模电课程设计(音响放大器)
模拟电路综合课程设计音响放大器设计

1、解集成功率放大器内部电路工作原理 2、掌握其外围电路的设计与主要性能参数 测试方法 3、掌握音响放大器的设计方法与电子线路 系统的装调技术
二、设计任务
设计一个音响放大器,要求具有音频放大、 音频信号滤波、音调控制、功率放大,并具有 较大的输出功率。
有3片集成运放模块LM741,1片集成功放模 块LA4102,高阻话筒20kΩ一个,其输出信号 为5mV,电源电压VCC=+6V,-VEE=-6V。
四、总体思路
话筒 话音 放大器
二阶有源 低通滤波
音调 控制器
功率 放大
扬声器
五、实验安排
• 设计讲解,并在实验台上完成主要组成电路实验 • 自学芯片引脚及功能 • 完成芯片及辅助元件的总体布局设计 • 完成话音放大器的焊接和调试 • 完成二阶低通滤波电路的焊接和调试 • 完成音调控制电路的焊接和调试 • 完成功率放大电路的焊接和调试 • 整体调试
三、设计要求
1、基本要求 设计实现一个音响放大器,达到下列主要 技术指标: 输出额定功率:Po不小于0.3W; 频率响应:fl=50Hz,fh=20kHz; 输入阻抗:Ri>>20KΩ; 负载电阻:RL=10Ω。
2、发挥部分 音响放大可实现较好的音调控制,音调 控制特性达到如下指标: 1kHz处增益为0dB, 125hZ和8kHz处
六、考核方式
本课程考核方式如下: 平时 20% 实验 50% 报告 30%
附1、器件清单
话音放大:1/4 LM324,LM741 二阶低通滤波:1/4 LM324,LM741 音调控制:1/4 LM324,LM741 功率放大:LA4102 电阻:10kΩ×5
Байду номын сангаас10kΩ×3 30kΩ
模电课程设计音响放大器(功率放大器)(最全)word资料

沈阳工业大学信息科学与工程学院设计题目:音响放大器专业:小组成员:2021年11月29日第一章方案设计与论证1.基本要求:(1)正弦信号输入电压幅度为5~700mV,等效负载电阻为R L为8Ω条件下,应满足:①额定输出功率P OR ≥10W;②带宽B W ≥50~10 000Hz;③在P OR下和B W内的非线性失真系数≤ 3%;④在P OR下的效率≥ 55%⑤在前置放大级输入端交流短接到地时,R L=8Ω上的交流声功率≤10mW;⑥整体电路的联调与试听。
(2)设计并制作满足本设计任务要求的稳压电源2.设计方案:由于设计要求不是对单一信号频率实施放大,而是对一个输入电压变化幅度大(5—700mV),频带范围宽(50—10000Hz)的频带信号实施功率放大,所以不能只从简单的功率放大上考虑,至少应从以下几方面作较为全面的考虑:1、解决本设计的电路对信号源,尤其是信号幅度小的时候的影响。
2、要求对整个频带内不同频率成分,不同电压幅度信号都要均匀放大。
因此,本设计所要求的功率放大电路,应该是一个既能有效实施隔离,完成电路阻抗匹配;又能在所规定的频带内进行信号均衡放大额定一种实用型电路。
所以将输入信号通过均衡电路处理之后,送入功率放大器,提升到所需的额定输出功率。
依据设计要求,我们可确定音响放大器的基本组成框图如下,电路由话音放大器、电子混响器、前置放大器、音调控制器、功率放大器以及稳压电源组成:话音放大器:话音放大器的作用是不失真地放大音频信号。
电子混响器:电子混响器是用电路模拟声音的多次反射,产生混响效果,使声音听起来具有一定的深度感和空间立体感。
混合前置放大器:混合前置放大器的作用是将音乐信号和电子混响后的声音信号混合放大。
音调控制器:音调控制器主要是控制、调节音响放大器的幅频特性。
功率放大器:功率放大器的作用是给音响放大器的负载RL提供一定的输出功率。
第二章各模块电路原理与仿真1、话音放大器由于话筒的输出信号一般只有5mV左右,而输出阻抗达到20K 亦有低输出阻抗的话筒如(20欧,200欧等),所以话筒放大器的作用是不失真地放大声音信号(最高频率达到10KHz)。
