[精品]新高三数学第二轮专题复习概率与统计优质课教案
高三数学二轮复习建议——专题二:概率统计 PPT课件 图文

目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√
√
古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系
√
√
二 重点、热点分析
重点、热点、规律方法(一)二项式定理
例
1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义
高三数学二轮复习专题二概率与统计教案旧人教版

《二轮复习专题二-概率与统计》一.考试大纲1.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率.②了解几何概型的意义.2.统计(1)随机抽样①理解随机抽样的必要性和重要性.②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.(2)用样本估计总体①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.②理解样本数据标准差的意义和作用,会计算数据标准差.③能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.(3)变量的相关性①会作两个有关联变量数据的散点图,会利用散点图认识变量间的相关关系.②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 二.考点精练1.(2010湖南文数)为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)(I)求x,y ;(II)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率。
2.(2010陕西文数)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:()估计该校男生的人数;()估计该校学生身高在170~185cm之间的概率;()从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm 之间的概率。
高中数学高考二轮复习概率与统计教案

高中数学高考二轮复习概率与统计教案本专题涉及面广,常以生活中的热点问题为依托,在高考中的考查方式十分灵活,强化“用数据说法,用事实说话”的考查内容。
为了突破这一专题,可以按照“用样本估计总体”、“古典概型与几何概型”、“随机变量及其分布列”、“独立性检验与回归分析”四个方面分类进行引导。
在古典概型问题的求解中,可以采用直接列举、画树状图、逆向思维、活用对称等技巧。
对于特殊古典概型问题,画树状图可以使列举结果不重不漏;对于较复杂的问题,逆向思维可以先求对立事件的概率,再得到所求事件的概率;对于具有对称性的问题,可以利用对称思维快速解决。
几何概型的求解关键在于准确确定度量方式和度量公式,常见的几何度量包括长度、面积、体积、角度等。
在求解概率时,可以采用将所求事件转化为几个彼此互斥的事件的和事件,利用概率加法公式求解概率,或者利用对立事件的概率公式“正难则反”来求“至少”或“至多”型事件的概率。
举例来说,对于一个问题:4位同学各自在周六、周日两天中任选一天参加公益活动,周六、周日都有同学参加公益活动的概率为多少?其中,4名同学各自在周六、周日两天中任选一天参加公益活动的情况有2的4次方等于16种,其中仅在周六或周日参加的各有1种,所以所求概率为1减去(1+1)/16,即7/8.总之,熟练掌握古典概型与几何概型的求解技巧,以及求解概率的常用方法,可以在高考中更好地应对这一专题。
基本事件为取出的第一颗球和第二颗球的颜色,共有10种基本事件,其中第一颗球为白球的有3种情况,第二颗球为黑球的有2种情况,所以第一次为白球、第二次为黑球的概率为3/10,选B。
2)对于函数f(x)=ax+bx+x-3在R上为增函数,即a+b+1>0,所以a+b>-1.因为a,b都是M中的元素,所以a +b的取值有16种,其中a+b>-1的取值有9种,所以函数f(x)在R上为增函数的概率为9/16,选A。
中大于30的有12种,即(3,4),(3,5),(4,5),(2,4),(2,5),(1,4),(1,5),(2,3),(1,3),(1,2)和(4,3),(5,3).故所求概率为12/20=3/5,选项C正确.变式训练2](2017·全国卷Ⅰ)设函数f(x)=ax^2+bx+c,其中a,b,c均为实数,且满足f(1)=2,f(2)=3,f(3)=6,则f(x)在[1,3]上的最小值为()A。
高考数学二轮复习 第一部分 保分专题四 概率与统计 第2讲 概率及应用课件 文

8分
包括 A1 但不包括 B1 的事件所包含的基本事件有:{A1,B2},{A1,
B3},共 2 个,则所求事件的概率为 P=29.
12 分
[规范解释] 列举事件空间. 找出所研究的事件,求概率. 列举总的事件. 找出所研究事件,求概率.
求古典概型概率的方法 正确列举出基本事件的总数和待求事件包含的基本事件数. (1)对于较复杂的题目,列出事件数时要正确分类,分类时应不 重不漏. (2)当直接求解有困难时,可考虑求出所求事件的对立事件的概 率.
其中数学成绩优秀的人数比及格的人数少的有: (10,21),(11,20),(12,19),(13,18),(14,17),(15,16)共 6 组. ∴数学成绩为优秀的人数比及格的人数少的概率为164=37.
考点考查题型 已知两个变量的某些数据,求频率、求概率
考点应用方法 利用频率求概率,利用古典概型求概率
个适花合坛题中意,的则只红有色2和种紫,色其的概花率不P在=同23. 一花坛的概率是( C )
A.13
B.12
2
5
C.3
D.6
技法:无限元素用几何.一个变量为长度.二个变量是平 行人在红灯亮起的 25 秒内到达该路口,即满足至少需要等待 面.变量之比为概率. 15 秒才出现绿灯,根据几何概型的概率公式知所求事件的概 (1)(2016·高考全国卷Ⅱ改编)某路口人行横道的信号灯为红灯 和率绿P灯=交2450替=出58. 现,红灯持续时间为 40 秒.若一名行人来到该
解析:(1)当 X=8 时,由茎叶图可知,乙组四名同学的植树棵 数分别是 8,8,9,10,故 x =8+8+49+10=345,s2=14× 8-3452×2+9-3452+10-3452=1116.
人教A版高考数学(文)二轮复习 专题 概率与统计课件第2讲

[微题型 3] 茎叶图与古典概型交汇 【例 2-3】 某中学高三年级从甲、乙两个班级各选出 7 名学生
参加数学竞赛,他们取得的成绩(满分 100 分)的茎叶图如图所 示,其中甲班学生成绩的平均分是 85,乙班学生成绩的中位 数是 83.
