微积分常用公式及运算法则(上)

合集下载

dx微积分所有公式,微积分24个基本公式

dx微积分所有公式,微积分24个基本公式

dx微积分所有公式,微积分24个基本公式dx表示x变化无限小的量,其中d表示“微分”,是“derivative(导数)”的第一个字母。

当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,x与a的差值无限趋向于0,就说a是x的极限。

这个差值,称它为“无穷小”,它是一个越来越小的过程,一个无限趋向于0的过程,它不是一个很小的数,而是一个趋向于0的过程。

扩展资料:注意微分的几何意义:设δx是曲线y = f(x)上的点m的在横坐标上的增量,δy是曲线在点m对应δx在纵坐标上的增量,dy是曲线在点m的切线对应δx在纵坐标上的增量。

f(x0)在表示曲线y=f(x)在切点m(x0,f(x0))处切线的斜率。

(1)微积分的基本公式共有四大公式:1.牛顿-莱布尼茨公式,又称为微积分基本公式2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关(2)微积分常用公式:dx sin x=cos xcos x = -sin xtan x = sec2 xcot x = -csc2 xsec x = sec x tan xcsc x = -csc x cot xsin x dx = -cos x + ccos x dx = sin x + ctan x dx = ln |sec x | + ccot x dx = ln |sin x | + csec x dx = ln |sec x + tan x | + c csc x dx = ln |csc x - cot x | + c sin-1(-x) = -sin-1 xcos-1(-x) = - cos-1 xtan-1(-x) = -tan-1 xcot-1(-x) = - cot-1 xsec-1(-x) = - sec-1 xcsc-1(-x) = - csc-1 xdx sin-1 ()=cos-1 ()=tan-1 ()=cot-1 ()=sec-1 ()=csc-1 (x/a)=sin-1 x dx = x sin-1 x++ccos-1 x dx = x cos-1 x-+ctan-1 x dx = x tan-1 x- ln (1+x2)+c cot-1 x dx = x cot-1 x+ ln (1+x2)+c sec-1 x dx = x sec-1 x- ln |x+|+c csc-1 x dx = x csc-1 x+ ln |x+|+c sinh-1 ()= ln (x+) xrcosh-1 ()=ln (x+) x≥1tanh-1 ()=ln () |x| 1sech-1()=ln(+)0≤x≤1csch-1 ()=ln(+) |x| 0dx sinh x = cosh xcosh x = sinh xtanh x = sech2 xcoth x = -csch2 xsech x = -sech x tanh xcsch x = -csch x coth xsinh x dx = cosh x + ccosh x dx = sinh x + ctanh x dx = ln | cosh x |+ c coth x dx = ln | sinh x | + c sech x dx = -2tan-1 (e-x) + c csch x dx = 2 ln || + cduv = udv + vduduv = uv = udv + vdu→ udv = uv - vducos2θ-sin2θ=cos2θcos2θ+ sin2θ=1cosh2θ-sinh2θ=1cosh2θ+sinh2θ=cosh2θdx sinh-1()=cosh-1()=tanh-1()=coth-1()=sech-1()=csch-1(x/a)=sinh-1 x dx = x sinh-1 x-+ ccosh-1 x dx = x cosh-1 x-+ ctanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ c coth-1 x dx = x coth-1 x- ln | 1-x2|+ c sech-1 x dx = x sech-1 x- sin-1 x + c csch-1 x dx = x csch-1 x+ sinh-1 x + c sin 3θ=3sinθ-4sin3θcos3θ=4cos3θ-3cosθ→sin3θ= (3sinθ-sin3θ)→cos3θ= (3cosθ+cos3θ)sin x = cos x =sinh x = cosh x =正弦定理:= ==2r余弦定理:a2=b2+c2-2bc cosαb2=a2+c2-2ac cosβc2=a2+b2-2ab cosγsin (α±β)=sin α cos β ± cos α sin βcos (α±β)=cos α cos β sin α sin β2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β) sin α + sin β = 2 sin (α+β) cos (α-β) sin α - sin β = 2 cos (α+β) sin (α-β) cos α + cos β = 2 cos (α+β) cos (α-β) cos α - cos β = -2 sin (α+β) sin (α-β) tan (α±β)=,cot (α±β)=ex=1+x+++…++ …sin x = x-+-+…++ …cos x = 1-+-+++ln (1+x) = x-+-+++tan-1 x = x-+-+++(1+x)r =1+rx+x2+x3+ -1= n= n (n+1)= n (n+1)(2n+1)= [ n (n+1)]2γ(x) = x-1e-t dt = 22x-1dt = x-1 dtβ(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx转换为 f (ω ) = 解f (t ) = ± jω0t f ( t ) e ? jωt dt f ( t ) e ? j(ω ?ω0 ) t dt = f (ω ? ω0 ) 。

