浅谈常微分方程的数值解法及其应用[文献综述]

合集下载

浅谈常微分方程的数值解法及其应用[含论文、综述、开题-可编辑]

浅谈常微分方程的数值解法及其应用[含论文、综述、开题-可编辑]
方程
, (1)
为常微分方程。其中出现的最高阶导数的阶数,叫做常微分方程的阶。例如 , ,是一阶常微分方程。 是二阶常微分方程。设 定义于区间 上,有直到 阶的导数,将它代入(1),使(1)变成关于 的恒等式,即

就称 = 为(1)的一个定义于 上的解,并称 为该解的定义区间。[5]
2.2
在自然科学和经济的许多领域中。常常会遇到一阶常微分方程的初值问题
3 常微分方程的数值
3.1 常微分方程求解的数学思想
从常微分发展历程可以看出,化归是常微分方程的重要数学思想方法,常数变易法、代换法、级数解法、逐次逼近法、算子法、相平面分析法等,都是用联系、变化的观点,有意识地将问题化繁为简,化归解决的。非齐次方程问题化为齐次方程问题,一阶线性方程组化为一阶线性方程问题, 高阶方程问题化为低阶方程问题,在常微分方程发展的各个阶段包含着这种化归范例。
常微分方程发展的初期是对具体的常微分方程希望能用初等函数或超越函数表示其解,属于“求通解”时代。莱布尼茨成专门研究利用变量变换解决一阶微分方程的求解问题,而欧拉则试图用积分因子统一处理,伯努利、里卡蒂微分方程就是在研究初等积分时提出后人以他们的名字命名的方程。[8]
早期的常微分方程的求解热潮被刘维尔在1841年证明里卡蒂方程不存在一般的初等解而中断。加上柯西初值问题的提出,常微分方程从“求通解”,转向“求定解”时代。同时,由于天文计算的需要促进了常微分方程摄动理论以及小参数幂级数等近似方法的研究。[8]
, ,其中 (1)
值 称为步长。然后近似解
在 上, (2)
设 , 和 连续,利用泰勒定理将 在 处展开,对每个值 ,存 在一个 和 之间的值 ,使得
, (3)
将 和 代人等式(3),得到 的表示:

数值分析第九章常微分方程数值解法

数值分析第九章常微分方程数值解法
高斯-赛德尔迭代法
松弛法
通过迭代更新函数值并逐步放松约束 条件来逼近解,适用于刚性和非刚性 问题。
利用线性组合迭代函数值来逼近解, 具有更高的收敛速度和稳定性。
03
数值解法的稳定性分析
数值解法的稳定性定义
数值解法的稳定性是指当微分方程的初值有微小的扰动时, 其数值解的近似值的变化情况。如果数值解在微小扰动下变 化较小,则称该数值方法是稳定的。
更高的精度和稳定性。
数值逼近法
泰勒级数法
将微分方程的解展开为泰勒级数,通过截断级数来逼 近解。
多项式逼近法
利用多项式来逼近微分方程的解,通过选取合适的基 函数和系数来提高逼近精度。
样条插值法
利用样条函数来逼近微分方程的解,具有更好的光滑 性和连续性。
迭代法
雅可比迭代法
通过迭代更新函数值来逼近微分方程 的解,具有简单易行的优点。
初值和边界条件的处理
根据实际问题,合理设定初值和边界 条件,以获得更准确的数值解。
收敛性和误差分析
对数值解进行收敛性和误差分析,评 估解的精度和稳定性。
数值解法的应用案例分析
人口增长模型
通过数值解法求解人口增长模型,预测未来人口数量,为政策制 定提供依据。
化学反应动力学
利用数值解法研究化学反应的动力学过程,模拟反应过程和结果。
数值分析第九章常微分方 程数值解法
• 引言 • 常微分方程数值解法的基本思想 • 数值解法的稳定性分析 • 数值解法的收敛性和误差分析 • 数值解法的实现和应用案例
01
引言
常微分方程的应用背景
自然科学
描述物理、化学、生物等自然 现象的变化规律。
工程领域
控制系统设计、航天器轨道计 算等。