(1)求 x 和 y 的值; (2)计算甲班 7 位学生成绩的方差 s2;
(3)从成绩在 90 分以上的学生中随机抽取 2 名学生,求甲班至 少有 1 名学生的概率.
解 (1) 因 为 甲 班 学 生 成 绩 的 平 均 分 是 85 , 所 以 92+96+80+807+x+85+79+78=85.所以 x=5. 因为乙班学生成绩的中位数是 83, 所以 y=3.
(2)甲班 7 位学生成绩的方差为 s2=17[(79-85)2+(78-85)2+(80-85)2+(85-85)2+(85-85)2 +(92-85)2+(96-85)2]=40. (3)设“甲班至少有 1 名学生”为事件 M,则 M 为“抽取的两 名学生都是乙班的”. 甲班成绩在 90 分以上的学生有 2 名,分别记为 A,B, 乙班成绩在 90 分以上的学生有 3 名,分别记为 C,D,E. 从这 5 名学生中任取 2 名学生有(A,B),(A,C),(A,D),(A, E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共 10 种不同的结果.
解 (1)社区总数为 12+18+6=36,样本容量与总体中的个体 数比为366=16. 所以从 A,B,C 三个行政区中应分别抽取的社区个数为 2,3,1. (2)设 A1,A2 为在 A 行政区中抽得的 2 个社区,B1,B2,B3 为 在 B 行政区中抽得的 3 个社区,C 为在 C 行政区中抽得的社 区,在这 6 个社区中随机抽取 2 个,全部可能的结果有
高三数学复习教案:概率统计

高三数学复习教案:概率统计一、教学目标1.理解概率统计的基本概念,掌握概率的计算方法。
2.能够运用概率统计的方法解决实际问题。
3.提高学生分析问题和解决问题的能力。
二、教学内容1.概率的基本概念与计算方法2.离散型随机变量及其分布列3.连续型随机变量及其概率密度函数4.随机变量的期望和方差5.统计量的概念与计算方法6.假设检验与置信区间三、教学重点与难点1.教学重点:概率的基本概念与计算方法,离散型随机变量及其分布列,连续型随机变量及其概率密度函数,随机变量的期望和方差。
2.教学难点:离散型随机变量分布列的求解,连续型随机变量概率密度函数的应用,随机变量期望和方差的计算。
四、教学过程第一课时:概率的基本概念与计算方法1.引入同学们,大家好!今天我们开始复习概率统计这一模块。
让我们回顾一下概率的基本概念和计算方法。
2.概念讲解(1)概率的定义:在一定条件下,某个事件发生的可能性大小。
①0≤P(A)≤1②P(∅)=0,P(S)=1③对于任意可列个两两互斥的事件A1,A2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+…3.概率的计算方法(1)古典概型:若样本空间S中的每个基本事件等可能发生,则事件A的概率为:P(A)=A中基本事件数/样本空间S中基本事件数(2)条件概率:在事件B发生的条件下,事件A发生的概率,记为P(A|B)。
根据条件概率的定义,有:P(A|B)=P(AB)/P(B)(3)乘法公式:P(AB)=P(A)P(B|A)(4)全概率公式与贝叶斯公式4.例题讲解(1)古典概型:掷一枚硬币,求正面朝上的概率。
(2)条件概率与乘法公式:甲、乙两人比赛,甲胜的概率为0.6,乙胜的概率为0.4。
若甲先赢一局,求甲最终获胜的概率。
(3)全概率公式与贝叶斯公式:某工厂有两个车间,第一车间生产的产品占60%,第二车间生产的产品占40%。
第一车间不合格率为0.01,第二车间不合格率为0.02。
从工厂中随机抽取一件产品,发现不合格,求这件产品来自第一车间的概率。
高三二轮专题复习《概率与统计解答题》集萃

2012届高三《概率与统计解答题》集萃1.某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本。
对高一年级的100名学生的成绩进行统计,并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分组,得到成绩分布的频率分布直方图(如图)。
(Ⅰ)若规定60分以上(包括60分)为合格,计算高一年级这次知识赛的合格率;(Ⅱ)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下面2×2列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”。
高一高二合计合格人数不合格人数合计参考数据与公式:由列联表中数据计算22()()()()()n ad bcKa b c d a c b d临界值表P(K≥k0)0.100.050.010k0 2.706 3.841 6.6352.某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;6分(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.3.绥化市为增强市民交通安全意识,面向全市征召义务宣传志愿者。
现从符合条件的志愿者中随机抽取100名按年龄分组:第1组20,25,第2组25,30,第3组30,35,第4组35,40,第5组[40,45],得到的频率分布直方图如图所示。
(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率。
【新课标】高三数学二轮精品专题卷_概率与统计

高三数学二轮精品专题卷:概率与统计考试范围:概率与统计一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要完成下列两项调查:①从某肉联厂的火腿肠生产线上抽取1000根火腿肠进行“瘦肉精”检测;②从某中学的15名艺术特长生中选出3人调查学习负担情况.适合采用的抽样方法依次为 ( )A .①用分层抽样,②用简单随机抽样B .①用系统抽样,②用简单随机抽样C .①②都用系统抽样D .①②都用简单随机抽样2.将一个骰子抛掷1次,设事件A 表示向上的一面出现偶数,事件B 表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则 ( )A .A 与B 是互斥而非对立事件 B .A 与B 是对立事件C .B 与C 是互斥而非对立事件D .B 与C 是对立事件3.要从编号为01~50的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定,则选取的5枚导弹的编号可能是 ( )A .05,10,15,20,25B .03,13,23,33,43C .01,02,03,04,05D .02,04,08,16,324.