必修1函数的值域和求法

合集下载

必修1函数的定义域和值域

必修1函数的定义域和值域

2.函数y=x2-2x的定义域为{0,1,2,3},
那么其值域为
()
A.{-1,0,3}
B.{0,1,2,3}
C.{y|-1≤y≤3} D.{y|0≤y≤3}
答案: A
3.下列函数中,值域是(0,+∞)的函数是 ( B )
A.y=lgx
B.y=(13)1-x
C.y=|x-x 1|
D.y= 1-2x
函数值域或最值的常用求解方法 导数法
当一个函数在定义域上可导时,可根据其导 数求最值确定值域;
函数值域或最值的常用求解方法
判别式法
主要适用于可化为关于x的二次方程a(y)·x2+ b(y)·x+c(y)=0的函数y=f(x).在由Δ≥0且a(y)≠0, 求出y的最值后,要检验这个最值在定义域内是 否有相应的x的值.
解析:∵ x有意义,∴x≥0. ∴y=x2+3x-5=x+322-94-5 ∴当 x=0 时,ymin=-5.
答案: [-5,+∞)
函数值域或最值的常用求解方法
基本不等式法
具有可用基本不等式求解形状特征的函数,常利用基 本不等式 a+b≥2 ab求函数值域,应用基本不等式求值域 时,要注意条件“一正、二定、三相等”.即:①a>0,b>0; ②a+b(或 ab)为定值;③取等号条件 a=b.
法二:(换元法)令 1-2x=t,则 t≥0 且 x=1-2 t2, 于是 y=1-2 t2-t=-12(t+1)2+1, 由于 t≥0,所以 y≤12,故函数的值域是(-∞,12].
求函数的值域. y=x+ x+1;
解:由于 x≥-1, 又函数 y=x+ x+1在[-1,+∞)单调递增, 故所求的值域为[-1,+∞).
【解析】y=(13)1-x=3x-1=13·3x>0, 即 y=(13)1-x 的值域为 R+,其它都不符合.

北大师版高一数学上册--第一单元 求函数值域的八种方法(教师讲义)(含答案)

北大师版高一数学上册--第一单元 求函数值域的八种方法(教师讲义)(含答案)

高中数学:求函数值域的十三种方法一、观察法(☆ ) 五、判别式法(☆) 二、配方法(☆) 六、换元法(☆☆☆) 三、分离常数法(☆) 七、函数单调性法(☆) 四、反函数法(☆) 八、图像法(数型结合法)(☆)一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。

【例1】求函数1y =的值域。

0≥11≥,∴函数1y =的值域为[1,)+∞。

【例2】求函数的值域。

【解析】∵ ∴ 显然函数的值域是:【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。

练习:1、求242-+-=x y 的值域. 2.求函数y =的值域.二. 配方法:配方法式求“二次函数类”值域的基本方法。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

x 1y =0x ≠0x 1≠),0()0,(+∞-∞Y【例1】 求函数225,[1,2]y x x x =-+∈-的值域。

【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8]【变式】已知232x x ≤,求函数f x x x ()=++21的最值。

【解析】由已知232x x ≤,可得032≤≤x ,即函数f x ()是定义在区间032,⎡⎣⎢⎤⎦⎥上的二次函数。

将二次函数配方得f x x ()=+⎛⎝ ⎫⎭⎪+12342,其对称轴方程x =-12,顶点坐标-⎛⎝ ⎫⎭⎪1234,,且图象开口向上。

显然其顶点横坐标不在区间032,⎡⎣⎢⎤⎦⎥内,如图2所示。

函数f x ()的最小值为f ()01=,最大值为f 32194⎛⎝ ⎫⎭⎪=。

必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)

必修一 数学  定义域,值域,解析式 求法,例题,习题(含答案)

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合 (2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零; ☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()4xf x -=的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()4xf x -=的定义域为(-∞,1)∪(1,4] 故选:D 例2.函数2211y x x =-+-的定义域为( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数2211y x x =-+-可知: 2210{ 10x x -≥-≥,解得: 1x =±. 函数2211y x x =-+-的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤, 所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( ) A .[]052, B. []-14, C. []-55, D. []-37, 【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数212y x x =+-的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