浅谈常微分方程初值问题数值解法

浅谈常微分方程初值问题数值解法

浅谈常微分方程初值问题数值解法在自然科学、工程技术、甚至社会科学的一些领域中,常常会遇见一阶常微分方程的求解问题:()上述问题,寻求解的具体表达式十分困难,仅对一些特殊形式的才有可能找到解的解析表达式,在大多情况下,初值问题的解不能用初等函数表示出来即使可写出解的解析表达式,但因为这些表达式过于复杂,要计算它在某些点上的函数值也异常困难。

在实际问题中,经常需要的恰是解在某些点上的函数值,因此研究初值问题的数值解法十分必要。

1 常微分方程初值问题的数值解法常微分方程的近似解法大体可分成三大类:一类是图解法和器械法;第二类是解的近似法;第三类是数值解法,即通过离散化的方法直接求出函数在某些点上的近似值,此数值解仅为精确解的近似解。

其基本原理为:一阶常微分方程的初值问题的解是上变量的连续函数,因此求上述问题的数值解,就是在区间上的若干离散点上用离散化的方法将初值问题化成离散变量的相应问题,从而相应问题的解可作为初值问题理论解的近似值。

由常微分方程的理论可知,只要在区域内连续,且关于满足林普希兹条件,则方程的解存在且唯一。

初值问题的数值解法通常采取“步进法”,而“步进法”又可分为“单步法”和“多步法”两类。

(1)单步法。

所谓“单步法”是指在计算时,只用到前一步的有关信息。

其一般形式为:,主要包括下面三种方法:Euler方法,改进的Euler公式-梯形公式和Runge-Kutta法。

(2)线性多步法。

单步法没有用到前几步计算得到的信息,因此为了提高精度,需重新计算多个点处的函数数值,如RK方法,故计算量较大。

线性多步法的基本思想是充分利用前面的已知信息来构造精度高且计算量小的算法来计算。

多步法常用方法是线性多步法,求解公式为:构造的常用方法是Taylor展开和数值积分方法。

常用的线性多步公式有:四阶Adams显式公式:四阶Adams隐式公式:四阶Milne显式公式:三阶Hamming公式:(隐式公式)预测校正系统和预测校正修正法:一般地,同阶的隐式法比显式法精确,而且数值稳定性好,但隐式公式中的求解较难,需要用到迭代法,这就增加了计算量。