(理)2011年3月17日上午,日本自卫队选派了两架直升飞机对福岛第一核电站3号机组的染料池进行了4次注水.如果直升飞机有A 、B 、C 、D 四架供选,飞行员有甲、乙、丙、丁四人供选,且一架直升飞机只安排一名飞行员,则选出两名飞行员驾驶两架直升飞机的不同方法数为 ( ) A .18 B .36 C .72 D .108(文)两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一伦敦奥运会吉祥物“温洛克”,则“温洛克”与两端距离都大于1m 的概率为 ( ) A .21 B .31 C .41 D .32 5.(理)道路安全交通法规定,驾驶员血液酒精含量在20~80mg /100ml ,属酒后驾车,血液酒精含量在80mg /100ml 以上时,属醉酒驾车,2011年6月1日7:00至22:30,某地查处酒后驾车和醉酒驾车共50起,如图是对这50人的血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数大约为 ( )A .9B .10C .11D .12(文)某农科所研制成功一种产量较高的农作物种子,并对该作物种子在相同条件下发芽与否进行了试验,试验结果如下表,则其发芽的概率大约为 (A 6.(理)某堂训练课上,一射击运动员对同一目标独立地进行了四次射击,已知他至少命中一次的概率为8165,则四 次射击中,他命中2次的概率为( ) A .814 B .818 C .278 D .以上都不对(文)2011年4月28日,世界园艺博览会(以下简称世园会)在西安顺利开幕,吸引了海内外的大批游客.游客甲、游客乙暑假期间去西安看世园会的概率分别为31、41,假定他们两人的行动相互不受影响,则暑假期间游 客甲、游客乙两人都不去西安看世园会的概率为( )A .21 B .127 C .1211 D .32 7.2011年6月,台湾爆出了食品添加有毒塑化剂的案件,令世人震惊.我国某研究所为此开发了一种用来检测塑化剂的新试剂,把500组添加了该试剂的食品与另外500组未添加该试剂的食品作比较,提出假设0H :“这种试剂不能起到检测出塑化剂的作用”,并计算出()01.0635.62≈≥x P .对此,四名同学做出了以下的判断:p :有99%的把握认为“这种试剂能起到检测出塑化剂的作用” q :随意抽出一组食品,它有99%的可能性添加了塑化剂 r :这种试剂能检测出塑化剂的有效率为99% s :这种试剂能检测出塑化剂的有效率为1%则下列命题中正确的是 ( ) A .p ∧qB .﹁p ∧qC .(﹁p ∧﹁q )∧(r ∨s )D .(p ∨﹁r )∧(﹁q ∨s )8.日本福岛核电站爆炸后,工作人员随机测量了甲、乙两个城镇空气中核辐射的含量,获得的数据如茎叶图所示,则对甲、乙两个城镇的空气质量评价正确的是 ( )A .甲城镇的空气质量优于乙城镇的空气质量B .乙城镇的空气质量优于甲城镇的空气质量C .甲、乙两城镇的空气质量差不多D .无法比较9.给出以下三幅统计图及四个命题:①从折线统计图能看出世界人口的变化情况 ②2050年非洲人口大约将达到近15亿③2050年亚洲人口比其他各洲人口的总和还要多④从1957年到2050年各洲中北美洲人口增长速度最慢 其中正确的个数是 ( ) A .1 B .2 C .3 D .410.(理)如图,设D 是图中边长为4的正方形区域,E 是D 内函数y = x 2图像上方的点构成的区域(阴影部分).在D 内随机取一点,则该点在E 中的概率为 ( )(1(文)已知函数()x a x f 3cos π=,a 等于抛掷一颗骰子得到的点数,则()x f y =在[]4,0上有5个以下或6个以上零点的概率是( ) A .31 B .32 C .21 D .65二、填空题(本大题共5小题;每小题5分,共25分.将答案填在题中的横线上)11.2011年“两会”期间,某大学组织全体师生,以调查表的形式对温总理的政府工作报告进行讨论.为及时分析讨论结果,该大学从所回收的调查表中,采用分层抽样的方法抽取了300份进行分析.若回收的调查表中,来自于退休教职工、在职教职工、学生的份数之比为3:7:40,则所抽取的调查表中来自于退休教职工的有 份. 12.(理)在某项测量中,测量结果x (单位:mm )服从正态分布)2,(2μN 且正态分布的密度曲线如图所示,则x 在[]3,1-内取值的概率为 .(其中:841.0)1(=Φ)(文)小明同学学完统计知识后,随机调查了他所在辖区若干居民的年龄,将调查数据绘制成如图所示的扇形和条形统计图,则b a -= .(60以上含60)[来源:金太阳新课标资源网]13.(理)若()5cos x +ϕ的展开式中3x 的系数为2,则=⎪⎭⎫ ⎝⎛-ϕπ223sin .(文)某城市供电局为了了解用电量)(度y 与气温)(C x 之间的关系,随机统计了某4天的用电量与当由表中数据,得测用电量的度数约为 .(1)把容量为100的某组样本数据分为10组,其分组情况及频率如下:[)40,20:0.1;[)60,40:0.25;[)80,60:0.45;[)100,80:0.20.若同一组数据用该组区间的中点(例如:区间[)40,20的中点值为30)表示,则这100个数据的平均值为 .15.把一颗骰子投掷两次,第一次得到的点数记为a ,第二次得到的点数记为b ,以a 、b 为系数得到直线31=+by ax l :,又已知直线22:2=+y x l ,则直线1l 与2l 相交的概率为 . 三、解答题(本大题共6小题;共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)在甲、乙两个箱子中分别装有标号为1、2、3、4的四张卡片,现从甲、乙两个箱子中各取出1张卡片,每张卡片被取出的可能性相等. (1)求取出的两张卡片上标号恰好相同的概率;(2)求取出的两张卡片上的标号至少有一个大于2的概率.17.(本小题满分12分)2011年2月始发生的利比亚内战引起了全球人民的关注,联合国为此多次召开紧急会议讨论应对措施.在某次分组研讨会上,某组有6名代表参加,B A 、两名代表来自亚洲,D C 、两名代表来自北美洲,E 、F 两名代表来自非洲,小组讨论后将随机选出两名代表发言.12题(文)12题(理)(1)代表A 不被选中的概率是多少?(2)(理)记选出的两名代表中来自于北美洲或非洲的人数为X ,求X 的分布列及期望. (文)选出的两名代表“恰有1名来自北美洲或2名都来自非洲”的概率是多少?18.(本小题满分12分)一机器可以按各种不同速度转动,其生产的产品有一些会有缺陷,每小时生产有缺陷产品的多少随机器运转速度而变化,用x 表示转速(单位:转/秒),用y 表示每小时生产的有缺陷产品的个数,现观测得到)(y x ,的4组观测值为(8,5),(12,8),(14,9),(16,11).(1)画出散点图.