模电课程设计汇本(音响放大器)

《模拟电子技术》课程设计说明书音响放大器院、部:电气与信息工程学院学生:澎指导教师:松华职称副教授专业:电子信息工程班级:电子1201班学号: 12303401362014年6月课题三音响放大器的设计(一)设计目的1、了解集成功率放大器部电路工作原理2、掌握其外围电路的设计与主要性能参数测试方法3、掌握音响放大器的设计方法与电子线路系统的装调技术(二)设计要求和技术指标1、技术指标额定功率P≥0.3W,负载阻抗为10Ω,频率响应围为50Hz-20KHz,输入阻抗大于20KΩ,放大倍数≥20dB。
2、设计要求(1)设计话音放大与混合前置放大器、音调控制级、功率放大级;(2)选定元器件和参数,并设计好电路原理图;(3)在万能板或面包板或PCB板上进行电路安装调测;(4)测试输出功率;(5)测试输出阻抗;(6)撰写设计报告。
(三)设计报告要求1、选定设计方案;2、拟出设计步骤,画出设计电路,分析并计算主要元件参数值;调试总结3、列出设计电路测试数据表格;4、进行设计总结和分析,并写出设计报告。
(四)设计总结与思考1、总结话音放大器的设计和测试方法;2、总结设计话音放大器器所用的知识点;目录第1章绪论 (1)1.1 音响的意义 (1)1.2 音响的技术指标 (1)1.2.1 频率响应 (1)1.2.2 信噪比 (1)1.2.3 动态围 (2)1.2.4 失真 (2)1.2.5 立体声分离度 (2)1.2.6 立体声平衡度 (3)第2章音响放大器电路设计 (4)2.1 音响放大器的基本原理 (4)2.2 前置放大电路(A1) (5)2.3 音调控制电路(A2) (5)2.3.1 低音提升 (6)2.3.2 高音提升 (6)2.3.3 高音衰减 (7)2.3.4 低音衰减 (7)2.3.5 反馈型音调控制电路 (7)2.3.6 信号在低频区 (8)2.3.7 信号在高频区 (8)2.4 功率放大级 (10)2.4.1 TDA2030A介绍 (10)2.4.2 功率放大电路说明 (11)第3章用multisim仿真音响放大器电路 (12)第4章组装与调试 (13)4.1电路元件组装 (13)4.2作品调试 (13)结束语 (14)参考文献 (15)附录A 实物图 (16)附录B 元件清单 (17)第1章绪论1.1 音响的意义音响技术的发展经历了电子管、晶体管、场效应管的历史时期,在不同的历史时期都各有其特点。
音响系统放大器设计模拟电子技术课程设计

一、 设计题目音响系统放大器设计二、 主要内容及要求设计一个音响系统放大器。
具体要求如下: ⑴ 负载阻抗 Ω=4L R ; ⑵ 额定功率 W P O 10=;⑶ 带宽 BW ≥kHz Hz 15~50; ⑷ 失真度 %1<γ;⑸ 音调控制 低音(100Hz )±12dB;高音(10kHz )±12dB; ⑹ 频率均衡特性符合RIAA 标准;⑺ 输入灵敏度 话筒输入端≤5mV;调谐器输入端≤100mV; ⑻ 输入阻抗 R i ≥500k Ω; ⑼ 整机效率 η≥50%;三、 进度安排1.老师给出选题内容,课程设计的相关要求,指导时间及任务完成期限。
2. 复习模拟电子技术基础的内容,扎实基础。
3.去图书馆和网上查找相关资料,并且构思整个设计思路。
4.选择适当的芯片组合电路,设计各个部分的电路图,并用仿真软件设计,改善电路图。
5.根据电路的原理写出设计方案。
6.设计方案的检查,修正,改进,按要求打印方案。
四、 总评成绩指导教师学生签名音响系统放大器设计一、设计任务与要求1.一般说明:音响系统中的放大器决定了整个音响系统放音的音质、信噪比、频率响应以及音响输出功率的大小。
高级音响中的放大器通常分为前置放大器和功率放大及电源等两大部分。
前置放大器又可分为信号前置放大器和主控前置放大器。
