Hydrothermal synthesis of single-crystal CeCO3OH and their thermal conversion to CeO2

合集下载

一个非心单核单分子配合物的磁性与铁

一个非心单核单分子配合物的磁性与铁

一个非心单核单分子配合物的磁性与铁电性能的研究赵芳华,车云霞,郑吉民5(南开大学化学学院,天津 300071) 摘要:本文通过利用室温挥发法成功合成了一个非心配单核单分子配合物 [Cu(5-ATZ)4Cl 2] (1) (5-ATZ = 5-氨基四唑)。

单晶 X-射线衍射分析表明该配合物结晶于四方晶系,非心空 间群 P4nc,晶胞参数 a = b = 9.5134(10), c = 8.8507 (19) Å, α=β=γ= 90°, V =801.0(2)Å3。

磁性研究表明该配合物 1 具有弱铁磁行为,并在低温下呈现磁弛豫现象。

另 10外该配合物在室温下还具有铁电特征,其剩余极化强度 Pr = 0.015 μC/cm 2,矫顽场 Ec = 5.7 kV/cm 。

关键词:无机化学;单核单分子;非心配合物;磁性;铁电 中图分类号:061415An Acentric Mononuclear Molecular Complex with UnusualMagnetic and Ferroelectric PropertiesZHAO Fanghua, CHE Yunxia, ZHENG Jimin(Department of chemistry, Nankai University, TianJin 300071)Abstract: An acentric mononuclear complex Cu(5-ATZ)4Cl 2, 1, where 5-ATZ is the monodentate 205-amino-1-H-tetrazole ligand, has been prepared by slow evaporation at room temperature. X-ray single-crystal diffraction analysis reveals that complex 1 crystallizes in the tetragonal system, acentric space group P4nc with a = b = 9.5134(10), c = 8.8507 (19) Å, α = β = γ = 90°, V = 801.0(2) Å3. Magnetic studies indicate that 1 is a paramagnetic copper(II) complex that exhibits weak ferromagnetic exchange interactions with magnetic relaxation at low temperature. And 1 25exhibits ferroelectric hysteresis loops at room temperature with remanent polarizations of 0.015 μC/cm2 and coercive electric field of 5.7 kV/cm, respectively.Keywords: Inorganic Chemistry; Mononuclear molecule; Acentric complex; Magnetism; Ferroelectricity300 引言近年来,铁电材料由于其在信息存储、非线性光学方面的潜在应用价值而成为研究热点 [1-2]。

配合物[Co(H2biim)2(phth)]的水热合成、晶体结构与表征

配合物[Co(H2biim)2(phth)]的水热合成、晶体结构与表征

配合物[Co(H2biim)2(phth)]的水热合成、晶体结构与表征杨莉宁;崔斌;支燕翔;黑佳慧;张逢星【摘要】以2,2’-联咪唑(H2biim)和邻苯二甲酸(H2phth)为配体,以钴为中心离子采用水热方法合成了配合物[Co(H2biim)2(phth)],通过单晶X-射线衍射、红外光谱、紫外光谱、热重分析和元素分析等方法对其进行了晶体结构的解析和表征.晶体属于单斜晶系,P2(1)/n空间群,晶胞参数分别为α=0.849 39(3) nm,b=1.156 45(5) nm,c=2.059 40(10) nm,β=94.769°.V=2.015 90(15) nm3,D=1.619(g/cm3),Z=4.热重分析表明,该配合物在300℃以下稳定.%The complex[Co(H2biim)2(phth) ] was synthesized by hydrothermal method. It was characterized by elemental analysis, IR, UV and TG-DTA, the crystal structure was determined by X-ray diffraction. The results showed that the Co( Ⅱ)complex belongs to monoclinic with space group P2( 1 )/n,a = 0.849 39(3) nm,6 = 1.156 45(5) nm,c =2.059 40(10) um,β =94. 769°, V = 2. 015 90(15) nm3, D=1.619 (g/cm3),Z =4. Thermal gravimetric analysis showed that the complex is stable below 300℃.【期刊名称】《应用化工》【年(卷),期】2012(041)004【总页数】5页(P573-577)【关键词】2,2’-联咪唑;钴配合物;晶体结构;热稳定性【作者】杨莉宁;崔斌;支燕翔;黑佳慧;张逢星【作者单位】西安医学院药学院,陕西西安710021;西北大学化学与科学材料学院,陕西西安710069;西北大学化学与科学材料学院,陕西西安710069;西北大学化学与科学材料学院,陕西西安710069;西北大学化学与科学材料学院,陕西西安710069;西北大学化学与科学材料学院,陕西西安710069【正文语种】中文【中图分类】TQ138.1+2钴是生物学上重要的微量元素,它能在一些酶中代替锌,而不改变原来酶的活性[1],钴的光谱和磁性是酶活性部位的有效探针[2]。