高等数学微积分公式

高等数学微积分公式

高等数学微积分公式高等数学微积分公式微积分是数学中的一个重要分支,它研究的是函数的变化规律。

在微积分的学习中,我们需要掌握许多公式,在处理函数的变化过程中起到了非常重要的作用。

下面是高等数学中常见的微积分公式。

一、导数公式1.常数函数的导数公式:\[\frac{d}{dx} C=0\]其中C为常数。

2.幂函数的导数公式:\[\frac{d}{dx} x^{n}=nx^{n-1}\]其中n为常数。

3.自然指数函数的导数公式:\[\frac{d}{dx} e^{x}=e^{x}\]4.对数函数的导数公式:\[\frac{d}{dx} ln(x)=\frac{1}{x}\]5.三角函数的导数公式:\[\frac{d}{dx} sin(x)=cos(x)\]\[\frac{d}{dx} cos(x)=-sin(x)\]6.反三角函数的导数公式:\[\frac{d}{dx} sin^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}\] \[\frac{d}{dx} cos^{-1}(x)=-\frac{1}{\sqrt{1-x^{2}}}\]7.复合函数的导数公式(链式法则):设y=f(u)和u=g(x),则有\[\frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}\]二、微分公式1.常数函数的微分公式:\[d(C)=0\]其中C为常数。

2.幂函数的微分公式:\[d(x^{n})=nx^{n-1}dx\]其中n为常数。

3.指数函数的微分公式:\[d(e^{x})=e^{x}dx\]4.三角函数的微分公式:\[d(sin(x))=cos(x)dx\]\[d(cos(x))=-sin(x)dx\]5.反三角函数的微分公式:\[d(sin^{-1}(x))=\frac{dx}{\sqrt{1-x^{2}}}\]\[d(cos^{-1}(x))=-\frac{dx}{\sqrt{1-x^{2}}}\]6.复合函数的微分公式(链式法则):设y=f(u)和u=g(x),则有\[dy=\frac{dy}{du}\times du\]三、泰勒公式泰勒公式是微积分中的一个重要定理,它可以将一个函数在某点的值表示为一系列关于该点的导数的和。