常微分方程的数值解法及其应用研究

常微分方程的数值解法及其应用研究

常微分方程的数值解法及其应用研究引言:常微分方程是数学中的重要分支,广泛应用于自然科学、工程技术和社会经济等领域。

常微分方程的解析解往往难以获得,因此数值解法的研究成为解决实际问题的有效手段。

本文将介绍常微分方程的数值解法以及其在各个领域的应用。

一、常微分方程的数值解法1. 欧拉方法欧拉方法是最基本的数值解法之一,通过将微分方程中的函数进行逐步的线性近似,得到方程的递推关系,并根据该关系逼近解析解。

欧拉方法具有简单、易于实现的优点,但在稳定性和精度方面存在一定的局限性。

2. 改进的欧拉方法改进的欧拉方法通过使用中点梯形公式,对欧拉方法的误差进行修正,提高了数值解的准确性。

改进的欧拉方法在简单性和准确性方面取得了一定的平衡。

3. 4阶龙格-库塔法4阶龙格-库塔法是一类常用的数值解法,通过计算多个近似解,并按照一定的权重进行加权平均,得到更高精度的数值解。

4阶龙格-库塔法具有高精度和较好的稳定性,被广泛应用于各个领域。

4. 多步法多步法是一类基于历史步长的数值解法,利用之前计算的步长来估计下一个步长的近似值。

常见的多步法包括亚当斯方法和预报校正方法等。

多步法在一定程度上提高了数值解的稳定性和准确性。

5. 常微分方程的辛方法辛方法是一类特殊的数值解法,能够保持微分方程的守恒性质。

辛方法在长时间积分和保持能量守恒方面具有优势,被广泛应用于天体力学和分子动力学等领域。

二、常微分方程数值解法的应用1. 物理科学中的应用常微分方程的数值解法在物理学中有广泛的应用,如天体力学中的行星轨道计算、量子力学中的薛定谔方程求解等。

数值解法处理了复杂的物理现象,为物理学研究提供了可行的途径。

2. 工程技术中的应用常微分方程的数值解法在工程技术中被广泛应用,如电路分析、结构力学、流体力学等。

通过数值解法,可以模拟和分析复杂的工程问题,提供设计和优化方案。

3. 经济学中的应用经济学中的许多问题可以转化为常微分方程的形式,如经济增长模型、市场供需关系等。

常微分方程的数值解算法

常微分方程的数值解算法

常微分方程的数值解算法常微分方程的数值解算法是一种对常微分方程进行数值计算的方法,这可以帮助我们更好地理解和研究自然现象和工程问题。

在本文中,我们将介绍一些常用的数值解算法,探讨它们的优缺点和适用范围。

常微分方程(ODE)是描述自然现象和工程问题的重要数学工具。

然而,对于许多ODE解析解是无法求出的,因此我们需要通过数值方法对其进行求解。

常微分方程可以写作:y' = f(t, y)其中,y是函数,f是给定的函数,表示y随t的变化率。

这个方程可以写成初始值问题(IVP)的形式:y'(t) = f(t,y(t)),y(t0) = y0其中,y(t0)=y0是方程的初始条件。

解决IVP问题的典型方法是数值方法。

欧拉方法欧拉方法是最简单的一阶数值方法。

在欧拉方法中,我们从初始条件开始,并在t = t0到t = tn的时间内,用以下公式逐步递推求解:y n+1 = y n + hf (t n, y n)其中,f(t n,y n)是点(t n,y n)处的导数, h = tn - tn-1是时间间隔。

欧拉方法的优点是简单易懂,容易实现。

然而,它的缺点是在整个时间段上的精度不一致。

程度取决于使用的时间间隔。

改进的欧拉方法如果我们使用欧拉方法中每个时间段的中间点而不是起始点来估计下一个时间点,精度就会有所提高。

这个方法叫做改进的欧拉方法(或Heun方法)。

公式为:y n+1 = y n + h½[f(t n, y n)+f(tn+1, yn + h f (tn, yn))]这是一个二阶方法,精度比欧拉方法高,但计算量也大一些。

对于易受噪声干扰的问题,改进的欧拉方法是个很好的选择。

Runge-Kutta方法Runge-Kutta方法是ODE计算的最常用的二阶和高阶数值方法之一。

这个方法对定义域内的每个点都计算一个导数。

显式四阶Runge-Kutta方法(RK4)是最常用的Runge-Kutta方法之一,并已得到大量实践的验证。

最新常微分方程数值解法及其应用

最新常微分方程数值解法及其应用

常微分方程数值解法及其应用常微分方程数值解法及其应用——浙江师范大学数理信息工程学院【摘要】:本文对常微分方程初值问题现有的数值解法进行了综述研究。

主要讨论了几种常用的数值解法:即欧拉法,改进欧拉法,龙格库塔方法,阿达姆斯外插公式与内插公式等。

文章最后结合常见数值解法,对较为典型的微分方程模型进行数值求解,探讨了上述数值算法在实际建模问题中的应用。

【关键词】:常微分方程;数值解法;模型引言在工程技术问题中,经常需要求解常微分方程的初值问题«Skip Record If...»(1)而关于常微分方程各种各样的解析方法,只能求解一些特殊类型的方程。

在大多数情况下,对初值问题(1),只能用数值法求解。

数值解法的基本思想是求初值问题(1)的解«Skip Record If...»在一系列等距节点:«Skip Record If...»处的近似值:«Skip Record If...»。

其中相邻两个节点间的距离«Skip Record If...»称为步长,即节点«Skip Record If...»。

一、单步法单步法是指这类方法在计算«Skip Record If...»时,只用到前一步的值«Skip Record If...»,然后逐步往下计算。

这个算法的代表是龙格——库塔算法,简称R-K方法。

四阶显示Runge—Kutta方法是求解普通常微分方程初值问题数值解法中的重要方法,而隐式Runge—Kutta公式是求解刚性常微分方程初值问题的重要方法。

(一)Euler方法由微分由微分方程的基本概念可知,初值问题(1)的解是在«Skip Record If...»平面上的一条过点«Skip Record If...»的积分曲线«Skip Record If...»,在该曲线上任一点«Skip Record If...»处的切线斜率等于函数«Skip Record If...»的值。

