八年级下册数学期中考试知识点复习
八年级初二下册数学期中考试知识点复习

欢迎阅读八年级下册数学期中考试知识点复习第一章证明(二)一. 等腰三角形1. 性质:等边对等角2. 判定:等角对等边3. 推论:“三线合一”4.等边三角形的性质及判定定理例1、已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A 的度数为()A.30°B.45°C.36°D.72°图1例2、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°已知等腰三角形一角,求其他两角的情况。
注意:等边三角形与轴对称、中心对称的关系。
二.直角三角形(含30°的直角三角形的边的性质)※1. 勾股定理及其逆定理※2. 命题与逆命题※3. 直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)三. 线段的垂直平分线※1. 线段垂直平分线的性质及判定※2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.例1、如图,△ABC中,AB=AC,DE是AB的垂直平分线, AB=8,BC=4,∠A=36°,则∠DBC= , = .△BDC的周长C四. 角平分线※1. 角平分线的性质及判定定理※2. 三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等. 例1、如图,ABC ∆中,DE A AC AB ,, 40=∠=是腰AB 的垂直平分线,求DBC ∠的度数。
平移与旋转轴对称图形的关系例1、如图6-2-13,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将过的路径为BD ,则Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经图中阴影部分的面积是__________.第二章 一元一次不等式和一元一次不等式组一. 不等关系准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0二. 不等式的基本性质注意:有且仅当不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
八年级期中考试主要知识点

八年级期中考试主要知识点随着中考日益靠近,期中考试对于八年级学生来说已经是一次重要的考试,对于学生来说,期中考试的成绩直接关系到下个学期的学习,因此对于考试主要知识点的掌握也显得尤为关键。
下面我们就来详细了解一下八年级期中考试的主要知识点。
一、数学1、代数运算代数运算是数学的一个重要基础,包括加、减、乘、除、平方、开方等运算。
要求掌握各种运算的基本规则及其性质,在解决实际问题时要善于运用代数运算。
2、方程与不等式方程与不等式是解决实际问题时经常需要使用的工具。
其中方程是指含有未知数的等式,要求掌握方程的解法及其应用方法;不等式是指含有大于、小于、大于等于、小于等于等符号的等式,要求掌握各种不等式的解法及其应用方法。
3、统计与概率统计与概率是数学的一大重点,包括数据分析、概率计算等内容。
要求掌握各种统计方法的基本理论和应用方法,以及各种概率计算的方法和应用。
二、语文1、阅读理解阅读理解是语文考试的重点之一,要求掌握阅读理解的方法和技巧,能够读懂各种材料,包括文章、诗歌、小说、新闻等。
2、写作表达写作表达是语文考试的另一个重点,要求学生掌握写作的基本技巧,如行文连贯、语言规范、表达准确等。
同时要求学生能够在写作中运用多种修辞手法,如比喻、拟人、夸张等。
3、语法知识语法知识是语文考试的基础,要求学生掌握各种语法知识的应用,如词语的分类、句子的结构等。
同时要求学生能够在写作中正确运用语法知识,表达清晰、准确。
三、英语1、听力听力是英语考试的重点之一,要求学生掌握听懂各种英语口语的能力,包括对话、广告、短文等,并能够从中获取有用信息。
2、阅读理解阅读理解是英语考试的另一个重点,要求学生能够读懂各种英文材料,包括新闻、广告、小说等,并能够回答与之相关的问题。
3、语法知识语法知识是英语考试的基础,要求学生掌握各种语法知识的应用,如动词时态、名词、形容词等。
同时要求学生能够在英语交流中正确运用语法知识,表达清晰、准确。
上海八年级数学期中知识点

上海八年级数学期中知识点数学是一门重要的学科,为了让学生在数学期中考试中取得好成绩,我们需要掌握一些重要的数学知识点。
在这篇文章中,我们将分享上海八年级数学期中的重要知识点,希望能帮助大家取得好成绩。
1. 一次函数一次函数是数学中的一个重要概念。
它可以用下面的公式来表示:y = kx + b其中,k是函数的斜率,b是截距,x和y分别代表函数的自变量和因变量。
在考试中,我们需要掌握一次函数的性质,如斜率的意义,直线与坐标轴的交点,直线的倾斜方向等。
2. 图形的相似性图形的相似性是指两个图形在形状上相同,但是大小不同。
这是一个非常重要的概念,可以在解决许多数学问题时使用。
在考试中,我们需要掌握图形相似的定义,如何判断两个图形是否相似,如何计算图形的相似比等等。
3. 不等式不等式是数学中的一个基本概念,它用来描述不同数量之间的大小关系。
在考试中,我们需要掌握不等式的基本性质,如何解不等式,如何将不等式用图形表示等等。
4. 几何中的三角形三角形是几何中的一个重要概念,有许多不同类型的三角形,如等腰三角形、直角三角形、锐角三角形等。
在考试中,我们需要掌握三角形的基本定义、性质、重心、外心、内心等概念。
5. 数据分析数据分析是数学中的一个重要领域,它涉及到统计、概率、平均数、中位数、众数等概念。
在考试中,我们需要掌握数据分析的基本概念,如何计算平均数、中位数、众数等,如何进行统计分析等。
总结:上述五个知识点是上海八年级数学期中的重点考察内容,如果我们能够掌握这些知识点,那么在期中考试中就能够取得好成绩。
在复习的过程中,我们需要加强练习,查漏补缺,掌握一些解题技巧和方法,从而更好地应对数学考试。
八年级数学人教版期中知识点