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。

完整word高数微积分公式三角函数公式考研

完整word高数微积分公式三角函数公式考研

高等数学微积分公式大全一、基本导数公式⑴ c⑵ x x1⑶ sin x cos x⑷ cosx sin x⑸ tan xsec 2 x⑹ cot xcsc 2 x⑺ sec x sec x tan x⑻ csc xcsc x cot x⑼ e xe x⑽ a xa x ln a⑾ ln x1x⑿ log a x1 ⒀ arcsin x1 x2 ⒁ arccos x1x ln a11 x 2⒂ arctan x1 ⒃ arccot x1 2⒄x1⒅x1 1 x 21 x2 x二、导数的四则运算法规u vuvuvu v uvu u v uvvv2三、高阶导数的运算法规( 1) u x v xnnv x nncu n xu x(2) cu xnnn( 3) u ax ba n u n ax b( 4) u x v xc n k u n k x v ( k ) xk 0四、基本初等函数的 n 阶导数公式( 1) xnnn!( 2) eaxbnaneax b (3) axna x ln na(4) sin ax bna nsin axb n(5)cos axb naxb n2a n cos21nna nn!nn 1a n n 1 !(6)(7)1 ax b1ax n 1ln ax baxnbb五、微分公式与微分运算法规⑴ d c 0⑵ d xx1dx⑶ d sin x cosxdx⑷ d cosx sin xdx ⑸ d tan xsec 2 xdx⑹ dcot xcsc 2 xdx⑺ d secx secx tan xdx⑻ d cscx cscx cot xdx⑼ dexe xdx⑽ daxa xln adx⑾ d ln x1dxx⑿ dlog a x1 dx ⒀ d arcsin x1 dx ⒁ d arccos x1 dxx ln a1 x 21 x 2⒂ d arctan x12 dx⒃ darccot x1dx1x 1 x 2六、微分运算法规⑴ du v du dv⑵d cu cdu⑶ duv vdu udv⑷ d uvdu udvvv 2七、基本积分公式⑴kdx kx c⑵ x dxx 1c⑶dx ln xc1x⑷a xdx a xc⑸ e x dxe x c⑹ cosxdxsin x cln a⑺sin xdxcosx c⑻1 dxsec 2 xdx tan x ccos 2 x ⑼ 12xdxcot xc⑽ 1 2 dx arctan x csin 2xcsc x1⑾1dxarcsin x c1x 2八、补充积分公式tan xdx ln cos x ccot xdx ln sin x csecxdx ln secx tan x ccscxdx ln cscx cot x c11x1 a 2dx1 x aa2x 2 dx a arctan a cx22a l n x ac1dx arcsinxc1dx ln xx 2 a 2ca 2 x 2ax 2 a 2九、以下常用凑微分公式积分型换元公式f axb dx1 f ax b d ax bu ax baf x x 1dx 1 f x d xu xf ln x1dxfln x d ln xu ln xxf e x e x dx f e x d e xf a x a x dx 1 f a x d a xln af sin x cosxdx f sin x d sin x f cos x sin xdx f cosx d cosx f tan x sec2 xdx f tan x d tan x f cot x csc2 xdx f cot x d cot xf12 dx f arcta n x d arc ta n x arctan xx1f arcsin x 1 dx f arcsin x d arcsin x1 x2十、分部积分法公式⑴形如x n e ax dx ,令u x n, dv e ax dx形如x n sin xdx 令u x n,dv sin xdx形如x n cos xdx 令u x n,dv cosxdx⑵形如x n arctanxdx ,令 u arctan x ,dv x n dx形如x n ln xdx ,令 u ln x ,dv x n dx⑶形如e ax sin xdx,e ax cos xdx令u e ax ,sin x,cos x 均可。

高数微积分公式大全(总结的比较好)---精品管理资料

高数微积分公式大全(总结的比较好)---精品管理资料

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x =-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+八、补充积分公式2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可.十一、第二换元积分法中的三角换元公式(1 sin x a t = (2) tan x a t = sec x a t =【特殊角的三角函数值】(1)sin 00= (2)1sin62π=(3)sin 32π= (4)sin 12π=) (5)sin 0π=(1)cos01= (2)cos62π=(3)1cos 32π= (4)cos 02π=) (5)cos 1π=-(1)tan 00= (2)tan63π=(3)tan 3π=(4)tan 2π不存在 (5)tan 0π=(1)cot 0不存在 (2)cot 6π=(3)cot3π=(4)cot 02π=(5)cot π不存在 十二、重要公式(1)0sin lim1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)limarccot 0x x →∞= (8)lim arccot x x π→-∞= (9)lim 0xx e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→= (12)0101101lim0n n n m m x m a n mb a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩(系数不为0的情况) 十三、下列常用等价无穷小关系(0x →)sin x x tan x x arcsin x x arctan xx 211cos 2xx - ()ln 1x x + 1x e x - 1ln x a x a - ()11x x ∂+-∂十四、三角函数公式 1.两角和公式sin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+tan tan tan()1tan tan A B A B A B ++=- tan tan tan()1tan tan A BA B A B --=+cot cot 1cot()cot cot A B A B B A ⋅-+=+ cot cot 1cot()cot cot A B A B B A ⋅+-=- 2.二倍角公式sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=-22tan tan 21tan AA A=-3。