水化硅酸钙的制备及其吸附性能

水化硅酸钙的制备及其吸附性能

水化硅酸钙的制备及其吸附性能张宏森;郭语桐;蒋保江;王君【摘要】为获得性能优异的吸附材料,以工业废物白泥和油页岩灰为原料制备水化硅酸钙,利用X射线粉末衍射仪和透射电子显微镜等分析其结构和形貌,并通过重金属吸附实验分析其吸附性能。

结果表明:水化硅酸钙具有薄片相互交错的网状结构,最佳合成条件为反应温度25℃、钙硅比1.5。

水化硅酸钙吸附过程符合Langmuir 吸附热力学模型。

它对U~(6+)、Pb~(2+)、Cd~(2+)、Cr~(3+)四种重金属离子的最大吸附容量均大于200 mg/g,去除率均大于86%。

其优异的吸附性能主要源于薄片层结构和离子交换机制。

该研究为溶液中重金属去除提供了廉价、高效的吸附材料,对于白泥和油页岩灰资源化利用亦具有推动作用。

【期刊名称】《黑龙江科技大学学报》【年(卷),期】2018(028)001【总页数】5页(P65-69)【关键词】水化硅酸钙;制备;吸附性能;油页岩灰;白泥【作者】张宏森;郭语桐;蒋保江;王君【作者单位】[1]黑龙江科技大学环境与化工学院,哈尔滨150022;[1]黑龙江科技大学环境与化工学院,哈尔滨150022;[2]黑龙江大学化学化工与材料学院,哈尔滨150086;[3]哈尔滨工程大学材料与化工学院,哈尔滨150001;【正文语种】中文【中图分类】TQ050.430 引言油页岩灰是油页岩加工利用过程中最主要的工业废物,主要成分是SiO2和金属氧化物,该产物数量巨大,长期堆放不仅占用大量的土地,而且会造成严重的环境污染[1]。

白泥是造纸生产过程中产生的主要工业废物,主要成分为CaCO3、CaSO4、CaCl2等钙盐,呈强碱性,每生产1 t粗浆要产生近0.5 t白泥,数量巨大,也会造成严重的环境影响 [2]。

目前,上述两种工业废物的资源化利用一直备受关注,学者们亦开展了大量研究工作。

Gao Guimei等[3-4]以油页岩灰或白泥为原料制备了二氧化硅微球、氧化铝、文石型碳酸钙等产品,处理工业废物的同时实现了资源化利用。

无机纳米材料的水热合成及其衍生方法

无机纳米材料的水热合成及其衍生方法

第35卷第10期2007年10月化 工 新 型 材 料N EW CH EM ICAL M A T ERIA L S Vo l 35No 1019综述与专论基金项目:国家自然科学基金(20476002)作者简介:何赐全(1979-),男,硕士研究生。

孙家跃(1955-),男,教授,博士生导师。

研究方向:光电功能材料。

无机纳米材料的水热合成及其衍生方法何赐全 杜海燕 孙家跃*(北京工商大学化学与环境工程学院应用化学,北京100037)摘 要 综述了纳米材料水热合成法的研究进展,并总结了水热合成法的优点和缺点,对水热合成法的反应机理作了初步的探讨,对水热反应中水的状态作了简要分析;对由水热法衍生出来的溶剂热和微波水热法也做了分析,介绍了溶剂热反应中经常使用的有机溶剂和微波反应中微波的加热机理;同时论述了目前这几种实验方法的实验进展和应用情况。