八年级数学人教版期中知识点总结一、整式的加减定义:同类项相加或相减所得的式子叫做整式。
规则:(1)同类项相加或相减,保留公因数,系数相加或相减。
(2)不同类项不能相加或相减。
(3)括号内的整式,根据需要可以加减。
(4)几个整式相加或相减,把同类项合并。
例题:将下列各式简化。
(1)2x + 3y + 4z - x - 2y - 3z解:把同类项合并,得到2x - x + 3y - 2y + 4z - 3z = x + y + z(2)3x^2y - 2xy^2 + x^2y - 3xy^2 + y^2x - y^2x解:把同类项合并,得到3x^2y + x^2y - 2xy^2 - 3xy^2 + y^2x - y^2x = 4x^2y - 5xy^2二、整式的乘法定义:两个或多个整式相乘所得的式子叫做整式的乘积。
规则:(1)按照乘法分配律展开。
(2)把同类项合并。
(3)把合并后的同类项写成整式。
例题:将下列各式展开。
(1)(x + 2)(x - 3)解:按照乘法分配律展开,得到x × x + x × (-3) + 2 × x + 2 × (-3) = x^2 - x - 6(2)(a - 4b)(2a + 5b)解:按照乘法分配律展开,得到a × 2a + a × 5b - 4b × 2a - 4b × 5b = 2a^2 - 13ab - 20b^2三、整式的除法定义:把一个整式除以另一个整式,得到的商式、余式和被除式叫做整式的除法。
规则:(1)同除、异乘。
(2)用等式将被除式和除式相乘得到的值相减,得到余式。
(3)余式为0,表示整除,否则不能整除。
例题:用长除法计算下列各式。
(1)6x^3 - 5x^2 + 7x - 8 ÷ 2x - 1解:(2)-3a^3 + a^2 - 2a + 5 ÷ a - 2解:四、二次根式定义:其中,a、b是实数,且b≠0,i是虚数单位,i^2 = -1。
初二数学下学期期中考试

初二数学下学期期中考试
数学是一门需要动脑筋和逻辑思考的学科,对于初中生来说,数学下学期期中考试是一项重要的考试。
本文将围绕初二数学下学期期中考试展开讨论,包括考试内容、备考方法和应试技巧。
一、考试内容
初二数学下学期期中考试的内容主要包括以下几个方面:
1.代数
代数是初中数学的基础,包括有理数、整式、方程与不等式、函数与方程、函数的图象与性质等内容。
在考试中,会出现各种形式的代数题,考察学生对基本代数概念的理解和应用能力。
2.几何
几何是初中数学的重要组成部分,包括平面几何和空间几何。
考试中可能会涉及到的几何知识点包括平行线与平行四边形、三角形的性质、圆的性质、相似与全等、直角三角形与斜三角形等。
3.概率与统计
概率与统计是初中数学的拓展内容,考察学生对于概率和统计学的基本概念和应用能力。
其中,概率部分可能会考察事件的概率计算和统计部分可能会考察频数、频率、直方图等统计图。
4.数论
数论是数学的一门分支,考察学生对于数的性质和关系的理解和推理能力。
可能会考察的数论知识点包括最大公约数与最小公倍数、整除与互质、素数与合数等。
二、备考方法
为了在初二数学下学期期中考试中取得好成绩,可以采取以下几种备考方法:
1.复习课本
课本是数学学习的基础,复习课本中的知识点和例题,理解概念和掌握解题方法是备考的基础。
2.做习题。
八年级下册数学期中考知识点