微积分常用公式

微积分常用公式

微积分常用公式微积分常用公式微积分是数学的一个重要分支,是研究变化率和积分的学科。

在微积分的学习中,掌握常用公式是非常关键的。

下面,我将介绍一些微积分常用公式。

导数公式导数是描述一个函数在某一点上的变化率的指标,它的定义为:$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$导数公式如下:1. 常数函数的导数为0$$\frac{d}{dx}(C)=0$$2. 变量自己的导数为1$$\frac{d}{dx}(x)=1$$3. 幂函数的导数为幂次减一与系数的积$$\frac{d}{dx}(x^n)=n\times x^{n-1}$$4. 指数函数的导数为本身与常数的积$$\frac{d}{dx}(e^x)=e^x$$5. 对数函数的导数为自变量的导数与自变量的倒数的积$$\frac{d}{dx}(\ln x)=\frac{1}{x}$$6. 三角函数的导数公式如下:$$\frac{d}{dx}(\sin x)=\cos x$$$$\frac{d}{dx}(\cos x)=-\sin x$$$$\frac{d}{dx}(\tan x)=\sec^2 x$$$$\frac{d}{dx}(\cot x)=-\csc^2 x$$7. 复合函数的导数公式如下:如果$y=f(u)$和$u=g(x)$都可导,则复合函数$y=f(g(x))$的导数为$$\frac{dy}{dx}=\frac{dy}{du}\times\frac{du}{dx}$ $8. 链式法则$$\frac{dy}{dx}=\frac{dy}{du}\times\frac{du}{dx}$ $积分公式积分是微积分的另一个重要概念,是求曲线下面的面积的方法。

积分有两种形式:不定积分和定积分。

下面,我将介绍一些积分公式。

1. 常数积分公式$$\int Cdx=Cx+C_1$$2. 幂函数积分公式$$\int x^ndx=\frac{1}{n+1}x^{n+1}+C$$3. 指数函数积分公式$$\int e^xdx=e^x+C$$4. 对数函数积分公式$$\int \frac{1}{x}dx=\ln x+C$$5. 三角函数积分公式$$\int \sin xdx=-\cos x+C$$$$\int \cos xdx=\sin x+C$$$$\int \tan xdx=-\ln |\cos x|+C$$$$\int \cot xdx=\ln |\sin x|+C$$6. 反三角函数积分公式$$\int \frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$$$$\int \frac{1}{1+x^2}dx=\arctan x+C$$前置公式1. 两点之间的距离公式设平面直角坐标系上的两点$A(x_1,y_1)$和$B(x_2,y_2)$,则两点之间的距离公式为:$$AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$2. 导数定义公式导数的定义为:$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$3. 极限定义公式$\lim_{x\to a}f(x)=L$的定义为:对于任意给定的正数$\epsilon$,总存在正数$\delta$,使得当$x$满足$0<|x-a|<\delta$时,就有$|f(x)-L|<\epsilon$4. 常用三角恒等式$$\sin^2x+\cos^2x=1$$$$1+\tan^2x=\sec^2x$$$$\cot^2x+1=\csc^2x$$总结微积分是数学的一个重要分支,掌握常用公式对于学习微积分十分关键。

微积分基础公式

微积分基础公式

微积分基础公式
微积分是数学中的一个重要分支,也是物理学、工程学、经济学等领域中必不可少的工具。

下面是微积分基础公式的介绍:
1.导数公式
导数是微积分中的重要概念,表示函数在某一点处的变化率。

如果函数f(x)在点x处可导,那么它的导数为:
f'(x) = lim (Δx→0) [f(x+Δx) - f(x)]/Δx
2.求导法则
求导法则是求导的基本规则,包括常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。

3.微分公式
微分是导数的另一种表达形式,表示函数在某一点处的变化量。

如果函数f(x)在点x处可微,那么它的微分为:
df = f'(x) dx
4.积分公式
积分是微积分中的另一个重要概念,表示函数在某一区间上的面积。

如果函数f(x)在区间[a,b]上连续,那么它的积分为:∫a^bf(x)dx
5.基本积分法
基本积分法是求解积分的基本方法,包括换元积分法、分部积分法、三角换元积分法等。