《常微分方程的数值解法》论文

《常微分方程的数值解法》论文

《常微分方程的数值解法》论文《常微分方程的数值解法》常微分方程(ODE)是研究物理过程的重要工具,其伴随着极大的应用价值。

当一个物理系统被简化为一个常微分方程,它就可以用于描述物理学中的各种现象。

但是,大多数现实系统的常微分方程未能得到解析解,因此,数值解法就变得非常重要。

本文将研究并比较几种常见的常微分方程数值解法,诸如Euler法、奇异点法、Runge-Kutta法、前向差分法等,以便更好地提供协助解决常微分方程。

首先,Euler法是常用的数值解法之一,它主要用于解决常微分方程模型。

其核心思想是将微分方程通过采用不断变化的步长对状态量求近似值,并通过预测下一步的值来求解微分方程,从而达到求解常微分方程的目的,且操作简单、容易理解。

但是,由于其步长的不动性,往往使得其精度较低,因此,当遇到复杂环境时,Euler法的表现就有些不尽如人意。

此外,另一种常见的数值解法是奇异点法。

此法将一个微分方程情况分解成多个分段函数,每一段函数都可以精确求解,从而可以求解复杂的微分方程。

它的特点是分段的每一部分的精度和复杂度都较低,而且运行效率也较快,但是,奇异点法的精度需要在段间合理设定,然后再进行微调,以保证数值模拟的准确性。

其次,Runge-Kutta法是一种常用的数值解法,它可以有效地求解一些常微分方程,其原理是利用积分函数插值,然后利用积分函数求近似值,最后根据边界条件求取解析结果。

Runge-Kutta法的步长可以随着计算过程的进行而逐步变化,这样可以使得误差得到有效控制,而且可以有效地控制误差,保证算法精度,但是由于其计算效率较低,因此在求解复杂的常微分方程时,Runge-Kutta法的表现并不尽人意。

最后,前向差分法是一种求解常微分方程的数值解法,它利用求取未知函数的一阶导数和二阶导数的值,然后通过求解一次和二次中点差分的方式,从而得到数值解。

它的有点是能够得到较高的精确度,且即使步长变化时也可以控制误差,但前向差分法要求在微分方程中必须有高阶导数,这就要求微分方程是复杂的,除此之外,除了必须计算高次导数外,它的计算量也比较大。