关键词 合成方法,水热,溶剂热,微波水热The hydrothermal synthesis method of abio nanoparticlesand it s extending methodH e Ciquan Du H aiyan Sun Jiayue(Beijing T echno logy and Business Univer sity Co lleg e of Chem ical and Enviro mental EngineeringApplied Chemistry,Beijing 100037)Abstract T he pr epar atio n of abio -nanoparticles by the hydro thermal sy nthesis methods w as summarized,discussed the advantag es and disadvantages o f these methods,the mechanism and the situatio n of the w ater in the chemical pr ocess wer e super ficially ana lyzed too ;also analyzed the extending metho d solvo ther mal synthesis and micr ow ave hydro ther mal sy nthesis methods,intro duced the so lv ents usually be used in these methods and the heating mechanism in the mi cr ow ave hydrot her mal synthesis;pointed out now aday s the pro ceeding and t he apply ing of t hese methods 。

水热固化海泡石基黏土的研究

水热固化海泡石基黏土的研究

第34卷第1期非金属矿Vol.34 No.1 2011年1月 Non-Metallic Mines January, 2011海泡石是一种含水纤维状的镁硅酸盐黏土矿物,其结构单元由两层硅氧四面体和中间一层镁氧八面体组成。

四面体的顶层是连续的,每6个硅氧四面体顶角相反,因此形成2∶1的层状结构单元、上下层相间排列的平行孔道。

由于这种特殊的结构使海泡石具有很大的比表面积和很强的吸附性能。

根据布朗和普赖辛格的结构模型计算,海泡石的总表面积为800~900 m2/g,海泡石阳离子的交换容量在20~45 mg/g [1]。

海泡石这一特殊的天然孔结构使其广泛应用于建筑、化工、农业等领域[2-4]。

然而目前应用的海泡石产品主要都是粉末、溶液或颗粒,缺少一定的强度,因而限制其更广泛的应用。

例如Mehmet Ugurlu [5]研究了热活化海泡石与酸活化海泡石对于工业染料废水的吸收净化作用。

但是该研究中利用的海泡石为粉末状,处理污水后变成难处理的泥浆,增加了后续处理的成本,不利于循环利用。

Sla v ica Lazare v ić等[6]研究重金属离子的吸附也存在同样的问题,使用过的海泡石泥浆不易于回收再利用。

要解决这类问题,有必要将海泡石粉末制成具有一定形状及强度的产品(造粒或块体),以便于回收再利用。

贾晓林等[7]研究了海泡石在涂料方面的应用。

他们利用海泡石的吸附性能将其作为涂料的填料使用,得到具有较高拉伸强度、低温柔性、不透水性并且提供良好的保温性能。

J. C. Gonz´alez等[8]在海泡石中引入活性炭来制备小球粒,期望能提高海泡石的调湿性能。

然而以上海泡石保温调湿的应用存在一个弊端,即产品无法大面积的使用因而调湿性能有限。

因此非常需要寻求一种将海泡石粉末固化成高强度块体材料的手段。

对于海泡石的固化最常用的方法是煅烧。

Manuel Mora等[9]发现,煅烧温度超过500 ℃时,海泡石中的结构水会脱除,从而引起海泡石孔闭合。

水热法制备高相变温度的二氧化钛纳米结构空心球

水热法制备高相变温度的二氧化钛纳米结构空心球






工 1
SPECIA LITY PE TR OCH EM ICA LS
水热法制备 高相变温度的二氧化钛纳米结构空心球
刘姝君
1, 2
刘桂霞
1
董相廷
1
杨晓峰
3
( 1. 长春理工大学化学与环境 工程学院 , 吉林 长春 132022; 2. 吉林工业职业 技术学院 , 吉林 吉林 132013; 3. 中国石油吉林石化研究院 , 吉林 吉林 132021)