以上是微积分基础公式的介绍,对于学习微积分的同学们来说,
掌握这些公式是非常重要的。

微积分(上)复习资料——公式

微积分(上)复习资料——公式

1 cos2
x
dx
sec2
xdx
tan
x
c
9、
1 s in 2
x
dx
csc2
xdx
cot
x
c
10、 sec x tan xdx sec x c
11、 cscx cot xdx cscx c
12、
1 dx arcsin x c 1 x2
13、
1 1 x2
dx
arctanx
c
14、 tan xdx ln cosx c
cot(A B) cot A cot B 1 cot B cot A
sin 2A 2sin Acos A
tan
2
A
1
2
tan tan
A 2A
3.半角公式
cos 2A cos2 A sin2 A 1 2sin2 A 2cos2 A 1
sin A 1 cos A
2
2
cos A 1 cos A
(1) a2 x2 x asin t (2) a2 x2 x a tant (3) x2 a2 x asect
log a x
1 dx x ln a
⒀ d arcsin x 1 dx
1 x2
⒁ d arccos x 1 dx
1 x2
微分运算法则 ⑴ d u v du dv
⑶ d uv vdu udv

d
arctan
x
1 1 x2
dx

d
arc cot
x
1
1 x2
dx
⑵ d cu cdu
lim n a (a o) 1
n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用一次近似式: ex ≈ x +1; sin x ≈ x; tan x ≈ x; (1+ x)a ≈ 1+ ax; ln(1+ x) ≈ x;
拉格朗日定理: 若f (x) ∈ C[a, b],并且f ∈ D(a,b), 那么至少存在一点ξ ∈ (a,b),使 f (b) − f (a) = f ′(ξ )(b − a)
=
0ab⋯00 ⋯⋯当当mm=<nn ∞⋯⋯当m > n
设 lim u →u0ຫໍສະໝຸດ f(u)=
A,
lim
x → x0
u
(
x
)
=
u0
,
且u
(
x)
≠ u0
则 lim f [u(x)] = lim f (u) = A
x → x0
u →u0
重要极限:
lim
x→0
sin x
x
= 1 sin
x
<
x
<
tan
x
x

f (n) (0) xn + f (n+1) (θ x) xn+1
n!
(n +1)!
f (x) = ex 的 n 阶泰勒公式:
ex = 1+ x + 1 x2 +⋯ + 1 xn + eθ x xn+1
2!
n! (n +1)!
(0 < θ < x)
带有佩亚诺余项的泰勒公式: 如果函数f (x)在含有x0的开区间(a,b)内具有 直道n +1阶的导数,且f (n+1) (x)在(a, b)内有界 则f (x)在(a, b)内有n阶带有佩亚诺余项的泰 勒公式:
2
2
2 1 + cosα
α tan
=
sin α
= 1− cosα ;
2 1+ cosα sinα
sin

=
2 tanα 1+ tan2 α

cos 2α
=
1− 1+
tan2 α tan2 α

tan 2α = 2 tanα ; sin2 α + cos2 α = 1 1− tan2 α
结合律 (A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C);
0,
π 2
1
lim nn = 1
n→∞
1
lim x x = 1
x→+∞
lim
x→∞
1
+
1 x x
=
e,
lim
x→∞
1

1 x x
=
1 , lim (1+
e x→0
1
x)x
=e
等价无穷小: 当x → 0时, x ∼ sin x ∼ tan x ∼ arcsin x ∼ arctan x ∼ ln(1+ x) ∼ ex −1; 1− cos x ∼ x2 ;(1+ x)a −1 ∼ ax(a ≠ 0);
1+ tan2 α = sec2 α 1+ cot2 α = csc2 α
y = cosh x = ex + e−x ( y > 1) , 2
积化和差:
sin α

cos
β
=
1 2
sin

+
β
)
+
sin


β
)
cosα
⋅ sin
β
=
1 2
sin

+
β
)