信号前置放大器的作用是均衡输入信号并改善其信噪比;主控前置放大器的功能是放大信号、控制并美化音质;功率放大器及电源部分的主要功能是提供整机电源及对前置放大器来的信号作功率放大以推动扬声器。
2.音响系统放大器。
具体要求如下:⑴ 负载阻抗 Ω=4L R ; ⑵ 额定功率 W P O 10=;⑶ 带宽 BW ≥kHz Hz 15~50; ⑷ 失真度 %1<γ;⑸ 音调控制 低音(100Hz )±12dB; 高音(10kHz )±12dB; ⑹ 频率均衡特性符合RIAA 标准; ⑺ 输入灵敏度 话筒输入端≤5mV;调谐器输入端≤100mV; ⑻ 输入阻抗 R i ≥500k Ω; ⑼ 整机效率 η≥50%;二、方案设计与论证本设计由语音放大器、电子混响器、混合前置放大器、音调控制器及功率放大器五部分组成。
模电课程设计——音响放大器(前置放大)

模电课程设计仿真与测试报告音响放大器姓名:尹文敬学号:2009221105200061一 设计要求(简单音频通带放大电路)(输入语音信号-麦克风) 功放电路原则上不使用功放集成电路。
技术要求:(1)前置放大、功放:输入灵敏度不大于10mV,f L ≤500Hz,f H ≥20kHz ; (2)有音量控制功能;(3)额定输出功率P O ≥5W(测试频率:1kHz); (4)负载:扬声器(8Ω、5W)。
主要测量内容:最大输出功率,输出电阻,输入灵敏度,f L ,f H 。
二 设计思路1.由于要求不能使用功放集成电路,初步思路是采用三级分立元件实现。
输入可用差分放大电路,用高放大倍数三极管增大放大倍数,中间级采用共射放大增大倍数,输出采用消除交越失真的互补输出,同时作为功放电路,可用复合管。
2.利用分立元件可以设计两种基本电路:(a )采用直接耦合,此方案具有 工程实用价值,且电路简单。
但是由于需要三级放大,前后级之间都会有影响,只要有一处参数不合理,其它级也会受到影响,因此该电路难以设计,更难调试。
(b )采用阻容耦合电路,即利用电容的隔直流的特性将电路的三级分隔开来。
此方案中需要较多电容,会影响电路的频率通带。
但是这样做前后级之间的影响会减小很多,便于我们利用所学模拟电路知识计算各个元件的参数。
考虑到所学知识有限,故采用(b )方案。
3.音量控制利用滑动变阻器。
三 设计步骤 一.差分电路1. 第一级作为输入放大,不需要太大的放大倍数,一般只需要几十变能达到要求。
射级电流 : 0.7e ReVcc I -= I RE =2I EQ射级接-18V 而基级电流不能过大 集电极电流一般1mA 左右取1.5Ma5.6k =1.5k E C R ∴=得集电极电阻R第一级电路的仿真情况二 .中间共射放大级1.共射放大级静态工作点的确定:采用电阻分压:电源电压分别为+18V 和-18V554be R U U R R =+电源 Ube-0.7Ie Re =6e e e C e I I I ∴ 的大小基本由R 来确定,同时和相当。
模拟电路课程设计音响放大器

模拟电路课程设计报告设计课题:音响放大器设计专业班级:电子信息工程学生姓名:学号:指导教师:设计时间:音响放大器一、设计任务与要求(标题均为小三号,宋体)1.设计要求1)了解集成功率放大器内部电路工作原理,掌握外围电路的设计与主要参数的测试方法。
2)掌握音响放大器的设计方法。
3)能够使用电路仿真软件进行部分电路调试。
2.设计指标(包括原始数据、技术参数、条件、设计要求等):1)设计一音响放大器,要求具有音调输出控制,对话筒的输入信号进行扩音。
2)以集成功放和运放为核心进行设计 3)指标:已知:VCC=+9V ,话筒模拟输入电压为5mV ,负载RL=8欧姆 频率范围:40Hz~10KHz音调控制特性:1KHz 处为0分贝,100Hz~10KHz 处有上下12分贝的调节范围。
增益:大于20分贝。
额定输出功率:大于等于1W 3.设计过程根据技术指标要求,音响放大器的输入为5mV 时,输出功率大于1W ,则输出电压Vo>=2.8V 。