高中数学必修一函数性质详解及知识点总结及题型详解

高中数学必修一函数性质详解及知识点总结及题型详解

经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。

高中数学必修一第二章:函数.第一节:值域

高中数学必修一第二章:函数.第一节:值域

高中数学(人教B 版)必修一:第二章 函数2.1.1 函数函数的值域一.值域:在函数y=f(x)中,由所有函数值构成的集合:{y |y=f(x),y ∈A},叫做这个函数的值域。

值域即因变量y 的取值范围,是函数的象的集合。

二.基本函数的值域: ①.一次函数y=kx+b [ y ∈R 或(-∞,+∞) ]②.二次函数y=ax 2+bx+c (a >0) ( , +∞)③.二次函数y=ax 2+bx+c (a <0) (-∞, ) ④.反比例函数y= [ y ≠0或(-∞,0) ∪(0,+∞)] 二.求函数的值域的方法:方法一.观察法:例一:求函数y= 的值域.例二:求函数y= 的值域.规律总结:当x ≥2时, = 。

当x ≤2时, = 。

当x ≥-2时, = 。

当x ≤-2时, = 。

方法二.分离常数法:——适用于分式。

例三:求函数y= 的值域.4a 4ac-b 2 4a 4ac-b 2 k x 1 1 x 2+1 x 2-1 x 1 x 1 x 1 x 1 2x-1 x+1例四:求函数y= 的值域.方法三.反表示法:用y 表示f(x).——适用于形如y= 的函数。