八年级下册数学期中考知识点八年级下册数学期中考知识点在我们平凡无奇的学生时代,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是掌握某个问题知识的学习要点。
相信很多人都在为知识点发愁,下面是店铺整理的八年级下册数学期中考知识点,希望对大家有所帮助。
八年级下册数学期中考知识点11.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.八年级下册数学期中考知识点2一. 不等关系※1. 一般地,用符号(或), (或)连接的式子叫做不等式.※2. 准确翻译不等式,正确理解非负数、不小于等数学术语.非负数:大于等于0(0) 、0和正数、不小于0非正数:小于等于0(0) 、0和负数、不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果ab,那么a+cb+c, a-cb-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果ab,并且c0,那么acbc, .(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果ab,并且c0,那么ac※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果ab,那么a-b是正数;反过来,如果a-b是正数,那么a如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a即:ab,则a-b0a=b,则a-b=0a(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三. 不等式的解集:※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数.※3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①定点:有等号的是实心圆点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.※2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.※3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向改变的问题)※4. 不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如大于、小于、不大于、不小于等含义;②设:设出适当的未知数;③列:根据题中的不等关系,列出不等式;④解:解出所列的不等式的解集;⑤答:写出答案,并检验答案是否符合题意.五. 一元一次不等式与一次函数六. 一元一次不等式组※1. 定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.※3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a(同大取大;同小取小;大小小大中间找;大大小小无解)第二章分解因式一. 分解因式※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.※2. 因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二. 提公共因式法※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.※2. 概念内涵:(1)因式分解的最后结果应当是积(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,ab +ac=a(b+c)(1)注意项的符号与幂指数是否搞错;(2)公因式是否提彻底;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.三. 运用公式法※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.※2. 主要公式:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.※5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)因式分解的最后结果必须是几个整式的乘积;(4)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.第三章分式一. 分式※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.※2. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.※3. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.※4. 分子与分母没有公因式的分式,叫做最简分式.二. 分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)三. 分式的加减法※1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.※2. 分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.(1)同分母的分式相加减,分母不变,把分子相加减;(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;※3. 概念内涵:通分的关键是确定最简分母,其方法如下:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的最高次幂的积,(3)如果分母是多项式,则首先对多项式进行因式分解.四. 分式方程※1. 解分式方程的一般步骤:①在方程的两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入原方程检验.※2. 列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案.八年级下册数学期中考知识点3二次根式1.一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。
2024年八年级下册数学知识点总结归纳(2篇)

2024年八年级下册数学知识点总结归纳一、实数的认识与运算1. 数轴及实数的表示- 数轴的绘制及利用- 实数的表示及其在数轴上的位置2. 实数的相关性质- 加法运算的性质- 减法运算的性质- 乘法运算的性质- 除法运算的性质3. 实数的运算规则- 加法的运算法则- 减法的运算法则- 乘法的运算法则- 除法的运算法则4. 实数的逆运算- 加法逆元和减法逆元- 乘法逆元和除法逆元5. 有理数的认识与运算- 有理数的表示及其分类- 有理数的加法与减法- 有理数的乘法与除法6. 无理数的认识与运算- 无理数的表示及其性质- 无理数与有理数的关系7. 实数的运算律及运算顺序- 混合运算的顺序和运算律二、线性方程与不等式1. 一元一次方程- 一元一次方程的解的概念- 一元一次方程的解的判断- 一元一次方程的解的求法2. 一元一次方程的应用- 应用问题的方程建立- 使用方程解决实际问题3. 一元一次不等式- 一元一次不等式的解的概念- 一元一次不等式的解的判断- 一元一次不等式的解的求法4. 一元一次不等式的应用- 应用问题的不等式建立- 使用不等式解决实际问题三、平面图形与立体图形1. 平面图形的性质与判断- 五角星和六角星的性质- 四边形的性质- 三角形的性质- 直角三角形的性质2. 平面图形的分类与应用- 三角形的分类- 几何图形的应用3. 立体图形的认识与分类- 立体图形的基本概念- 空间几何图形的识别和分类4. 立体图形的体积与表面积- 直方体和正方体的体积和表面积- 柱体和锥体的体积和表面积四、统计与概率1. 数据的汇总与处理- 数据的收集和整理- 数据的图表表示2. 参数与统计量- 参数的含义与计算- 统计量的含义与计算3. 概率与事件- 概率的概念与性质- 事件与概率的计算4. 概率的应用- 简单事件的计算- 互斥事件的计算- 包含事件的计算五、函数与图像1. 函数的概念与表示- 函数的定义与表示- 函数的自变量和因变量2. 函数的性质与运算- 函数的奇偶性- 函数的增减性- 函数的周期性3. 函数的图像与应用- 函数的图像的绘制- 函数的应用问题解决4. 解析几何的初步认识- 直线的性质与方程- 圆的性质与方程总结:以上是____年八年级下册数学的知识点总结归纳,主要涵盖了实数的认识与运算、线性方程与不等式、平面图形与立体图形、统计与概率、函数与图像等重要内容。
八年级数学期中考知识点