sin (α

β
)
sin α
⋅ sin
β
P(x),Q(x)为多项式,当Q(x) ≠ 0,有
lim
P(x)
=
lim
x → x0
P(x)
=
P(x0 )
x→x0 Q( x)
lim Q(x)
x → x0
Q(x0 )
对有理分式函数在无穷大处的极限,有
当a0, b0 ≠ 0时,
lim
x→∞
a0 xm + a1xm−1 + ⋯ + am b0 xn + b1xn−1 +⋯ + bn
d(C) = 0 d x,
d(xµ ) = µ xµ−1 d x,
d(ax ) = ax ln a d x
d(ex ) = ex d x
d(ln x) = 1 d x x
d(loga
x)
=
1 x ln
a
d
x
d(sin x) = cos x d x
d(cos x) = − sin x d x
d(tan x) = sec2 x d x
分配律 A ∩ (B ∪ C) = ( A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = ( A ∪ B) ∩ (A ∪ C); ( A ∪ B)c = Ac ∩ Bc ,
对偶律
( A ∩ B)c = Ac ∪ Bc ;
初等函数:
双曲正弦、余弦、正切及运算
y = sinh x = ex − e−x (−∞ < y < +∞) , 2
微积分常用公式及运算法则
常用三角公式: sin 2α = 2sinα cosα ;
cos 2α = cos2 α − sin2 α = 2 cos2 −1 = 1− 2sin2 α
tan 2α
=
2 tanα 1− tan2 a
; sin 2
α 2
=
1− cosα 2

cos2 α = 1 + cosα ; tan 2 α = 1 − cosα ;
d(cot x) = − csc2 x d x
d(sec x) = sec xitan x d x
d(csc x) = − csc xicot x d x
d(arcsin x) = 1 d x 1− x2
d(arccos x) = − 1 d x 1− x2
d(arctan
x)
=
1 1+ x2
d
x
d(arccot
然后两端对x求导,得
y′ = v′(x) ln u(x) + v(x)u′(x)
y
u(x)
参数方程求导:
若对参数方程
x y
= =
ϕ φ
(t) (t)
求导,则有
dy
dy dx
=
d yidt dt dx
=
dt dx
=
φ ′(t ) ϕ ′(t )
dt
高阶导数:
(xn )(n) = n!
1 x
(n)
那么对于x ∈ (a,b),有
f
(x)
=
f
(x0 ) +
f ′(x0 )(x −
x0 ) +
1 2!
f
′′(x0 )(x −
x0 )2
+⋯+
1 n!
f
(n) (x0 )(x

x0 )n
+
Rn (x)
其中
Rn (x) =
f (n+1) (ξ ) (n +1)!
(
x

x0
)n+1,
Rn (x)称为拉格朗日余项, 这里ξ是x0与x之间的某个值
u v

=
u′v − uv′ v2
设x = ϕ ( y),它的反函数是y = f (x),则有
f
′( x)
=
1 ϕ′( y)
链式求导法则:d y = d y id u dx du dx
对数求导法则:
求幂指函数y = [u(x)]v(x)的导数时,
可先取对数,得 ln y = v(x) ln u(x),
a2
(n)
=
(−1)n n! 2a (x
1 − a)n+1

(x
1 + a)n+1
∑n
(uv)(n) = Cnku(n−k )v(k )
k =0
3
微分定义:
d y = f ′(x)∆x = f ′(x) d x
微分求近似值(线性逼近或一次近似):
∆y ≈ d yx = x0 + ∆x f (x0 + ∆x) ≈ f (x0 ) + f ′(x0 )∆x 令x = x0 + ∆x得, f (x) ≈ f (x0 ) + f ′(x0 )(x − x0 )
(csc x)′ = − csc xicot x
(arcsin x)′ = 1 1− x2
(arccos x)′ = − 1 1− x2
(arctan x)′ = 1 1+ x2
(arccot
x)′
=

1
1 + x2
2
(sinh x)′ = cosh x (cosh x)′ = sinh x
微分公式:
=
(−1)n n! x n +1
(ex )(n) = ex
(sin
x)(n)
=
sin
x
+
nπ 2
(cos)(n)
=
cos
x
+
nπ 2
[ln(1 +
x)](n)
相关文档
最新文档