总电压增益Av Σ=Vo/Vi>560倍(55dB)。
图一 各级增益分配图二、方案设计与论证(首段,对设计要求的总体分析)2.1功率放大器设计话放级混放级音调级18.5dB9.5dB–2dB29.5dBA V =612倍功放级图二 LM386低电压通用型集成功率放大器功放级的电压增益 R11=20K2.2 功率放大器设计如果出现高频自激(输出波形上叠加有毛刺),可以在1脚与8脚之间加0.15 F 的电容,或减小CD 的值。
2.3 音调控制器(含音量控制)设计已知fLx=100Hz ,fHx=10kHz ,x=12dB 。
33F 114V =≈R R Av R 3147k ΩR 32 47k Ω R P 31 470k Ω470k Ω4o由式(3-7-16)、(3-7-17)得到转折频率fL2及fH1; fL2 = fLx *2x/6=400Hz ,则fL1 = fL2/10=40Hz ; fH1 = fHx /2x/6=2.5kHz , 则fH2= 10fH1=25kHz 。
毕业设计149湖南工学院模拟电子音响放大器课程设计

方案三:采用直接给定的音频信号外加音响放大器
采用直接所定的音频信号,是由 MP3 现代音频信号设备,直接给音响放大器。此电路简 单,其优点是:在音频信号具有直接给定的音频频率,在频率方面没有失真效果,而且具有 混响器的效果。本次设计采用这种方案主要是因为:它的设计简单可靠,软硬可相互补充各 自的缺点。同时音响效果也比较好。音响放大电路设计由三部分组成:混合前置放大模块,音 调输出控制模块,功率放大模块。混合前置放大模块作用是将磁带放音机输出的音乐信号混 合放大。音调输出控制模块作用是主要是控制、调节音响放大器的幅频特性。功率放大模块
图 2.2 电子混响器组成框图
-5-
音响放大器设计
图 2.3 电子混响器实验电路
4.混合前置放大器
混合前置放大器的作用是将磁带放音机输出的音乐信号与电子混响后的声音信号混合放 大,这是一个反相加法器电路,输出与输入电压的关系为 V0=-(Rf/R1*V1+Rf/R2*V2) 式中,V1 为话筒放大器输出电压;V2 为放音机输出电压。 音响放大器的性能主要由音调控制器与功率放大器决定,下面详细介绍这两级电路工作原 理及其设计方法。
4. 主要技术指标
额定功率: Po≥0.3W(g <3%); 负载阻抗:R L =10Ω ; 截止频率:fL=50Hz,fH=20kHz; 放大倍数:AVL=AVH≥20dB; 输入阻抗: Ri>>20KΩ 。
5. 仪器设备
低频信号发生器 EE1641B 失真度测量仪 晶体管毫伏表 DA-16 数字万用表 UT2003 双踪示波器 COS5020 或 TDS210 实验万能板 直流稳压电源(双路输出) 元器件及工具 1台 1台 1台 1只 1台 1块 1台 1盒
-2-
【精品】模电课程设计音响放大器的设计

【精品】模电课程设计音响放大器的设计一、框架(1)任务:设计一台具有50W功率音响放大器,要求声音清晰,具有良好的保护功能,支持3.5mm音频输入。
(2)实施:选用模拟式和数字式电路,设计和组装电路,调试音响放大器,完成实物演示。
二、设计1. 原理设计(1)电源部分采用折磨精度的运放作为电源的主要电路:运放采用LMi3320芯片,它能将外部直流电压转换成小压差(±25V)。
并且芯片内置保护功能,能以较宽的电流范围将输出电压维持在±25V,运放芯片在运行时可以根据音乐音量的增大减小时电流的输出,更好的驱动音响喇叭。
(2)信号处理部分本设计的信号处理部分采用模拟和数字相结合的方式处理音频信号:对于音频输入部分,采用高性能的功放放大器,它能够将输入的小信号充满的放大,使得各种音频设备输出的信号能被正确的携带进入放大器内部;信号经过后处理,将信号标准化并转化为数字信号,用于后面数字放大部分;最后,将数字信号转为模拟信号,并且通过功率放大器,最终将信号放大,推动音响驱动器实现有效播放。