八年级数学期中考知识点
八年级数学是中学数学学科的重要转折期,学生需要逐步学会
独立思考,解决问题,同时需要积累相应的数学知识。
期中考试
是对学生近期学习情况的检验,本文将介绍八年级数学期中考的
知识点,以帮助学生及家长掌握考试的重点。
一、有理数
有理数是数的集合,包括正整数、负整数、零、正分数和负分数。
在有理数的加减、乘除过程中,需要掌握同号相加、异号相减、分数的通分、约分、化简等基本操作。
二、代数式
代数式是用数、字母和运算符号表示的数学式子,形如 a+b、ab、a-b、a/b 等。
学生需要掌握代数式的加减、乘除、合并同类项、提取公因数等基本操作。
三、方程
方程是一个含有未知量的等式,形如 ax+b=cx+d。
学生需要掌
握方程的解法,如移项、通分、化简、因式分解等。
四、比例
比例是两个或两个以上数之间的比较关系,形如 a:b=c:d。
在比例的计算中,需要掌握同比例、反比例、比例的化简等基本操作。
五、几何
几何是数学中研究空间形状、大小、位置等性质的学科。
在几
何的学习中,需要掌握图形的基本性质,如线段的长度、角的度数、面积和体积的计算等。
六、统计与概率
统计是研究收集、处理和分析数据的学科,需要掌握数据的分类、频数、频率、频率分布表、直方图等基本统计概念和知识;
概率是研究随机事件发生可能性的学科,需要掌握事件的排列组合、概率的计算等基本概率知识。
综上所述,八年级数学期中考的知识点包括有理数、代数式、方程、比例、几何、统计与概率等多个方面,涉及知识点较多,需要学生提前规划复习计划,逐步积累并巩固相关知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学期中考试知识点复习
第一章证明(二)
一. 等腰三角形
1. 性质:等边对等角
2. 判定:等角对等边
3. 推论:“三线合一”
4.等边三角形的性质及判定定理
例1、已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为()
A.30° B.45° C.36° D.72°
图1
例2、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()
A.30°
B.36°
C.45°
D.70°
已知等腰三角形一角,求其他两角的情况。
注意:等边三角形与轴对称、中心对称的关系。
二.直角三角形(含30°的直角三角形的边的性质)
※1. 勾股定理及其逆定理
※2. 命题与逆命题
※3. 直角三角形全等的判定定理
定理:斜边和一条直角边对应相等的两个直角三角形全等(HL )
三. 线段的垂直平分线
※1. 线段垂直平分线的性质及判定
※2.三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 例1、如图,△ABC 中,AB=AC ,DE 是AB 的垂直平分线, AB=8,BC=4,∠A=36°,则∠DBC=
,△BDC 的周长C △BDC = .
四. 角平分线
※1. 角平分线的性质及判定定理
※2. 三角形三条角平分线的性质定理
性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等. 例1、如图,ABC ∆中,DE A AC AB ,,ο40=∠=是腰AB 的垂
第3题
直平分线,求DBC
的度数。
平移与旋转轴对称图形的关系
例1、如图6-2-13,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为»BD,则图中阴影部分的面积是
__________.
第二章一元一次不等式和一元一次不等式组
一. 不等关系
准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.
非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0
非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0
二. 不等式的基本性质
注意:有且仅当不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
用数轴表示不等式的解集时,要确定边界和方向:
①边界:有等号的是实心圆圈,无等号的是空心圆圈;
②方向:大向右,小向左
认识“大于”、“小于”、“不大于”、“不小于”等含义;
一元一次不等式 解集 图示 叙述语言表达
x>b 两大取较大
x>a 两小取小 a<x<b 大小交叉中间找
无解
在大小分离没有解
(是空集)
例1、已知关于x 的不等式组⎩⎨⎧-≥->-1
250x a x 无解,则a 的取值范围是 。
例2、在平面直角坐标系中,点P (2x -6,x -5)在第四象限,则x 的取值范围是( )
A .3<x<5
B .-3<x<5
C .-5<x<3
D .-5<x<-3
分解因式
提公共因式法(注意提负号括号里变号)
易错点点评:
(1)注意项的符号与幂指数是否搞错;(2)公因式是否提“干净”;
(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.
例1、 分解因式:x-x 5 = 。
公式法
(1)平方差公式: ))((22b a b a b a -+=-
(2)完全平方公式: 222)(2b a b ab a +=++
十字相乘法
易错点点评:
因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底.
例1、已知x –3y=3,则 =+-223231y xy x
第五章 分式
1、分式有意义
2、分式值为0
3、分式的乘除与加减
4、分式的综合运算(化简求值通常与不等式、不等式组、解分式方程相结合)
5、分式方程的实际应用
例1、化简:b b a b a b b a b a a 22222122-÷+-+⋅- 222
24421y
xy x y x y x y x ++-÷+-- 平行四边形的性质与判定。