(2)你能从散点图中发现零件数与加工时间近似成什么关系吗?如果近似成线性相关关系的话,请求出相应的回归直线方程;(3)若实际生产中所容许的每小时最多有缺陷产品数为10,则机器的速度不得超过多少转/秒?(精确到1)[来源: ]19.(本小题满分12分)(理)某市某社区拟选拔一批综合素质较强的群众,参加社区的义务服务工作.假定符合参加选拔条件的每个选手还需要进行四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被 淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为31,21,43,54且各轮问题能否正确回答互不影响.(1)求该选手进入第四轮才被淘率的概率.(2)该选手在选拔过程中回答过的问题的总个数记为X ,求随机变量X 的分布列与数学期望.(注:本小题结果可用分数表示)(文)某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n 人,回答问题统计结果如图表所示.(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人? (3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.20.(本小题满分13分)为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10(1(2)是否有99.5%的把握认为喜欢看该节目节目与性别有关?说明你的理由;(3)已知喜欢看该节目的10位男生中,1A 、2A 、3A 、4A 、5A 还喜欢看新闻,1B 、2B 、3B 还喜欢看动画片,1C 、2C 还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.(参考公式:()()()()d b c a d c b a bcad n K ++++-=22,其中d c b a n +++=)21.(本小题满分14分)某大学为调查来自南方和北方的同龄大学生的身高差异,从2011级的年龄在18~19岁之间的大学生中随机抽取了一自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm )南方:158,170,166,169,180,175,171,176,162,163 北方:183,173,169,163,179,171,157,175,178,166(1)根据抽测结果,完成答题卷中的茎叶图,并根据你填写的茎叶图,对来自南方和北方的大学生的身高作比较,写出两个统计结论.(2)设抽测的10名南方大学生的平均身高为x ,将10名同学的身高依次输入按程序框图进行运算,问输出的S 大小为多少?并说明S 的统计学意义. (3)(理)若将样本频率视为总体的概率,现从来自南方的大学生中随机抽取3名同学,记其中身高不低于平均身高的同学的人数为X ,求X 的分布列及数学期望EX (均值).(文)为进一步调查身高与生活习惯的关系,现从来自南方这10名大学生中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.2012届专题卷数学专题八答案与解析1.【思路点拨】简单随机抽样适用于总体容量较小的情形;总体容量较大且各个体间没有明显差异时选用系统抽样;当组成总体的各部分存在明显差异时,则应选用分层抽样.【答案】B 【解析】①中总体容量较大,且火腿肠之间没有明显差异,故适合采用系统抽样;②中总体容量偏小,故适合采用简单随机抽样. 2.【思路点拨】可从集合角度进行分析:若A 与B 是互斥事件,则φ=⋂B A ,若A 与B 是对立事件,则,Ω=⋃=⋂B A B A ,φ即对立事件是特殊的互斥事件.【答案】D 【解析】由题意知,=B A {出现点数2},所以事件A 、B 不互斥也不对立;,,Ω=∅=C B C B 故事件B ,C 是对立事件,选D . 3.【思路点拨】系统抽样的特点:总体平均分段、选定起始号、等间距、等可能抽样.【答案】B 【解析】采用系统抽样,可先将50个编号分成5组,在第一组随机地抽取一号码,比如抽到3号,则其它各组就依次选取13,23,33,43.四个选择答案中,只有B 属于这种抽取方法. 4.(理)【思路点拔】本题为排列组合的综合题,一般采用“先选后排”的解题策略求解.【答案】C 【解析】选派的所有情形有72222424==A C C N . (文)【思路点拔】几何概型的计算公式为:的长度(面积或体积)的长度(面积或体积)G G A P 1)(=.【答案】B 【解析】如图设线段AB =3,C 、D 是线段A B 的两个三等分点,则当“温洛克”挂在线段CD 上的时候,“温洛克”与两端A 、B 的距离都大于1.所以“温洛克”与两端距离都大于1m 的概率为31==的长度的长度AB CD P .5.(理)【思路点拔】利用频率分布直方图中各组频率之和为1这一性质求解.【答案】C【解析】由图可知数据落在20~80间的累积频率为0.1+0.2+0.2+0.04+0.12+0.12=0.78,故数据落在80~100间频率为1-0.78=0.22,故醉酒驾车人数为50×0.22=11(人). (文)【思路点拔】求出种子发芽的各频率值,发现频率的稳定值,即为概率值.【答案】D 【解析】我们可以用频率的近似值表示随机事件发生的概率,根据表格计算不同情况下的菜籽发芽的频率分别是1,0.8,0.9,0.857,0.892,0.910,0.913,0.903,0.905,由上面的计算结果可知,菜籽发芽的频率接近于0.9,且在它附近摆动,故此可知菜籽在已知条件下发芽的概率大约为0.9. 6.(理)【思路点拔】(1)在n 次独立重复试验中,某事件恰好发生k 次的概率为()()()n k p p C k P k n kk n n ,,2,1,01 =-=-,其中p 为该事件在一次试验中发生的概率.(2)本题解题思路为:先设他命中一次的概率为p ,并由已知构造方程求得p ,即可由概率公式得所求.【答案】C 【解析】四次射击可看作4次独立重复试验.设一次射击中,他命中的概率为p ,则他至少命中一次的概率为()8165114=--p ,解得31=p .∴他命中2次的概率为()278812431131222244==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=C P .(文)【思路点拔】由于甲、乙两人的行动相互不受影响,故他们去西安看世园会为相互独立事件,于是联想到调用概率的乘法公式求解.【答案】A 【解析】分别记甲、乙去西安旅游为事件A 、B ,则()31=A P ,()41=B P ,由题设可知A 、B 相互独立,故所求的概率()()()21411311=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-==⋅=B P A P B A P P . 