常微分方程的数值解法与实际应用研究

常微分方程的数值解法与实际应用研究

常微分方程的数值解法与实际应用研究引言:常微分方程是数学中一种重要的数学工具,广泛应用于物理、经济、生物等领域的实际问题的数学建模。

在解析求解常微分方程存在困难或不可行的情况下,数值解法提供了一种有效的求解方法,并被广泛应用于实际问题的研究中。

本文将介绍常微分方程的数值解法以及一些实际应用的研究案例。

一、常微分方程的数值解法:1. 欧拉法:欧拉法是一种基础的数值解法,通过将微分方程离散化,近似得到方程的数值解。

欧拉法的基本思想是根据微分方程的导数信息进行近似计算,通过逐步迭代来逼近真实解。

但是欧拉法存在截断误差较大、收敛性较慢等问题。

2. 改进的欧拉法(改进欧拉法推导过程略):为了解决欧拉法的问题,改进的欧拉法引入了更多的导数信息,改善了截断误差,并提高了算法的收敛速度。

改进欧拉法是一种相对简单而可靠的数值解法。

3. 四阶龙格-库塔法:四阶龙格-库塔法是常微分方程数值解法中最常用和最经典的一种方法。

通过多次迭代,四阶龙格-库塔法可以获得非常精确的数值解,具有较高的精度和稳定性。

二、常微分方程数值解法的实际应用研究:1. 建筑物的结构动力学分析:建筑物的结构动力学分析需要求解一些动力学常微分方程,例如考虑结构的振动和应力响应。

利用数值解法可以更好地模拟建筑物的振动情况,并对其结构进行安全性评估。

2. 生态系统模型分析:生态系统模型通常包含一系列描述物种数量和相互作用的微分方程。

数值解法可以提供对生态系统不同时间点上物种数量和相互作用的变化情况的模拟和预测。

这对于环境保护、物种保护以及生态系统可持续发展方面具有重要意义。

3. 电路模拟与分析:电路模拟与分析通常涉及电路中的电容、电感和电阻等元件,这些元件可以通过常微分方程进行建模。

数值解法可以提供电路中电压、电流等关键参数的模拟和分析,对电路设计和故障诊断具有重要帮助。

4. 化学反应动力学研究:化学反应动力学研究需要求解涉及反应速率、物质浓度等的微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业论文文献综述信息与计算科学浅谈常微分方程的数值解法及其应用一、前言部分微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解.后来瑞士数学家雅各布•贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型等.因而微分方程的研究是与人类社会密切相关的. [1]“常微分方程”是理学院数学系所有专业学生的重要专业基础课之一,也是工科、经济等专业必学内容之一.其重要性在于它是各种精确自然科学、社会科学中表述基本定律和各种问题的根本工具之一,换句话说,只要根据实际背景,列出了相应的微分方程,并且能(数值地或定性地)求出这种方程的解,人们就可以预见到,在已知条件下这种或那种“运动”过程将怎样进行,或者为了实现人们所希望的某种“运动”应该怎样设计必要的装置和条件等等.例如,我们要设计人造卫星轨道,首先,根据力学原理,建立卫星运动的微分方程,列出初始条件,然后求出解,即卫星运行轨道.随着物理科学所研究的现象在广度和深度两方面的扩展,微分方程的应用范围更广泛. [2]从数学自身的角度看,微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展.从这个角度说,微分方程变成了数学的中心. [3]总之,微分方程从它诞生起即日益成为人类认识并进而改造自然、社会的有力工具,成为数学科学联系实际的主要途径之一.文章就常微分的数值解法以及应用展开简单的论述。

二、主体部分2.1微分方程概念介绍2.1.1 微分方程概况由一元函数得到的方程.即:称含有自变量,未知函数及其导数的关系式22(,,,,...,)0n n dy d y d y F x y dx dx dx=. (1) 为常微分方程.其中出现的最高阶导数的阶数,叫做常微分方程的阶.例如 dy dx=x ,dy y dx = ,是一阶常微分方程. 22sin 0d g dt pθθ+=是二阶常微分方程.设)(x y ϕ=定义于 区间J 上,有直到n 阶的导数,将它代入(1),使(1)变成关于x 的恒等式,即()()(,(),,...,)0,n n d x d x F x x x J dx dxϕϕϕ=∈. 就称y =()x ϕ为(1)的一个定义于J 上的解,并称J 为该解的定义区间. [4]如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程.2.2微分方程产生的历史背景微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解。

后来瑞士数学家雅各布•贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。

微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具. [5]牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量.微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型等.因而微分方程的研究是与人类社会密切相关的. [6]2.3 微分方程发展现状及其基本功能在数学学科内部的许多分支中,微分方程是常用的重要工具之一,微分方程进一步发展的需要,有推动着其它数学分支的发展;相反,微分方程每一步进展都离不开其他数学分支的支援.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对微分方程的发展产生了深刻的影响.当前计算机的发展更是为微分方程的应用及理论研究提供了非常有力的工具.时至今日,可以说微分方程在所有自然科学领域和众多社会科学领域都有着广泛的应用,如自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等.只要能够列出相应的微分方程,有了解方程的方法,利用它就可以精确地表述事物变化所遵循的基本规律.从微积分理论形成以来,人们一直用微分方程来描述、解释或预见各种自然现象,不断的取得了显著的成效.[7] 2.4常微分方程的数值求解方法2.4.1 Euler 法Euler 法是最简单的数值方法,[,]a b 为求解良态初值问题'(,)y f t y =,0()y a y =的区间。

