市劳动模范等. [教学目标] 知识目标:了解代数法和几何法解决直线与圆位置关系的差异,明确几何法在直线与圆的位置关系的判定中的地位,并能应用几何法解决问题. 能力目标:让学生在解决问题的过程中体会到数形结合、转化、化归等数学思想,注重培养学生的分析、计算、总结归纳等能力. 情感态度价值观目标:培养学生合作交流,善于思考的良好品质,激发学生学习数学的积极性. [重点难点] 重点:几何法在直线与圆的位置关系的判定中的应用.

高三数学课题:数学归纳法(公开课讲解)

课题:数学归纳法 【三维目标】: 一、知识与技能 1.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 2.抽象思维和概括能力进一步得到提高. 二、过程与方法 通过数学归纳法的学习,体会用不完全归纳法发现规律,用数学归纳法证明是解决问题的一种重要途径,用数学归纳法进行证明时,“归纳奠基”与“归纳递推”两个步骤缺一不可,而关键的第二步,其本质是证明一个递推关系。 三、情感,态度与价值观 体会数学归纳法是用有限步骤解决无限问题的重要方法,提高归纳、猜想、证明能力。 【教学重点与难点】: 重点:是了解数学归纳法的原理及其应用。 难点:是对数学归纳法的原理的了解,关键是弄清数学归纳法的两个步骤及其作用。 【课时安排】:2课时 第一课时 【教学思路】: (一)、创设情景,揭示课题

问题1:P 71中的例1.在数列{a n }中,a 1=1,a n+1= n n a a +1(n ∈N+),先计算a 2,a 3,a 4的值,再推测通项an 的公式. 生:a 2=21,a 3=31,a 4=41.由此得到:a n =n 1(n ∈N +). 问题2:通过计算下面式子,你能猜出()()121531--++-+-n n 的结果吗?证明你的结论? ________97531________ 7531_______531_______ 31=-+-+-=+-+-=-+-=+- 生:上面四个式子的结果分别是:2,-3,4,-5,因此猜想: ()()()n n n n 1121531-=--++-+- (*) 怎样证明它呢? 问题3:我们先从多米诺骨牌游戏说起,这是一种码放骨牌的游戏,码放时保证任意相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌也倒下。只要推倒第一块骨牌,由于第一块骨牌倒下,就可导致第二块骨牌倒下;而第二块骨牌倒下,就可以导至第三块骨牌倒下……最后,不论有多少块,都能全部倒下。 (二)、研探新知 原理分析:问题3:可以看出,使所有骨牌都倒下的条件有两个: (1) 第一块骨牌倒下; (2) 任意相邻的两块骨牌,前一块倒下.一定导致后一块倒下。 可以看出,条件(2)事实上给出了一个递推关系:当第k 块倒下时,相邻的第k+1块也倒下。这样只要第1块骨牌倒下,其他所有的骨牌就能够相继倒下。事实上,无论有多少块骨牌,只要保证(1)

高中数学《函数的应用》公开课优秀教学设计可编辑

《函数的应用》教学设计 一、教学内容解析 本节课是《普通高中课程标准实验教科书?数学1》(人教B版)第三章第四节第一课时《函数的应用》. 函数的应用是在学生学习了函数,指数函数、对数函数和幂函数的概念与性质后进行的一次综合应用,它不仅能加深学生对所学函数知识的理解,同时能提高学生利用所学知识解决实际问题的能力. 通过经历由实际问题建立函数模型,再利用模型分析、解决问题的过程,学生体验了数学在解决实际问题中的价值和作用,体验了数学与日常生活的联系,有助于增强学生的应用意识,激发他们学习数学的兴趣,发展他们的实践能力. 二、教学目标设置 根据教学内容,以及学生现有的认知水平和数学能力,我把本节课的教学目标确定为以下三个方面: 1.了解数学建模的基本步骤,会建立函数模型解决实际问题; 2.经历建立函数模型解决实际问题的过程,体验数学在解决实际问题中的价值和作用,提高综合运用数学知识和方法解决实际问题的能力; 3.加深学生对数学应用问题的理解,培养学生的科学态度和反思意识,提高学习数学的兴趣. 本节课的教学重点是建立函数模型解决实际问题; 本节课的教学难点是选择适当的方案和函数模型解决问题. 三、学生学情分析 学生已经研究了一次函数、二次函数、指数函数等基本初等函数的图象和性质,能利用函数知识解决简单的数学应用问题.他们初步掌握了图形计算器的使用方法,能根据给定数据进行指定函数模型的拟合. 授课班级的学生思维活跃,能积极参与课堂讨论.学生已经对北京的交通情况作了初步的调查和数据整理,对问题背景有一定的了解.但学生应用数学的意

识不强,数据处理能力不足,也缺乏利用数学模型对实际问题进行分析和评价的经验. 四、教学策略分析 本节课以探究学习作为主要的学习方式,通过情境引入、初步探究、综合应用、总结提升四个环节,逐步将研究引向深入.引导学生通过自主探究、合作交流,经历数学建模的过程,培养应用数学的能力. 为了突破难点,落实重点,我采取了以下措施:首先,学生使用图形计算器辅助学习,避免繁琐的计算,为从多角度,多层次研究问题提供了支持.其次,以北京的热点问题——交通问题作为研究背景,激发学生的学习兴趣,调动学生的积极性.第三,将资料的采集和整理工作交给学生课前完成,让学生提前熟悉问题背景,降低探究难度,提高课堂效率. 本节课的效果评价以当堂反馈为主,教师通过巡视、提问的方式关注学生的学习过程和学习进展.学生通过自主探索,交流讨论,上台展示等方式,展示学习的效果,发现认知障碍,以便得到及时的引导、分析和纠正.教师还将通过开放式作业进一步评估学生的学习效果. 五、教学过程 (一)创设情境,引入新课 (1)教师对学生之前的调查作简单小结,引导学生回顾他们所提出的问题,引出本节课的课题——函数的应用. 设计意图:让学生体会到数学来源于生活,激发学生的学习兴趣,并做好利用所学知识解决实际问题的准备,为后续探究做好铺垫. (2)ppt展示学生作业,师生共同梳理解题过程,并进行题后反思.

高三数学一轮复习优质教案7:2.1 函数及其表示教学设计

2.1 函数及其表示 一.课标要求 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念; 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数; 3.通过具体实例,了解简单的分段函数,并能简单应用; 4.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义; 5.学会运用函数图象理解和研究函数的性质。 二.命题走向 函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,函数问题在历年的高考中都占据相当大的比例。 从近几年来看,对本部分内容的考察形势稳中求变,向着更灵活的的方向发展,对于函数的概念及表示多以下面的形式出现:通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。 高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大。 三.要点精讲 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数。记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。 注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; (2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。 2.构成函数的三要素:定义域、对应关系和值域 (1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:

相关文档
最新文档