7.【思路分析】本题中:提出假设0H :“这种试剂不能起到检测出塑化剂的作用”,并计算出()01.0635.62≈≥x P ,因此,在一定程度上说明假设不合理,我们就以99%的把握拒绝假设,故易知p ,r 为真命题,再由真值表即可获解.【答案】D 【解析】由题设可知命题p ,r 为真命题,q ,s 为假命题,依据复合命题的真值表可知D 为真命题. 8.【思路点拔】先利用茎叶图得到两组数据,并求出其平均值和方差,再利用方差进行比较:方差越小,波动越小,空气质量越高. 【答案】B 【答案】17010182179179171170168168163162158=+++++++++=x .甲城镇核辐射的样本方差为:[()()()()+-+-+-+-2222170168170163170162170158101()+-2170168()+-2170170()+-2170171()2170179-()]571701822=-+, 1.17110181179178176173170168165162159=+++++++++=x ,乙城镇核辐射的样本方差为101[()21.171159-()21.171162-+()21.171165-+()21.171168-+()21.171170-+()21.171173-+()21.171176-+()21.171178-+()21.171179-+()21.171181-+29.51=,由此判断乙城镇的空气质量较好.9.【思路点拔】利用折线图,扇形统计图,条形统计图的特征,解决问题.【答案】B 【解析】①显然正确;从条形统计图中可得到:2050年非洲人口大约将达到近18亿,②错;从扇形统计图中能够明显的得到结论:2050年亚洲人口比其他各洲人口的总和还要多,③正确;由上述三幅统计图并不能得出从1957年到2050年中哪个洲人口增长速度最慢,故④错误.因此正确的命题有①③. 10.(理)【思路点拔】利用定积分求面积时要特别注意函数的选择,对于几何概型则应特别注意基本事件空间和时间A 的几何度量(面积、体积、长度)的计算. 【答案】C 【解析】由定积分的几何意义可得阴影部分面积为33232162-442322=-=⨯=⎰x dx x S 阴,又由几何概型可得点在E 中的概率为3216332===正阴μμP . (文)【答案】D 【解析】抛掷一颗骰子共有6种情况.当a =1,2,3,4,5,6时,利用函数()x f 的图像易知,()x f y =在[]4,0上的零点分别为1,2,4,5,7,8个.故所求概率为656263=+=P . 11.【思路点拔】确定各层应抽取的个体数是实施分层抽样的最关键步骤,而确定办法主要有二:①利用抽样比k 来确定,当已知各层的个体数时,用此法计算较为简便;②利用结论“样本中各层抽取的个体数之比=总体中各层的个体数之比”来确定,当总体(或样本)中各层个体数以比的形式给出时,一般考虑用此法速解.【答案】18【解析】由题设知:来自于退休教职工、在职教职工、学生的份数之比为3:7:40,故样本中相应的份数之比仍为3:7:40,设所抽取的调查表中来自退休教职工份数为m ,则1840733300=⇒++=m m . (1)(理)【思路点拔】由正态曲线得到μ=1,再利用公式⎪⎭⎫⎝⎛-=σμφx Fx 计算概率. 【答案】0.682【解析】由图可知,2σ=,所以()()()()682.01121121121331=-Φ=-Φ-Φ=⎪⎭⎫⎝⎛--Φ-⎪⎭⎫ ⎝⎛-Φ=≤≤-ξP .(文)【思路点拔】读取统计图解答问题的关键是充分挖掘图中所包含的信息.在条形统计图中,每个直条的高度表示相应样本值出现的次数(即频数)或百分比;扇形统计图中,每个扇形的大小反映所表示的那部分占总体百分比的大小.【答案】8%【解析】设小明共调查了x 名居民的年龄,由230%46=⋅x ,得50=x ;于是得%20%100500100=⨯=a ;b=12%22%)46%(20%1=++-.故a-b =8%.13.(理)【思路点拔】(1)涉及二项展开式中的特定项(如常数项、有理项等)、二项式系数、系数的问题一般用通项法求解;(2)由诱导公式知ϕϕπ2cos 223sin -=⎪⎭⎫⎝⎛-.(3)二倍角的余弦公式:ϕϕϕ22sin 211cos 22cos -=-=.【答案】53【解析】由二项式定理得,3x 的系数为2cos 235=ϕC 得51cos 2=ϕ故53cos 212cos 223sin 2=-=-=⎪⎭⎫⎝⎛-ϕϕϕπ.(文)【思路点拨】先利用回归直线方程过(y x ,),求出a ,然后再求解. 【答案】68【解析】因为1813101104x ++-==,40464383424=+++=y ,又因为回归直线方程过(y x ,),所以402060a a =-+⇒=,把04-代入回归直线方程,可得用电量的都市约为68. 14.【思路点拔】由频率求出频数,便能求得这100个数据的平均值.【答案】65【解析】由题设可知各组及其频数分别为:[)40,20:10;[)60,40:25;[)80,60:45;[)100,80:20.故这100个数据的期望值(平均值)为[]6520904570255010301001=⨯+⨯+⨯+⨯=x . 15.【思路点拔】由两直线的交点在第一象限,构造出关于a ,b 不等式组,再利用枚举法确定基本事件数,便易得所求.【答案】3613【解析】由题意知,{}6,5,4,3,2,1,∈b a .因为直线1l 与2l 的交点在第一象限,所以由他们的图象可知:3132b a ⎧<⎪⎪⎨⎪>⎪⎩或3132b a⎧>⎪⎪⎨⎪<⎪⎩解得3,1b a >⎧⎨≤⎩或32b a <⎧⎨≥⎩,所以基本事件()b a ,可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),6,1),(6,2)共13个,而基本事件有3666=⨯种,所以随机事件“直线1l 与2l 的交点在第一象限”的概率为3613=P 16.【思路点拨】根据树脂图列出所有结果或者直接写出所有结果,然后求解.【解析】利用树状图可以列出从甲、乙两个盒子中各取出1个球的所有可能结果(如下图),可以看出,试验的所有可能结果数为16种且每种结果是等可能的.(3分)(1)所取两张卡片上的标号为相同整数的结果有1-1,2-2,3-3,4-4,共4种.故根据古典概型公式,所求概率41164==P .答:取出的两张卡片的标号为相同整数的概率为41.(6分)(2)记事件“取出的两张卡片的标号至少有一个大于2”为A .则A 的对立事件是A =“取出的两张卡片上的标号都不于大2”(8分)所取出的两张卡片上的标号都不大于3的结果有1-1,1-2,2-1,2-2,共4种.43)(1)(41164)(=-=∴==A P A P A P .