例五:求函数y= 的值域.方法四.二次函数配方法:配方、画图、截断——适用于形如F(x)=af(x)2+bf(x)+c 的函数。

例六:求函数y=x 2-4x+5的值域.方法五.换元法:——适用于带根号且根号下为一次式的函数。

例七:求函数y=x+ 的值域.方法六.判别式法:——适用于二次分式函数。

例八:求函数y= 的值域.x 2-1 x 2+1 af(x)+b cf(x)+d 2x-1 x+1 2x+1 x 2-3x+4 x +3x+4。

高中数学必修一-函数的值域与表示

高中数学必修一-函数的值域与表示

函数的值域与表示知识集结知识元常见的求函数值域类型知识讲解一、定义函数值的集合{f(x)|x∈A}叫做函数的值域.A是函数的定义域.二、求函数值域的常用方法(1)公式法:适用于一次函数、二次函数、反比例函数及以后要学的基本初等函数,形如(且分式不可约)的值域为.(2)图象法:适用于能画出图象的函数,如,.(3)不等式性质法(包含观察法、配方法、分离常数法、有界法):适用于解析式中只出现“一个”或通过变形化成只能出现“一个”函数,如:,等.(4)换元法:适用于无理式中含有自变量的函数,如等.(5)判别式:适用于形如(,不全为零且分式不可约)的函数.(6)方程思想(包括判别式法、反解法):适用于可解出的解析式函数,如等.例题精讲常见的求函数值域类型例1.函数f(x)=x+1,x∈{﹣1,1,2}的值域是()A.0,2,3B.0≤y≤3C.{0,2,3}D.[0,3]例2.函数y=的定义域是(﹣∞,1)∪[2,5),则其值域是()A.(﹣∞,0)∪(,2]B.(﹣∞,2]C.(﹣∞,)∪[2,+∞)D.(0,+∞)例3.函数y=的值域是()A.(﹣∞,1)∪(1,+∞)B.(﹣∞,0)∪(0,+∞)C.(﹣∞,)∪(,+∞)D.(﹣∞,)∪(,+∞)例4.函数的值域是.备选题库知识讲解本题库作为知识点“函数的值域”的题目补充.例题精讲备选题库例1.函的值域是()A.R B.[-1,1]C.{-1,1}D.{-1,0,1}例2.函数y=的值域是()A.[0,+∞)B.[0,4]C.[0,4)D.(0,4)例3.函数的值域为()A.[-1,+∞)B.[0,+∞)C.(-1,+∞)D.(0,+∞)例4.已知,则函数f(x)=log2x的值域是()A.[-3,-2]B.[-2,3]C.[-3,3]D.[-2,2]例5.函数y=2+1的值域为()A.[0,+∞)B.[1,+∞)C.[2,+∞)D.例6.已知函数f(x)=-,则函数f(x)的值域为()A.[-3,0]B.[0,3]C.[-3,3]D.[3,12]例7.下列哪个函数的定义域与函数f(x)=()x的值域相同()A.y=|x|B.y=C.y=x+D.y=lnx例8.定义函数f(x)={x∙{x}},其中{x}表示不小于x的最小整数,如{1.5}=2,{-2.5}=-2,当x∈(0,n],n∈N*时,函数f(x)的值域为A n,记集合A n中元素的个数为a n,则a n=()A.n B.C.D.图象法知识讲解1.图象法在坐标平面中用曲线的表示出函数关系.即图象上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图象上.这种由图形表示函数的方法叫作图象法.2.函数图象的作法步骤①列表;②.描点;③.连线.注意:一般情况下,函数需要同解变形后,结合函数的定义域,通过函数的对应法则,列出表格,然后在直角坐标系中,准确描点,然后连线(平滑曲线)例题精讲图象法例1.若a+b=0,则直线y=ax+b的图象可能是()A.B.C.D.例2.若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.例3.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点例4.已知函数f(x)=x2﹣2x,则下列各点中不在函数图象上的是()A.(1,﹣1)B.(﹣1,3)C.(2,0)D.(﹣2,6)例5.可作为函数y=f(x)的图象的是()A.B.C.D.图象的平移变换知识讲解一、变换作图法设,.例题精讲图象的平移变换例1.已知函数f(x)的图象关于直线x=1对称,如图所示,则满足等式f(a﹣1)=f(5)的实数a的值为.例2.已知反比例函数y=的图象如图所示,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.例3.若函数y=f(x)的图象如图①所示,则图②对应函数的解析式可以表示为()A.y=f(|x|)B.y=|f(x)|C.y=f(﹣|x|)D.y=﹣f(|x|)例4.函数y=f(x)的图象是两条直线的一部分(如图所示),其定义域为[﹣1,0)∪(0,1],则不等式f(x)﹣f(﹣x)>﹣1的解集为.例5.将y=f(x)的图象的横坐标伸长为原来的3倍,纵坐标缩短为原来的,则所得函数的解析式为()A.y=3f(3x)B.C.D.函数的解析式知识讲解一、解析法:用解析式把把x与y的对应关系表述出来,y=f(x);这种方法叫做解析法.