(3)元器件及材料LMi3320运放,op07运放,NE5532运放,STM32单片机,电容,0.2mm铜厚的喷锡板,330ω电阻,220uF电容。
2. 电路设计音响放大器设计主要分为三部分:电源模块,信号处理模块和功率模块。
电源模块的主要功能是将外部的直流电压转换成±25V的电压,然后再交由信号处理模块和功率模块经行处理。
电源模块以固定的LMi3320运放实现,它可以将外部传入直流电压得到平衡的±25V的输出。
(3)功率模块该模块将从信号处理模块得到的模拟信号放大至±25V,然后再将其在实现50W功率的情况下,转入驱动器输出至音响放大器。
三、调试完成电路的设计后,进行音响放大器的调试,首先拆下电路,进行检查,确保电路结构完整,各种元器件牢固;接着根据说明书尝试与3.5mm入口相连,使得放大器可以接受外部传入的音频信号;然后,接入电源,开启开关,对放大器的功能和特性做出校准;最后,用音乐源测试放大器的效果,确保声音清晰完整,功能是否符合要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《模拟电子技术》课程设计说明书音响放大器院、部:电气与信息工程学院学生:澎指导教师:松华职称副教授专业:电子信息工程班级:电子1201班学号:**********2014年6月课题三音响放大器的设计(一)设计目的1、了解集成功率放大器部电路工作原理2、掌握其外围电路的设计与主要性能参数测试方法3、掌握音响放大器的设计方法与电子线路系统的装调技术(二)设计要求和技术指标1、技术指标额定功率P≥0.3W,负载阻抗为10Ω,频率响应围为50Hz-20KHz,输入阻抗大于20KΩ,放大倍数≥20dB。
2、设计要求(1)设计话音放大与混合前置放大器、音调控制级、功率放大级;(2)选定元器件和参数,并设计好电路原理图;(3)在万能板或面包板或PCB板上进行电路安装调测;(4)测试输出功率;(5)测试输出阻抗;(6)撰写设计报告。
(三)设计报告要求1、选定设计方案;2、拟出设计步骤,画出设计电路,分析并计算主要元件参数值;调试总结3、列出设计电路测试数据表格;4、进行设计总结和分析,并写出设计报告。
(四)设计总结与思考1、总结话音放大器的设计和测试方法;2、总结设计话音放大器器所用的知识点;目录第1章绪论 (1)1.1 音响的意义 (1)1.2 音响的技术指标 (1)1.2.1 频率响应 (1)1.2.2 信噪比 (1)1.2.3 动态围 (2)1.2.4 失真 (2)1.2.5 立体声分离度 (2)1.2.6 立体声平衡度 (3)第2章音响放大器电路设计 (4)2.1 音响放大器的基本原理 (4)2.2 前置放大电路(A1) (5)2.3 音调控制电路(A2) (5)2.3.1 低音提升 (6)2.3.2 高音提升 (6)2.3.3 高音衰减 (7)2.3.4 低音衰减 (7)2.3.5 反馈型音调控制电路 (7)2.3.6 信号在低频区 (8)2.3.7 信号在高频区 (8)2.4 功率放大级 (10)2.4.1 TDA2030A介绍 (10)2.4.2 功率放大电路说明 (11)第3章用multisim仿真音响放大器电路 (12)第4章组装与调试 (13)4.1电路元件组装 (13)4.2作品调试 (13)结束语 (14)参考文献 (15)附录A 实物图 (16)附录B 元件清单 (17)第1章绪论1.1 音响的意义音响技术的发展经历了电子管、晶体管、场效应管的历史时期,在不同的历史时期都各有其特点。
通过音响放大器设计,使我们认识到一个简单的模拟电路系统,应当包括信号源、输入级、中间级、输出级和执行机构。
信号源的作用是提供待放大的电信号,如果信号是非电量,还须把非电量转换为电信号,然后进入输入级,中间级进行电流或电压放大,再进入输出级进行功率放大,最后去推动执行机构做某项工作。