答:取出的两张卡片上的标号至少有一个大于3的概率为43.(12分) 17.(理)【思路点拔】(1)利用对立事件的概率公式求解;(2)易知X 的可能取值为0,1,2,分别求出对应的概率值,即得分布列,再进一步求期望.[来源:金太阳新课标资源网] 【解析】(1)代表A 被选中的概率为151125=C (2分),所以代表A 不被选中的概率是15141511=-.(4分)(2)X 的可能取值为0,1,2.(5分)()1510262===C C X P ,()1581261412===C C C X P ,()15622624===C C X P (8分)∴X 的分布列为(见右图表)(10分)1864()0121515153E X =⨯+⨯+⨯=.(12分) (文)【思路点拔】先利用枚举法列举出6名代表中随机选出2名的结果总数,再从中找中各事件所包含的结果数,然后代入古典概型、对立事件以及互斥事件的概率公式进行求解. 【解析】(1)从这6名代表中随机选出2名,共有C 种不同的选法,分别为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).(3分).其中代表A 被选中的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F )共5种,则代表A 被选中的概率为31155=(6分)所以代表A 不被选中的概率为321551=-=P . (2)随机选出的2名代表“恰有1名来自北美洲或2名都来自非洲”的结果有9种,分别是),(C A ,),(D A ,),(C B ,),(D B ,),(E C ,),(F C ,),(E D ,),(F D ,),(F E .“恰有1名来自北美洲或2名都来自非洲”这一事件的概率为53159=(12分). 18.【思路点拔】先画出散点图,由散点图可知各散点分布成一条直线附近,故零件数与加工时间近似成线性相关关系,再求出回归直线方程,并利用此方程求解.【解析】(1)如图(4分)(2)设回归直线方程为a bx y+=ˆ,则5.1241614128=+++=x ,25.8411985=+++=y ,(3)43811169148125844332211=⨯+⨯+⨯+⨯=+++y x y x y x y x ;6601614128222224232221=+++=+++x x x x ,所以,70515.12466025.85.1244382=⨯-⨯⨯-=b ,765.12705125.8-=⨯-=-=x b y a ;故:y 与x 之间的回归直线方程为767051ˆ-=x y (8分)(3)由10767051≤-=x y ,得1451706≈≤x .即机器的速度不得超过14转/秒.(12分) 19.(理)【思路点拔】对于(1)(2),均可用相互独立事件的概率公式求出相应的概率,从而得出X 的分布列,再利用期望公式求X 期望值. 【解析】(1)记“该选手能正确回答第i 轮的问题”的事件为()4,3,2,1=i A i ,则()541=A P ,()432=A P ,()213=A P ,()314=A P .(2分)∴该选手进入第四轮才被淘率的概率()()()()()43214321A P A P A P A P A A A A P P ==5132214354=⨯⨯⨯=.(5分)(2)X 的可能值为4321、、、,()()5111===A P X P ,()()()()51415422121=⨯====A P A P A A P X P ,()()()()()1032143543321321=⨯⨯====A P A P A P A A A P X P 103214354=⨯⨯=,12341234123444313(4)()()()()()()154210P X P A A A A P A A A A P A P A P A P A A ==+=+=⨯⨯⨯=.(9分)X ∴的分布列为(见右侧表格)(11分) ()102710341033512511=⨯+⨯+⨯+⨯=∴X E .(12分) (文)【思路点拔】对于(1),可结合频率分布直方图的性质求解;对于(2),则可利用分层抽样比求解;问题(3)为古典概型问题,可用枚举法求解. 【解析】(1)由频率表中第1组数据可知,第1组总人数为105.05=,再结合频率分布直方图可知1001010.010=⨯=n (1分)∴a =100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,(2分)9.03.010027=⨯=x ,2.015.01003=⨯=y (4分)(2)第2,3,4组中回答正确的共有54人.(5分)∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:265418=⨯人,第3组:365427=⨯人,第4组:16549=⨯人.(8分)(3)设第2组的2人为1A、2A,第3组的3人为1B、2B、2B,第4组的1人为1C,则从6人中抽2人所有可能的结果有:()21,AA,()11,B A,()21,B A,()31,B A,()11,CA,()12,BA,()22,BA,()32,BA,()12,CA,()21,BB,()31,BB,()11,CB,()32,BB,()12,CB,()13,CB,共15个基本事件,(10分)其中第2组至少有1人被抽中的有()21,AA,()11,BA,()21,BA,()31,BA,()11,CA,()12,BA,()22,BA,()32,BA,()12,CA这9个基本事件.(11分)∴第2组至少有1人获得幸运奖的概率为53159=(12分)[来源:金太阳新课标资源网]20.【思路点拔】在独立性检验中,常利用2K来确定“两个分类变量是否有关联”:当706.22≤K时,可以认为变量A、B是没有关联的;当2K>2.706时,有90%的把握判定变量A、B有关联;当2K>3.841时,有95%的把握判定变量A、B有关联;当2K>6.635时,有99%的把握判定变量A、B有关联.故只需计算出2K的值,利用上述结论即可解决第(2)小题.第(3)小题可用组合知识及枚举法求解.[来源:金太阳新课标资源网]【解析】(1)由分层抽样知识知,喜欢看该节目的同学有3010650=⨯,故不喜欢看该节目的同学有50-30=20人,(2分)于是可将列联表补充如右图:(4分)(2)()333.82525203051015205022≈⨯⨯⨯⨯-⨯⨯=K>7.879(7分)∴有99.5%的把握认为喜爱该节目与性别有关.