注意:函数的三种表示方法间具有互补性,因此在实际研究问题时,通常是三种方法交替使用,例如在研究用解析式表示的某一函数的性质时,可以根据解析式画出函数图象,数形结合更清晰、直观,如何画函数图象?列表法,通常取其自变量的部分值,根据解析式算出相应的函数值,列表显示其数值的对应关系,再根据表格,在平面直角坐标系中描点,形成该函数的图象.二、求函数解析式的常用方法1.配凑法:原函数的表达式为,t是关于x的式子,要求的解析式,这是要把通过变形、整理,使其变为只含t与常数的式子,然后将t换成x,即可以得到的解析式,这种方法叫做配凑法.2.换元法:解题时,把某个式子看做整体,用一个新的变量取代替它,从而使问题简化,这种方法叫做配凑法.3.待定系数法:已知的函数类型,要求的解析式时,可根据类型先设出函数解析式,再将对应值代入,利用恒等式原理求出待定系数即可.4.解方程组法(或消元法):在已知式子中,含有关于两个不同变量的函数,而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的关于两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变量,得到目标变量的解析式,这种方法叫做解方程组法(或消元法).5.赋值法:如果一个函数关系式中的变量对某个范围内的一切值都成立,结合题设条件的结构特点,给变量适当赋值,从而使问题简单化、具体化.例题精讲函数的解析式例1.若函数,,则f(x)+g(x)=.例2.已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,则5a﹣b =.例3.已知f(x)=2x+3,g(x+2)=f(x),则g(x)等于()A.2x+1B.2x﹣1C.2x﹣3D.2x+7例4.已知g(x)=1﹣2x,f[g(x)]=(x≠0),则f()等于()A.15B.1C.3D.30例5.已知f(x+1)=2x2+1,则f(x﹣1)=.构造函数知识讲解例题精讲分段函数知识讲解1.定义分段函数是定义在不同区间上解析式也不相同的函数.若函数在定义域的不同子集上的对应法则不同,可用几个式子来表示函数,这种形式的函数叫分段函数.已知一个分段函数在某一区间上的解析式,求此函数在另一区间上的解析式,这是分段函数中最常见的问题.1.学习分段函数的注意事项(1)分段函数是一个函数,而不是几个函数;(2)处理分段函数问题时,要首先确定自变量的取值属于哪一范围,然后选取相应的对应关系.要注意写解析式是各自端点的开闭,做到不重复、不遗漏.(3)分段函数的定义域是各段定义域的并集,分段函数的值域是分别求出各段上值域的并集;分段函数的最大(小)值则是分别在没端上求出最大(小)值,然后取各个最大(小)值中的最大(小)值.例题精讲分段函数例1.设f(x)=,则f(5)的值为()A.10B.11C.12D.13例2.函数,其中P、M为实数集R的两个非空子集,又规定A={y|y =f(x),x∈P},B={y|y=f(x),x∈M},给出下列三个判断:①若P∩M=Φ,则A∩B=Φ;②若P∪M=R,则A∪B=R;③若P∪M≠R,则A∪B≠R.其中错误的判断是(只需填写序号).例3.已知函数f(x)=则f(f(5))=()A.0B.-2C.-1D.1例4.设f(x)=,则f(5)的值为()A.10B.11C.12D.例5.设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f (x2)=f(x3),则x1+x2+x3的取值范围是()A.(]B.()C.(]D.()列表法知识讲解1.列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法.例题精讲列表法例1.设f,g都是由A到A的映射,其对应法则如下表(从上到下):表1映射f的对应法则原象1234象3421表2映射g的对应法则原象1234象4312则与f[g(1)]相同的是()A.g[f(1)]B.g[f(2)]C.g[f(3)]D.g[f(4)]例2.已知函数f(x),g(x)分别由表给出,则f(g(1))=.x123 f(x)213 g(x)321例3.已知函数分别由下表给出x123f(x)131x123g(x)321则f(g(1))=.备选题库知识讲解本题库作为知识点“函数的表示方法”的题目补充.例题精讲备选题库例1.直线l1:y=kx+b和直线l2:(k≠0,b≠0)在同一坐标系中,两直线的图形应为()A.B.C.D.例2.函数f(x)=ln|x|-|x|的图象为()A.B.C.D.例3.二次函数y=ax2+bx+c(x∈R)的部分对应值如表:则不等式ax2+bx+c>0的解集是()A.(-∞,-6)∪(-6,+∞)B.(-∞,-2)∪(3,+∞)C.(-2,3)D.(-6,+∞)例4.已知函数f(x)=x2+bx,若函数y=f(f(x))的最小值与函数y=f(x)的最小值相等,则实数b的取值范围是______________。