放大器电路发展更是迅速,已成为新一代音响不可缺少的核心部件,其现实生活中的运用也是非常普遍和广泛。
1.2 音响的技术指标音响系统整体技术指标性能的优劣,取决于每一个单元自身性能的好坏,如果系统中的每一个单元的技术指标都较高,那么系统整体的技术指标则很好。
其技术指标主要有六项:频率响应、信噪比、动态围、失真度、瞬态响应、立体声分离度、立体声平衡度。
1.2.1 频率响应所谓频率响应是指音响设备重放时的频率围以及声波的幅度随频率的变化关系。
一般检测此项指标以1000Hz的频率幅度为参考,并用对数以分贝(dB)为单位表示频率的幅度。
1.2.2 信噪比所谓信噪比是指音响系统对音源软件的重放声与整个系统产生的新的噪声的比值,其噪声主要有热噪声、交流噪声、机械噪声等等。
一般检测此项指标以重放信号的额定输出功率与无信号输入时系统噪声输出功率的对数比值分贝(dB)来表示。
一般音响系统的信噪比需在85dB以上。
1.2.3 动态围动态围是指音响系统重放时最大不失真输出功率与静态时系统噪声输出功率之比的对数值,单位为分贝(dB)。
一般性能较好的音响系统的动态围在100(dB)以上。
1.2.4 失真失真是指音响系统对音源信号进行重放后,使原音源信号的某些部分(波形、频率等等)发生了变化。
音响系统的失真主要有以下几种。
1 谐波失真所谓谐波失真是指音响系统重放后的声音比原有信号源多出许多额外的谐波成分。
此额外的谐波成分信号是信号源频率的倍频或分频,它是由负反馈网络或放大器的非线性特性引起的。
高保真音响系统的谐波失真应小于1%。
2 互调失真互调失真也是一种非线性失真,它是两个以上的频率分量按一定比例混合,各个频率信号之间互相调制,通过放音设备后产生新增加的非线性信号,该信号包括各个信号之间的和及差的信号。
3 瞬态失真瞬态失真又称瞬态响应,它的产生主要是当较大的瞬态信号突然加到放大器时由于放大器的反映较慢,从而使信号产生失真。
一般以输入方波信号通过放音设备后,观察放大器输出信号的包络波形是否输入的方波波形相似来表达放大器对瞬态信号的跟随能力。
1.2.5 立体声分离度立体声分离度表示立体声音响系统中左、右两个声道之间的隔离度,它实际上反映了左、右两个声道相互串扰的程度。
如果两个声道之间串扰较大,那么重放声音的立体感将减弱。
1.2.6 立体声平衡度立体声平衡度表示立体放音系统中左、右声道增益的差别,如果不平衡度过大,重放的立体声的声像定位将产生偏移。
一般高品质音响系统的立体声平衡度应小于1dB。
第2章 音响放大器电路设计2.1 音响放大器的基本原理音响放大器的作用是对于微弱信号进行电压放大和功率放大,推动负载工作,同时需要对音调和音量的调节。
音频信号的输入,由话音放大电路放大输出到音调调节电路,在由功率放大电路放大,输到扬声器。
图 2-1 音响放大器的工作流程音响放大电路的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。
图 2-2 音响放大器的整机电路音频输入语音放大音调调节扬声器功率放大2.2 前置放大电路(A1)由A1组成的前置放大电路是一个同相输入比例放大器,电路的闭环特性如下:理想闭环电压增益: (2-1)输入电阻1ifR r= (2-2)输出电阻0r of=(2-3)图 2-3 前置放大电路扩音机电路的增益是很高的,所以扩音机的噪声主要取决于前置放大器的性能。
为了减小前置级放大器的噪声,第一级要选用低噪声的运放。
2.3 音调控制电路(A2)常用的音调控制电路有三种形式,一是衰减式RC 音调控制电路,其调节围宽,但容易产生失真;另一种是反馈型音调控制电路,其调节围小一些,但失真小;第三种是混合式音调控制电路,其电路复杂,多用于高级收录机。
为使电路简单而失真又小,本音调集成功率电路中采用了由阻容网络组成的RC 型负反馈音调控制电路。
它是通过不同的负反馈网络和输入网络造成放大器闭环放大倍数随信号频率不同而改变,从而达到音调控制的目的。