(8分)(3)(理)从10位男生中选出喜欢看韩剧、喜欢看新闻、喜欢看动画片的各1名,其一切可能的结果组成的基本事件共有30121315==CCCN个,(10分)用M表示“11CB、不全被选中”这一事件,则其对立事件M表示“11CB、全被选中”这一事件,由于M由()111,,CBA,()112,,CBA,()113,,CBA,()114,,CBA,()115,,CBA,5个基本事件组成,所以()61305==MP,(12分)由对立事件的概率公式得()()656111=-=-=MPMP.(13分)(文)从10位男生中选出喜欢看韩剧、喜欢看新闻、喜欢看动画片的各1名,其一切可能的结果组成的基本事件如下:()111,,CBA,()211,,CBA,()121,,CBA,()221,,CBA,()131,,CBA,()231,,CBA,()112,,CBA,()212,,CBA,()122,,CBA,()222,,CBA,()132,,CBA,()232,,CBA,()113,,CBA,()213,,CBA,()123,,CBA,()233,,CBA,()223,,CBA,()133,,CBA,()114,,CBA,()214,,CBA,()124,,CBA,()224,,CBA,()134,,CBA,()234,,CBA,()115,,CBA,()215,,CBA,()125,,CBA,()225,,CBA,()135,,CBA,()235,,CBA,基本事件的总数为30,(10分)用M表示“11CB、不全被选中”这一事件,则其对立事件表示“11CB、全被选中”这一事件,由于由()111,,CBA,()112,,CBA,()113,,CBA,()114,,CBA,()115,,CBA,5个基本事件组成,所以()61305==MP,(12分)由对立事件的概率公式得()()656111=-=-=MPMP.(13分)21.【思路点拔】(1)可利用给出数据直接画出茎叶图,再根据茎叶图从样本的数字特征等角度来得出统计结论;(2)认真读懂框图,不难看出该框图的功能是计算一组数据的方差;(3)(文)利用枚举法求解;(3)(理)易知X服从二项分布,故调用二项分布的概率及期望公式简解.【解析】(1)茎叶图如右图(2分)统计结论:(给出下述四个供参考,考生只要答对其中两个即给满分,给出其他合理的答案也可给分)①北方大学生的平均身高大于南方大学生的平均身高.②南方大学生身高比北方大学生的身高更整齐;③南方大学生的身高的中位数为169.5cm,北方大学生的身高的中位数是172cm.④南方11 大学生的高度基本上是对称的,而且大多数集中在均值附近,北方大学生的高度分布较为分散.(4分)(2)169=x ,6.42=S (6分),S 表示10位南方大学生身高的方差,是描述身高离散程度的量.S 值越小,表示身高越整齐,S 值越大,表示身高参差不齐.(8分)(1)(理)记“抽取一位同学恰好抽中身高不低于平均身高的同学”为事件A ,由(2)知来自南方的大学生平均身高为169cm ,故()53106==A P .(9分),随机变量X 的可能取值为0,1,2,3,且3(3,)5X B .所以()()3,2,1,0525333=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==-k C k X P k k k , 所以变量X 的分布列为(见右表格)5912527312554212536112580=⨯+⨯+⨯+⨯=∴EX (或59533=⨯==np EX )(14分)(文)记“身高为176cm 的同学被抽中”为事件A ,从这10名南方大学生中抽出两名身高不低于170cm 的同学有(170,171),(170,175),(170,176),(170,180),(171,175),(171,176),(171,180),(175,176),(175,180),(176,180),共10个基本事件,而事件A 含有4个基本事件,故()52104==A P .(14分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第二轮专题复习:概率与统计
高考要求
概率是高考的重点内容之一,尤其是新增的随机变量这部分内容要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法
重难点归纳
本章内容分为概率初步和随机变量两部分第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验第二部分包括随机变量、离散型随机变量的期望与方差
涉及的思维方法观察与试验、分析与综合、一般化与特殊化主要思维形式有逻辑思维、聚合思维、形象思维和创造性思维
典型题例示范讲解
例1有一容量为50的样本,数据的分组及各组的频率数如下
[10,15]4 [30,35)9 [15,20)5 [35,40)8
[20,25)10 [40,45)3 [25,30)11
(1)列出样本的频率分布表(含累积频率);
(2)画出频率分布直方图和累积频率的分布图
命题意图本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法
知识依托频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法
错解分析解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别
技巧与方法本题关键在于掌握三种表格的区别与联系
解 (1)由所给数据,计算得如下频率分布表
数据段频数频率累积频率
[10,15) 4 0.08 0.08
[15,20) 5 0.10 0.18
[20,25)10 0.20 0.38
[25,30)11 0.22 0.60
[30,35)9 0.18 0.78
[35,40)8 0.16 0.94
[40,45) 3 0.06 1
总计50 1
(2)频率分布直方图与累积频率分布图如下
数据0.0440.0400.0360.0320.0200.0160.012
45
40353025201510频率组距
o
45
403530252015100.90.80.70.60.50.40.30.2
0.1
o
y
x
例2袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是3
1
,从B 中摸出一个红球的概率为p .
(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.
(i )求恰好摸5次停止的概率;
(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望E ξ.
(Ⅱ) 若A 、B 两个袋子中的球数之比为12,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25
,求p 的值.