人教A版高中数学必修第一册第三章3.1.1函数定义域和值域的求法课件

人教A版高中数学必修第一册第三章3.1.1函数定义域和值域的求法课件

②∵顶点横坐标23,4],当x=3时 ,y=-2,x =4时 ,y=1
∴在[3,4]上,Ymin =-2,Ymax=1; 值域为[-2,1].
解③略:
解④∵顶点横坐标2 ∈[0,5]当x=0时 ,y=1,x=2 时 ,y=-3, x=5时 ,y=6,∴ 在[0,1]上, Ymin =-3,ymax =6
② y=x²-4x+1 x∈[3,4]
③ y=x²-4x+1 ,x∈[0,1]④y=x²-4x+1 x ∈[0,5]
图 像
解:∵y=x²-4x+1 =(x-2)²-3

∴顶点为(2,-3),顶点横坐标为2 . (对称轴x=2)
①∵抛物线的开口向上,函数的定义域R
∴x=2时,Ymin=-3 ,无最大值;函数的值域是{yly≥-3 }.
1.2.函数定义域和值域的求法
函数
y=f(x )
因变量
对应法则
自变量
自变量的取值范围为
因变量的取值范围为
定义域
值域
对应法则一般为
函数的解析式
1:在初中我们学习了哪几种函数?函数表达式是 什么?它们的定义域值域各是什么?
一次函数: y=ax+b(a≠0) 定义域为R
反比例函数:
≠0) 定义域为{x|x≠0}
当 - 1<x≤1 时 ,y=(x+1)+(x-1)=2x
当 x>1 时 ,y=(x+1) 一(x-1)=2




由图知: -2≤y≤2

故函数的值域为
[-2,3]
课堂小结
求函数的值域的方法:
(1) 视察法; (2) 图象法;

必修一教案_求函数的值域

必修一教案_求函数的值域

课题:函数的值域的求法教学目的:掌握求函数值域的几种基本方法:直接观察法,配方法,分享常数法,换元法,数形结合法等。

教学重点:函数值域的基本求法方法的掌握;教学难点:配方法及换元法的掌握。

一、复习引入函数三要素:定义域,对应法则,值域。

一个函数的值域由定义域和对应关系唯一确定,所以我们求函数值域时一定要注意定义域。

二、讲授新课类型1、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

例1. 求下列函数的值域。

(1)3y =-(2)221y x =-(3)31y x =+类型2、配方法:配方法式求“二次函数类”值域的基本方法。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

例2.求函数225y x x =-+的值域。

思考:若[1,2]x ∈-呢?(2,0)x ∈-呢?类型3、分离常数法:分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法。

例3. 求函数346x y x +=-的值域。

思考:若3456x y x +=-呢?类型4、换元法:运用代数代换,将所给函数转化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b=+±a、b、c、d均为常数,且0a≠)的函数常用此法求解。

例4.求函数2y x=+类型5、图像法(数型结合法):函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。

例5.求函数|2||1|y x x=-++的值域。

思考:求函数|3||7|y x x=-++的值域呢?小结:1.直接法: 2.配方法: 3. 分离常数法: 4. 换元法: 5.:.图像法(数型结合法):作业:求下列函数的值域:(1)321x yx-=+(2)232,[1,2] y x x x=+-∈-(3) y x=+(4) y=(5) |1||3|y x x=-++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修1复习专题函数之二(值域)吴川三中文科数学出版一 相关概念 1、值域:函数A x x f y ∈=,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。

2、最值:求函数最值常用方法和函数值域的方法基本相同。

事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。

因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。

二 确定函数值域的原则1、当函数)(x f y =用表格给出时,函数的值域指表格中实数y 的集合;2、数)(x f y=的图像给出时,函数的值域是指图像在y 轴上的投影所覆盖的实数y 的集合;3、数)(x f y =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;4、由实际问题给出时,函数的值域由问题的实际意义决定。

三 基本函数的值域1、一次函数)(0≠+=a b kx y 的值域为R ;2、二次函数)(02≠++=a c bx ax y ;]44(0);44[022a b ac ,,a ,a b ac ,a --∞<∞+->值域是时值域是时 3、反比例函数)0(≠=k xk y 的值域为}0/{≠y y ;4、数函数)10(≠>=a a a y x且的值域为}0/{>y y ;5、对数函数)10(log ≠>=a a x y a 且的值域为R 。

6,函数y=sinx 、y=cosx 的值域是 ][1,1-四 求函数值域的方法1、观察法: “直线类,反比例函数类”用此方法;2、配方法.:“二次函数”用配方法求值域; 例1. ]53(232,求函数-∈+-=x x x y 的值域;解:1223)61(32322+-+-=x x x y =求函数画出图像(图略)从图可知, .721223)615(35;1223612maxmin=+-====,y x ,y x 时时所以此函数的值域为]721223[,. 例2. 求562---=x x y 函数 的值域;解:设;0562≥---=μμ,则x x ;44)3(5622≤++-=---=x x x μ.400≤≤∴≥μμ,又].2,0[],2,0[值域为∴∈μ3、换元法: 形如常用换元法求值域的函数且为常数、、、)0(≠+±+=a ,d c b a d cx b ax y ;例3. 求函数x x y -+=142的值域解:设2101t x x t -=≥-=则,44)1(224222≤+--=++-=∴t t t y , (]4,∞-∴值域为.4、判别式法:形如域的函数用判别式法求值不同时为零,)(2122221121a a c x b x a c x b x a y ++++=; 例4 求函数xx y 1+=的值域; 解:011122=+-⇒+=+=yx x xx x x y 要上面的方程有实数根,04114)(22≥-=⨯⨯--=∆y y求出12-≤≥y y 或,所以函数的值域为).,2[]2,(∞+--∞Y5、反函数法:直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