, 而在 T iO 2 的 3 种晶型
中, 金红石相 T iO 2 光催化性不好 , 板钛矿相 T iO2 不具备光催化性, 只有锐钛矿型纳米晶体具有良 好的光催化性, 较低的相变温度大大限制了 T iO2 在抗菌陶瓷、 自洁陶瓷等需要热处理的光催化材 料中的应用。笔者采用简单的、 无模板的一步水 热法成功制备了具有高相变温度, 由纳米颗粒自
图2 试样的 FESEM 照片
度为 1. 0 # 10 m ol/ L 的罗丹 明 B 溶 液中 , 在 500 W 紫外灯下进行了光催化性能测试。图 5 为
- 5
第 27 卷 第 3 期
刘姝君 , 等 . 水热法制备高相变温度的二氧化钛纳米结构空心球
3
在二氧化钛空心微球的催化下, 不同降解时间后 的罗丹明 B 水溶 液的紫外吸收光谱。由图 5 可 见, 未降解前的罗丹明 B 在 552 nm 处有最大的 紫外吸收, 大约 25 m in 以后纳米二氧化钛空心微 球对 罗丹 明 B 的降 解率 可达 到 100% , 与 文献 [ 10] 相比具有更高的催化活性 , 能在更短的时间 内完全降解罗丹明 B 。
纳米结构空心材料具有低密度高比表面积高的稳定性和表面渗透性的特点同时其空心部分可以容纳大量的客体分子或大尺寸客体从而产生一些奇特的基于微观封装包裹效应的性质使其在化学生物技术材料科学领域具有极其广泛的应用前景如用作微胶囊的缓释材料药物输运轻质填料形状选择吸收剂和催化剂等68

水热法合成纳米硫化锌

水热法合成纳米硫化锌

化工中间体Chenmical Intermediate · ·34 2012年第02期温玲玲 王浩 胡秀娟 马亚娟(兰州交通大学化学与生物工程学院,兰州,730070)1.前言硫化锌(ZnS)是一种重要的Ⅱ-Ⅵ族半导体材料,其室温下带隙宽度为3.66 eV,激子结合能(38 meV)高于室温下的热能(25 meV)。

因此,在室温下有较强的激子发射[1]。

纳米硫化锌具有独特的光电效应,在电学、磁学、光学、力学以及催化等领域呈现出许多优异的性能。

因此,硫化锌的合成与应用研究一直是材料化学中的热点问题之一 [2]。

目前,制备半导体纳米材料的方法有溶胶法、反相胶束法、离子交换法[3, 4]、高分子模板法等[5],利用这些方法,可以获得不同形貌和粒径分布的纳米材料。

而ZnS 的制备方法主要有元素直接反应、离子交换反应、微乳液、溶剂热合成等方法[6~8]。

水热法制备的纳米粉体因其产品具有高纯、超细、流动性好、粒径分布窄、颗粒团聚程度轻、晶体发育完整、工艺相对简单以及烧结活性高等优点而受到关注。

水热法制备粉体是在液相中一次完成,不需后期的晶化热处理,从而避免了由于后期热处理而产生粉体的硬团聚、晶粒自行长大和容易混入杂质等缺点[9, 10]。

本文采用水热法在低温和较简单工艺条件下制备出了平均粒径为25nm水热法合成纳米硫化锌的球形ZnS 纳米粒子。

2.实验部分2.1主要原料氯化锌(ZnCl 2, AR)上海中秦化学试剂有限公司;硫代乙酰胺(C 2H5NS,AR),天津市轩昂科工贸有限公司;无水乙醇(CH 3CH 2OH,AR),安徽安特生物化学有限公司;配置溶液所用水为去离子水。

2.2 仪器Bruker AXS D8 Advance型X射线衍射仪(功率 18 KW,加速电压40kV,工作电流40mA,CuK,λ=1.54178);JEM1200EX 型透射分析电镜(精度0.14),日本电子光学公司;VERTEX-70 型傅里叶变换红外光谱仪,BRUKER公司;Helios B 型紫外可见分光光度计,上海精密科学仪器有限公司;H.H.S 11-2D 型电热恒温水浴锅,上海医疗器械五厂;SHZ-D(Ⅲ)循环式真空泵,巩义市英峪予华仪器厂;80-2型离心沉淀机,姜堰市新康医疗器械有限公司;玻璃仪器气流烘干器,巩义市英峪予华仪器厂。