命题意图 本题考查利用概率知识和期望的计算方法
知识依托 概率的计算及期望的概念的有关知识
错解分析 在本题中,随机变量的确定,稍有不慎,就将产生失
误
技巧与方法 可借助n 次独立重复试验概率公式计算概率
解 (Ⅰ)(i )22
241218
33381
C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭
(ii)随机变量ξ的取值为0,1,2,3,; 由n 次独立重复试验概率公式()()
1n k
k k n n P k C p p -=-,得
()50
5
132013243
P C ξ⎛⎫==⨯-= ⎪⎝⎭; ()4
1511801133243P C ξ⎛⎫==⨯⨯-=
⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()32
3511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=
⎪ ⎪⎝⎭⎝⎭
(或()3280217
31243243
P ξ+⨯==-
=
) 随机变量ξ的分布列是
ξ 0
1 2 3
P
32243 80243 80243 17
243 ξ的数学期望是 32808017131
012324324324324381
E ξ=⨯+⨯+⨯+⨯=
(Ⅱ)设袋子A 中有m 个球,则袋子B 中有2m 个球由1
22335
m mp
m +=,
得13
30
p = 例3如图,用A 、B 、C 三类不同的元件连接成两个系统N 1、N 2,当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作 已知元件A 、
B 、
C 正常工作的概率依次为0.80,0.90,0.90,分别求系统N 1,N 2正
常工作的概率P 1、P 2
(N 2)
A
B C
(N 1)C
B A
解 记元件A 、B 、C 正常工作的事件分别为A 、B 、C ,
由已知条件P (A )=0.80, P (B )=0.90,P (C )=0.90
(1)因为事件A 、B 、C 是相互独立的,所以,系统N 1正常工作的概率P 1=P (A ·B ·C )=P (A )P (B )P (C )=0.648,故系统N 1正常工作的概率为0.648
(2)系统N 2正常工作的概率P 2=P (A )·[1-P (C B )]=P (A )·[1-
P (B )P (C )]
=0 80×[1-(1-0 90)(1-0 90)]=0 792
故系统N 2正常工作的概率为0 792
学生巩固练习
1 甲射击命中目标的概率是21,乙命中目标的概率是3
1,丙命
中目标的概率是4
1 现在三人同时射击目标,则目标被击中的概率为
( )
10
7 D. 54C. 32 B. 43A. 2 已知随机变量ζ的分布列为 P (ζ=k )=3
1,k =1,2,3,则P (3ζ
+5)等于
A 6
B 9
C 3
D 4
3 1盒中有9个正品和3个废品,每次取1个产品,取出后不
再放回,在取得正品前已取出的废品数ζ的期望E ζ=_________
4 某班有52人,男女各半,男女各自平均分成两组,从这个班
中选出4人参加某项活动,这4人恰好来自不同组别的概率是_________
5 甲、乙两人各进行一次射击,如果两人击中目标的概率都是
0.6,计算(1)两人都击中目标的概率; (2)其中恰有一人击中目标的概率; (3)至少有一人击中目标的概率
6 已知连续型随机变量ζ的概率密度函数
f (x )=⎪⎩
⎪⎨⎧≥<≤-≤2 021 1
0x x a x x
(1)求常数a 的值,并画出ζ的概率密度曲线; (2)求P (1<ζ<2
3)
参考答案:
1 解析 设甲命中目标为事件A ,乙命中目标为事件B ,丙命
中目标为事件C ,则目标被击中的事件可以表示为A+B+C ,即击中目标表示事件A 、B 、C 中至少有一个发生
.
4
1)411)(311)(211()](1[)](1[)](1[)()()()(=---=-⋅-⋅-=⋅⋅=⋅⋅∴C P B P A P C P B P A P C B A P 故目标被击中的概率为1-P (A ·B ·C )=1-4
341= 答案 A
2 解析 E ξ=(1+2+3)·31=2,E ξ2=(12+22+32)·31=3
14
∴D ξ=E ξ2-(E ξ)2=314-22=3
2 ∴D (3ξ+5)=9E ξ=6答案 A
3 解析 由条件知,ξ的取值为0,1,2,3,并且有P (ξ
=0)=4
3C C 1121
9=,
3
.0220
1
322092449143022012C C C )3(,22092C C C )2(,4492C C C )1(4
12
19
3331219232121913=⨯+⨯+⨯+⨯=ξ∴===ξ=⋅==ξ===ξE P P P 答案
0.3
4 解析 因为每组人数为13,因此,每组选1人有C 113种方法,
所以所求概率为
P 452
4
113C )C ( 答案452
4
113C )C (
5 解 (1)我们把“甲射击一次击中目标”叫做事件A ,“乙射
击一次击中目标”叫做事件B 显然事件A 、B 相互独立,所以两人
各射击一次都击中目标的概率是P (A ·B )=P (A )·P (B )=0.6×
0.6=0.36
答 两人都击中目标的概率是0.36
(2)同理,两人各射击一次,甲击中、乙未击中的概率是
P (A ·B )=P (A )·P (B )=0.6×(1-0.6)=0.6×0.4=0.24
甲未击中、乙击中的概率是P (A ·B)=P (A )P (B )=0.24,显然,“甲击中、乙未击中”和“甲未击中、乙击中”是不可能同时发生,即事件A ·
B
与
A
·B 互斥,所以恰有一人击中目标的概率是
P (A ·B )+P (A ·B )=0.24+0.24=0.48
(2)两人各射击一次,至少有一人击中目标的概率P =P (A ·B )+[P (A ·B )+P (A )·B ]=0.36+0.48=0.84
答 至少有一人击中目标的概率是0.84
6 解 (1)因为ξ所在区间上的概率总和
为1,
所以21 (1-a +2-a )·1=1,∴a =2
1概率密度曲线如图
(2)P (1<ξ<2
3)=9
32
3)12
1(2
1=⋅+⋅
3
212
12
1o
y
x。