实际上,下面的过程不是要找到满足该初值问题的可微函数,而是要生成点集{(,)}k k t y ,并且将这些点作为近似解,即()k k y t y ≈。

如何构造“近似满足微方程”的“点集”呢?首先为这些点选择横坐标,为方便起见,将区间[,]a b 划分为M 个等距子区间,并选择网络点k t a kh =+, k=0,1,……,M 其中b a h M-=(1) 值h 称为步长。

然后近似解'(,)y f t y = 在0[,]M t t 上, 00()y t y = (2) 设()y t ,'()y t 和''()y t 连续,;;利用泰勒定理将()y t 在0t t =处展开,对每个值t ,存在一个0t 和t 之间的值1c ,使得 ''2'10000()()()()()()2y c t t y t y t y t t t -=+-+ (3) 将'00()(,())y t f t y t =和10h t t =-代人等式(3),得到1()y t 的表示:''211000()()()(,())2y c h y t y t hf t y t =++ (4) 如果步长 h 足够小,则可以忽略 2 次项(包含2h 的项),得到1000(,)y y hf t y =+ (5) 这就是欧拉近似。

重复该过程,就能得到近似解曲线()y y t =的一个点序列。

欧拉方法的一般步骤是 1k k t t h +=+ , 1(,)k k k k y y hf t y +=+ 其中 k = 0,1,……,M-1[8](6)2.4.2 泰勒级数法泰勒级数法有着广泛的应用,并且是比较求解初值问题的各种不同数值方法的标准,它可设计为任意指定的精度。

下面首先将泰勒定理用新的公式表示,使之适合于求解微分方程。

定理9.5(泰勒定理)设1()N y t C+∈ 0[,]t b ,且()y t 在不动点0[,]k t t t b =∈处有N 次泰勒级数展开:1()()(,())()N k k N k k y t h y t hT t y t O h ++=++ (1) 其中,()11()(,())!j Nj k N k k j y t T t y t h j -==∑ (2) ()1()(,())j j y t f t y t -=表示函数f 关t 的(1j -)次全导数。

求导公式可以递归地计算: ''''(3)''''22(4)''2'''''''''3232()()()2()2()33()33()(33)(2)t y t y tt yt y yy tt yt yy y t y ttt ytt yyt ty y yy yyy ttt ytt yyt yyy y tt yt yy y t fy t f f y f f fy t f f y f y f y f f f f f f f f f y f f y f y f y f y f y y f y f f f f f f f f f f f f f ==+=+=+++=++++=++++++=++++++23()()()t y yt yy y t y f f f f f f f f f f +++++ (3)并且一般有()(1)()(,())N N yt P f t y t -= (4) 其中P 为导数算子()P f t y∂∂=+∂∂区间0[,]M t t 上的初值问题'()(,)y t f t y =的近似数值解可由各子区间1[,]k k t t +上的公式(1)来推导。

N 次泰勒方法的一般步骤为 323211...2!3!!N N k k d h d h d h y y d h N +=+++++ (5) 其中在各步0,1,......,1k M =-有()(),1,2,......,j j k d y t j N ==。

N 次泰勒方法的最终全局误差是1()N O h +阶的,因此可选择所需大小的N ,使得误差足够小。

如果N 是固定,则理论上可以推导出步长h ,使之满足任意的最终全局误差。

然而在实际运算中,通常用h 和/2h 计算两个近似结果集,然后比较其结果[9]。

2.4.3 龙格—库塔方法泰勒方法的优点是最终全局误差的阶为()NO h ,并且可以通过选择较大的 N 来得到较小的误差。

然而泰勒方法的缺点是,需要先确定 N ,并且要计算高阶导数,它们可能十分复杂。

每个龙格一库塔(Runge-Kutta )方法都由一个合适的泰勒方法推导而来,使得其最终全局误差为()N O h 。

一种折中方法是每步进行若干次函数求值,从而省去高阶导数计算。

这种方法可构造任意 N 阶精度的近似公式。

最常用的是N= 4 的龙格一库塔方法,它适用于一般的应用,因为它非常精确、稳定,且易于编程。

许多专家声称,没有必要使用更高阶的方法,因为提高的精度与增加的计算量相抵消。

如果需要更高的精度,则应该使用更小的步长或某种自适应方法。

相关文档
最新文档