水热法合成_Al_2O_3晶体

水热法合成_Al_2O_3晶体

第31卷第2期人 工 晶 体 学 报Vol.31 No.2 2002年4月JOURNAL OF SYNTHETIC C RYSTALS April,2002水热法合成 Al2O3晶体韦志仁,董国义,李志强,张华伟,王立明,佟鑫刚(河北大学物理科学与技术学院,保定071002)摘要:本文研究了不同矿化剂,不同温度对水热条件下合成 Al2O3晶体的大小、形貌和晶体质量的影响。

发现在矿化剂浓度为0.1M KOH和1M KBr条件下,填充度为35%,温度为380 时Al(OH)3只转化成薄水铝石,无 Al2O3晶体生成;388 时只是部分转化成 Al2O3;在395 以上时完全能转化成 Al2O3,晶体形状为六棱柱形。

在矿化剂浓度为1M KOH时,填充度35%,温度为380 时,即有部分Al(OH)3转化成 Al2O3,390 以上完全转化成 Al2O3,晶面主要显露菱面。

关键词:水热合成法;刚玉;晶体;矿化剂中图分类号:O782.2 文献标识码:A 文章编号:1000 985X(2002)02 0090 04Hydrothermal Synthesis of Al2O3CrystalWE I Zhi ren,DO NG Guo yi,LI Zhi qiang,Z HANG Hua wei,WANG Li ming,TONG Xin gang(College of Physics Science&Technol ogy,Hebei Univers ity,Baoding071002,Chi na)(Rece ived24Dece mbe r2001)Abstract:This paper is to study the effects of different mineralizer,temperature on the size,shape and quality of Al2O3crystal.It is found that when0.1M KOH and1M KBr are used as mineralizer at380 and the fill factor is approximately35%,Al(OH)3is not transformed into Al2O3but boehmite.Whereas under the same conditions at388 ,some of Al(OH)3is transfor med into Al2O3.W hen the temperature is above395 ,the synthesized crystal is entirely Al2O3whose shape is hexagonal prism.When only1M KOH is used as mineralizer and the fill factor is approximately35%at380 ,some of Al(OH)3is transformed into Al2O3.When the temperature is above395 ,all Al(OH)3is transformed into Al2O3whose shape is diamond.Key words:hydrothermal synthesis;c orundum;crystal;mineralizer1 引 言刚玉即 Al2O3是一种熔点很高的(2040 )氧化物晶体,有非常优良的物理化学性能,如仅次于金刚石的硬度,小摩擦系数,低电导率,高导热性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