下图是这种音调控制电路的方框图,它实际上是一种电压并联型负反馈电路,图中Z f 代表反馈回路总阻抗;Z i 代表输入回路的总阻抗。
电路的电压增益(2-4) 21R RA uf + = 3 iZ Z A uf - = f U U o i图 2-4 音调控制电路只要合适选择并调节输入回路和反馈回路的阻容网络,就能使放大器的闭环增益随信号频率改变,从而达到音调控制的目的。
组成Z i 和Z p 的RC 网络通常有下图所示四种形式。
2.3.1 低音提升图2-5中若C1取值较大,只有在频率很低时才起作用,则当信号频率在低频区随频率降低, 增大,所以 提高,从而得到低音提升。
图(a)图 2-5 低音提升电路2.3.2 高音提升图2-6中,若C3取值较小只有高频区起作用,则当信号在高频区且随频率升高 减小,所以 提高,从而可得到高音提升。
图 2-6 高音提升电路Zi ZiR Auf 2=Zf 1R ZfAuf =2.3.3 高音衰减图2-7 高音衰减电路图2-8 低音衰减电路2.3.4 低音衰减同理可以分析图2-7、图2-8,分别可用作高、低音衰减。
2.3.5 反馈型音调控制电路如果将这四种电路形式组合起来,即可得到下图所示的反馈型音调控制电路。
先假设R1=R2=R3=R;C1=C2>>C3;RW1=RW2≈9R。
图2-9 反馈型音调控制电路2.3.6 信号在低频区在低频区,因为C3很小,所以C3、R4支路可视为开路,反馈网络主要由上半部分电路起作用。
又因运放的开环增益很高,U ´E ≈UE ≈0(虚地),故R3的影响可忽略,当电位器RP2的活动端移至A 点时,C1被短路。
可以得到低音最大提升量。
按实际电路参数R1=R2=R3=20k Ω,RP1=RP2=220k Ω,C1=C2=0.022uF ,可得: (2-5)(约18.6dB)转折频率:(2-6)以同样方式可以说明在RP2滑动到B 点时,低音地最大衰减量:(2-7)按实际电路参数可得:(2-8)(约-18.6dB)转折频率:(2-9) (2-10) 2.3.7 信号在高频区122R W R A UA +=5.8≈UA A 1221482L Zf H RP C π==2222224102L ZR RP f H R RP C π+==212UB R A R RP =+118.0≈Ub A 1148Z L L f f H '==22410Z L L f f H '==图 2-10 高频音调控制线路(Y 型) 图 2-11 高频音调控制线路(△型)设前级输出电阻很小(如小于500Ω),输出电压Uo 通过Rc 反馈到输入端的信号被前级输出电阻所旁路,故Rc 的影响可忽略(视为开路)。
因此当RP2滑动到C 点或D 点时,可分别画出如下图2-12和图2-13所示的等效电路(因RP2的数值很大,为简单起见,可视为开路)。
图 2-12 等效高频音调控制线路(C 点) 图 2-13 等效高频音调控制线路(D 点)上图2-12显然具有高音提升作用,其最大提升量:(2-11)按电路实际参数R=20k Ω,R4=8.2k Ω,C3=1000P ,所以:3.8≈Auc (约18dB) 上图2-13为高音衰减电路,其衰减量:(2-12) 按电路实际参数:12.0d ≈Au (约-18dB)高频转折频率: (2-13)(2-14)若将音调控制电路高低音提升和衰减曲线画在一起,可得到如下图所示幅频特性曲线。
4443//R R R R R R A a b UC +==RR R R R R A a b UD 3//444+==13411 2.32()H a f KHz C R R π=⨯=+23411192H f KHz C R π=⨯=20logA18图2-14 音调控制器的幅频特性曲线由图2-14可见,音调控制级的中频电压放大倍数Aum=1;当f<fL1 (48Hz)时低音控制围为±18dB,当f>fH2 (19KHz)时高音控制围也为±18dB。