形如)0(≠++=a b ax d cx y 的函数用反函数法求值域;例 求函数y=6543++x x 值域。

6、分离常数法:形如)0(≠++=a bax dcx y 的函数也可用此法求值域; 例5求函数213-+=x x y 的值域;解:方法一:(反函数法)求出函数213-+=x x y 的反函数为312-+=x x y ,其定义域为}3/{≠∈x R x x 且,所以原函数的值域为}3/{≠∈y R y y 且 方法二:(分离常数法),27327)2(3213-+=-+-=-+=x x x x x y Θ .3273,027≠-+∴≠-x x Θ}.3/{213≠∈-+=∴y R y y x x y 且的值域为 7、函数有界性法 (通常和导数结合,是最近高考考的较多的一个内容)直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。

我们所说的单调性,最常用的就是三角函数的单调性。

例 求函数y=11+-x xe e ,2sin 11sin y θθ-=+,的值域8、数形结合法。

例6求函数的值域|4||1|++-=x x y (方法一可用到图象法) 方法二:(单调性)为减函数时32,4--=-≤x y x ;53)4(2=--⨯-≥∴y 为增函数时当32,1+=≥x y x ;5312=+⨯≥∴y ;514=<<-,y x 时当所以此函数的值域为[)∞+,5注:不论采用什么方法求函数的值域均应先考虑其定义域。

一.回顾与应用1.若函数y =f (x )的值域是[-2,3],则函数y =∣f (x )∣的值域是 ( )A .[-2,3]B .[2,3]C .[0,2]D .[0,3] 2.函数y=log 0.3(x 2+4x+5)的值域是 . 3.函数844)(2++-=x x x f 的值域为 .4.定义域为R 的函数y = f (x )的值域为[a ,b ],则f (x +a )的值域为 ( ) A .[2a ,a +b ] B .[0,b -a ] C .[a ,b ] D .[-a ,a +b ] 5.若函数f(x)=x 21log 2的值域是[-1,1],则函数f –1(x)的值域是( )A ]2,22[B [-1,1]C ]2,21[ D ),2[]22,(+∞⋃-∞ 6.函数y =x +2x -1的值域是 ( ) A .{y |y ≥12} B .{y |y ≤12} C .{y |y ≥0} D .{y |y ≤0}二.题型举例1.求下列函数的值域:(1)122+--=x x xx y (2)x x y 21--=2.已知x 1、x 2是方程x 2-(k-2)x+k 2+3k+5=0(k ∈R)的两个实根,求x 12+x 22的最大值。

3.已知函数862++-=m mx mx y 的定义域为R.(1) 求实数m 的取值范围。

(2)当m 变化时,若y 的最小值为f(m),求f(m)的值域。

三.课后练习 1.函数523+-=x x y 的值域是 ;.函数523+-=x xy )0(≥x 的值域是 。

2.函数y=-x(x+2)(x ≥0)的反函数的定义域是 。

3.若函数)2(log 221k kx x y +-=的值域为R ,则k 的取值范围是( )A 0<k<1B 0≤k<1C k ≤0或k ≥1D k=0或k ≥14.若函数y=x 2-3x-4的定义域为[0,m],值域为]4,425[--,则m 的取值范围是( ) A ]4,0( B ]4,23[ C ]3,23[ D ),23(+∞5.求下列函数的值域:(1) 11+-=xxe e y (2)x x y --=246.若函数23212+-=x x y 的定义域和值域都是[1,b](b>1),求b 的值。