OriginalarticleHydrothermal synthesis of single-crystal CeCO3OH and their thermal conversion to CeO2Kun Gao a,Yi-Yang Zhu a,Da-Qing Tong a,Li Tian a,Zhao-Hui Wang a,b,Xiao-Zu Wang a,*a College of Chemistry and Chemical Engineering,Nanjing University of Technology,Nanjing210009,Chinab State Key Laboratory of Materials-Oriented Chemical Engineering,Nanjing University of Technology,Nanjing210009,China1.IntroductionIn recent years,cerium compounds have been widely used incatalysis[1–4],fuel cells[5]and chemical materials[6–8]due totheir specific4f energy levels of the Ce-element[9,10].Among allthe cerium compounds,cerium carbonate hydroxide,as animportant functional material,has been attracted much attentionbecause of its novel electronic properties,optical properties andchemical characteristics arising from their4f electrons[9–12].Recently,cerium carbonate hydroxide with different morphol-ogies was synthesized by different methods,such as self-assembly,sonochemical[13,14],hydrothermal[15–18],and microwave-assisted hydrothermal route[19].Among all the preparationmethods,the hydrothermal process is considered to be an effectiveand economical route due to its merits of low synthesistemperature,high powder reactivity and versatile shape control[20–23].In a hydrothermal system,CeCO3OH with differentstructures corresponding to distinct morphologies have beensynthesized[18,24,25].There have been sufficient studies report-ing on the synthesis of different morphologies,for example,Guoet al.reported the synthesis of triangular micro-plate,bundle-like,shuttle-like andflower-like structures of CeCO3OH by hydrother-mal method[15,16,18].Li and Zhao synthesized single-crystallineCeCO3OH with dendrite-like structures through a facile hydro-thermal method and obtained CeO2by heating CeCO3OH at5008Cfor6h[26].Zhang et al.synthesized CeCO3OH rhombic micro-plates by the precipitation method in the presence of3-aminopropyltriethoxysilane[28].However,most of these reportson the synthesis of CeCO3OH micro/nanoparticles were preparedusing CO(NH2)2or HMT as the alkaline and carbon resource[13–18]and added surfactant or template to adjust the nucleation andcrystal growth of CeCO3OH particles[13,15–18,28],which makesthe process complex and raw materials more costly.So it isimportant to explore a facile method to synthesize morphology-controlled CeCO3OH micro/nanomaterials.In this paper,we report a simple method to synthesize dendrite-like CeCO3OH crystallites using CeCl3Á7H2O as the cerium source,triethylenetetramine as both an alkaline and carbon source.Thepolycrystalline CeO2was obtained by calcination of the precursor at5008C for4h,partly maintaining the dendrite-like morphology.Theoptical absorption properties of CeO2were also investigated.2.ExperimentalAll chemical reagents were of analytical grade without furtherpurification.In a typical synthesis,0.001mol of CeCl3Á7H2O wasdissolved in60mL deionized water to form a clear solution,andthen0.30mL triethylenetetramine was added to the transparentsolution in order to completely react with Ce3+at258C for about0.5h with continued stirring.The resulting homogenous solutionChinese Chemical Letters25(2014)383–386A R T I C L E I N F OArticle history:Received10August2013Received in revised form8September2013Accepted26September2013Available online1December2013Keywords:CeCO3OHHydrothermalCerium carbonate hydroxideNanostructuresA B S T R A C THexagonal single-crystalline cerium carbonate hydroxide(CeCO3OH)precursors with dendritemorphologies have been synthesized by a facile hydrothermal method at1808C using CeCl3Á7H2O asthe cerium source,triethylenetetramine as both an alkaline and carbon source,with triethylenete-tramine also playing an important role in the formation of the dendrite structure.Polycrystalline ceria(CeO2)have been obtained by calcining the precursor at5008C for4h.The morphology of the precursorwas partly maintained during the heating process.The optical absorption spectra indicate the CeO2nano/microstructures have a direct band gap of2.92eV,which is lower than values of the bulk powderdue to the quantum size effect.The high absorption in the UV region for CeO2nano/microstructureindicated that this material was expected to be used as UV-blocking materials.ß2013Xiao-Zu Wang.Published by Elsevier B.V.on behalf of Chinese Chemical Society.All rightsreserved.*Corresponding author.E-mail address:wangxiaozu@(X.-Z.Wang).Contents lists available at ScienceDirectChinese Chemical Lettersj o u rn a l h om e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/c c l e t1001-8417/$–see front matterß2013Xiao-Zu Wang.Published by Elsevier B.V.on behalf of Chinese Chemical Society.All rights reserved./10.1016/let.2013.11.047was transferred to a 100mL Teflon-line stainless steel autoclave,which was sealed and maintained at 1808C for 24h,and cooled to room temperature naturally.The white precipitate was collected by centrifugation,washed several times with distilled water and ethanol,and dried at 708C for 6h.The as-synthesized CeCO 3OH was calcined to produce straw-yellow CeO 2in air at 5008C for 4h.The XRD measurements were performed on a Bruker-D8Advanced X-ray diffractometer,equipped with graphite-monochromatizedhigh-intensity Cu K a radiation (l =1.5418A˚).The morphologies and sizes of the resulting products were examined by field-emission scanning electron microscopy (FESEM,Hitachi S-4800)and transmission electron microscopy (TEM,JEM2000EX),respec-tively.The thermal behavior of the resulting products was carried out by differential scanning calorimetric analysis (DSC)and thermogravimetric analysis (TG)with a Netzsch-449C simulta-neous TG/DSC apparatus heating from room temperature to 6008C (108C/min)in flowing air.UV/vis absorption spectra were acquired on a spectrophotometer (Shimadzu)and the analyzed range was 200–800nm.3.Results and discussionFig.1presents the typical XRD pattern of the as-synthesized CeCO 3OH products.All of the diffraction peaks in Fig.1can be exactly indexed to the pure hexagonal crystalline phase ofCeCO 3OH with lattice constants a =7.2382A˚,c =9.9596A ˚,which are in good agreements with the literature values (JCPDS 32-0189).No impurity peaks are detected,indicating the high purity of the final product.The strong and sharp diffraction peaks suggest that the products are highly crystallined.Fig.2shows a typical SEM image of the CeCO 3OH dendrite structure synthesized at 1808C for 24h.As shown in Fig.2,it reveals most of the as-prepared CeCO 3OH products display twofold-symmetric structures with a length of 1–2m m along the trunk.The detailed morphology of the structures of CeCO 3OH dendrites is further studied using TEM and SAED (Select-area electron diffraction).A typical high magnification TEM image of the structure of CeCO 3OH dendrites is shown in Fig.3.It reveals that the product is composed of a long central trunk with secondary and tertiary sharp branches,which are parallel to each other and emerge at 608angles with respect to the central trunk.The SAED pattern in the inset of Fig.3taken from an individual dendrite-like nanostructure is indexed to hexagonal CeCO 3OH,indicating that the individual is a single crystal.The diffraction pattern indicates the individual dendrite-like CeCO 3OH is well crystallized.The typical TG pattern of the as-prepared CeCO 3OH dendrite structure is shown in Fig.4a.The TG curve shows that CeCO 3OH begins to decompose at about 2808C and finishes at 6008C.Thetotal weight loss between 2808C and 6008C is measured at about 21.70%,which is close to the results in the theoretical value calculated from following reaction:4CeCO 3OH þO 2!4CeO 2þ2H 2O þ4CO 2(1)The DSC curve (Fig.4b)shows one endothermic peak with a maximum at 300.08C.The temperature range of the endothermic peak in the DSC curve agrees well with the weight loss in the TG curve,corresponding to endothermic behavior during the thermal decomposition/oxidation of CeCO 3OH to CeO 2.Fig.5shows the XRD pattern of CeO 2obtained by calcinations of as-prepared CeCO 3OH.All of the peaks are well assigned to pure face-centered cubic (fcc)structure of CeO 2with lattice constantsa =5.412A˚,which is in good agreement with the JCPDS card (No.43-1002).No obvious peaks for other elements or impurities were observed.The strong and sharp reflection peaks suggest that the as-prepared products are well crystallized.After the CeCO 3OH dendrites are calcined in air at 5008C for 4h,CeO 2dendrites are formed.As shown in Fig.6a,SEM image of CeO 2reveals that the dendrite morphology was partly sustained after thermal decomposition/oxidation to CeO 2.Fig.6b presents a typical TEM image of CeO 2dendrite and its corresponding ED pattern (Fig.6b inset).The discontinuous rings in ED pattern indicate that it could consist of CeO 2polycrystals with an oriented crystallographic axis.In our experiment,since triethylenetetramine