7.已知函数f(x)=1-2a x -a 2x (a>1)。

(1)求f(x)的值域。

(2)若x ∈[-2,1]时,函数的最小值为-7,求a 及f(x)的最大值。

答案参考 1.D 2.]0,(-∞ 3. [0,3 ] 4. C 5. A 提示:反函数的值域是原函数的定义域;令1log 2121≤≤-x ,求x 。

6.A二.1.求下列函数的值域:解:(1)43)21(112+--=x y ,而 4343)21(2≥+-x ,所以3443)21(102≤+-<x143)21(11312<+--≤-x ; 所以函数的值域是)1,31[-(2)1]1212)21[(212121)21(21++-+--=+----=x x x x y=211211)121(212=+-≤++--x ,所以函数的值域是]21,(-∞。

2. 解:令 ∆=(k-2)2-4(k 2+3k+5)= -3k 2-16k-16≥0,得 344-≤≤-k 。

x 12+x 22=(x 1+x 2)2-2x 1x 2=(k-2)2-2(k 2+3x+5)= -k 2-10k-6= -(k+5)2+19因为 344-≤≤-k ,所以 9121)5(12≤+≤k ;-(k+5)2+19≤19-1=18。

故x 12+x 22的最大值是18。

3. 解:(1) m=0满足条件。

当m ≠0时,令 ⎩⎨⎧≤+->0)8(43602m m m m 解得 0<m ≤1,所以m 的取值范围是[0,1]。

(2)m x m m x x m y 88)3(88)96(22-+-=-++-=所以 f(m)=)10(88≤≤-m m ; 22)(0≤≤m f 。

故f(m)的值域为[0,22]。

三.课后练习1. }21,|{-≠∈y R y y ]53,21(- 2. ]0,(-∞ 3. C 4.C 解:f(0)= -4,f(23)=425-,f(3)=f(0),所以 m ]3,23[∈5. 解:(1)2120,121<+<+-=x x e e y ;所以-1<y<1。

即函数的值域是(-1,1)法二:y(e x +1)=e x -1, e x (y-1)= -y-1;yy e x-+=11,又e x >0;从而解得。

(2)2)22(6224)2(2≤+--=+----=x x x y ;函数的值域是]2,(-∞。

法二:xy -+=221'〉0,所以函数y 是]2,(-∞上的增函数,当x=2时,y 有最大值2,从而得结论。

6.解:1)1(212+-=x y ,y 在[1,b]上为增函数,f(1)=1,f(b)=b ; 所以 b b =+-1)1(212;解得:b=1(舍去)、b=3。

所以 b=37.解:(1)f(x)= -(a x +1)2+2<1;所以f(x)的值域是)1,(-∞。

(2)f /(x)<0,所以f(x)为R 上的减函数,所以 f(1)= -7;即 -(a+1)2+2= -7;a=2. f(-2)= -(2 –2+1)2+2=167 。

所以a=2,f(x)的最大值是167。

必修1复习专题之函数(定义域 解析式 分段函数) ----------答案【你会做哪些】1.π+1 2.D 3. - 4 4. B 5.D 6.B 7. 解析:本题路程S 与时间t的关系有3种情况,应分3个时间段处理.答案:.5.105.65.6550)5.6(6526026052,,,,,≤≤≤<≤=<⎪⎪⎩⎪⎪⎨⎧-+t t t t t S8. 18 4或-6 9. 3=a10. V =2)2(x a x -{x |0<x <a /2}【训练反馈】 1.B 2.A 3.C 4.D 5.B 6.D 7. {x |-1≤x <8} 8.(0,5] 9. y =⎪⎪⎩⎪⎪⎨⎧≤-≤+-≤+-≤≤.43,4,32,106,21,22,10,22x x x x x x x x x x πππ 10.提示:若k =0,则函数的定义域为R ;若k ≠0,则对任意x ∈R ,kx 2+4kx +3≠0,从而,△<0,解得0<k <34.从而所求k 的取值范围为{k |0≤k <34}. 12.(1)f (1) =0,f (4)=2;(2)增函数;(3)3<x ≤4. 补充专题1----如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_____________。

相关文档
最新文档