was not used,noting products were obtained.Fig.7shows the SEM image of raw material (CeCl 3Á7H 2O),only erose particles were observed,indicating the triethylenetetramine plays an important role in the formation of CeCO 3OH dendrite structures.As is well known,triethylenetetramine at the room tempera-ture will release OH Àin the aqueous solution.Meanwhile,triethylenetetramine has large average capacities for the absorp-tion CO 2[27].So the CO 32Àanions in the solution may result from1020304050602θ (° )(002)(110)(112)(004)(300)(114)(302)(220)(222)(304)Fig.1.XRD patternof the CeCO 3OH dendrite-like nanostructure.Fig.2.SEM image of the as-synthesized CeCO 3OH.Fig.3.TEM image of the as-synthesized CeCO 3OH.K.Gao et al./Chinese Chemical Letters 25(2014)383–386384the possible oxidation of triethylenetetramine,the absorption andslight dissolution of CO 2from air.In the hydrothermal process,the C—N bond in triethylenete-tramine is the easiest bond to break,so upon heating to a certain temperature,triethylenetetramine hydrolyzes to form NH 4+and CO 32À.The cerium ions can exist in the form of [Ce(H 2O)n ]3+in aqueous solution,and then [Ce(H 2O)n ]3+is changed into [Ce(OH)(H 2O)n +]2+,and finally CeCO 3OH is obtained by the reaction between [Ce(OH)(H 2O)n À1]2+and CO 32À.It is proposed that dendrite structures are obtained through a seed-mediated growth in the presence of micelles of triethylenetetramine.The CeCO 3OH nuclei were created and used as seed center,these random moving nuclei in the environment can aggregate with each other to form anisotropic morphology.In our experiment,we consider that triethylenetetramine used as the alkaline and surfactant in the hydrothermal process.Therefore,existing triethylenetetramine,as a capping agent in the reaction system,is absorbed selectively on the different planes of CeCO 3OH seeds,helps to lower the surface energy and results in the different growth rate of different planes to form the dendrite structures.The real formation mechanism of CeCO 3OH dendrite structure needs further investigation.Fig.8shows the UV/vis diffuse absorption spectra of CeCO 3OH and CeO 2.Fig.8a shows the UV/vis absorption spectra for CeCO 3OH.The spectra displayed a strong absorption band below 400nm in the spectra.As seen in Fig.8b and 8c,when the synthesized particles were calcined to produce straw yellow CeO 2by heating at 5008C for 4h,the CeO 2has a stronger absorption band below 480nm in the spectra,which is originated from change-transfer transition between O 2p and Ce 4f bonds [28–30].The optional band gap E g can be determined based on the absorbance spectrum of the powders by the following equation:E g =1240/l AE ,where l AE is the edge wavelength of absorbance.The onset of absorption for CeO 2is at 425.3nm,which corresponds to the band gap energy (E g )of 2.92eV,lower than the values of bulk100200300400500600700800024681012←b. DSC cur veH e a t f l o w (m W /m g )Temerature (oC)← a . TG curve80859095100W e i g h t l o s s(%)Fig.4.TG-DSC pattern of the as-synthesized CeCO 3OH.10203040506070802θ (° )(111)(200)(220)(311)(222)(400)(311)(420)Fig.5.XRD pattern of the CeO 2sample.Fig.6.The typical SEM and TEM images of CeO 2obtained from thermal decomposition/oxidation of CeCO 3OH dendrite structure.Fig.7.SEM image of CeCl 3Á7H 2O powders.800700600500400300200b A b s o r b a n c e (a .u )Wavelength (nm)a800700600500400300200A b s o r b a n c e (a .u )Wavelength (nm)cFig.8.UV/vis absorption spectra of CeCO 3OH (a)and CeO 2(b),(c).K.Gao et al./Chinese Chemical Letters 25(2014)383–386385powders(3.19eV).In general,reduction in crystal size would increase the band gap width because of the quantum size effect [31].Hence,the high absorption in the UV region for CeO2show that the materials can be used as UV-blocking,shielding materials to avoid damage from ultraviolet rays and optical devices.4.ConclusionIn summary,we have successfully synthesized CeCO3OH dendrite structures by a facile hydrothermal method in the presence of triethylenetetramine.After annealing the CeCO3OH precursor powders at5008C for4h,CeO2nano/microstructures with dendrite morphology could be obtained with the morphology partly kept.It is believed that triethylenetetramine plays an important role in the growth of CeCO3OH dendrite structures.The optical absorption spectra indicate that the CeO2nano/microstruc-ture have a direct band gap of2.92eV,which is lower than the values of bulk powders.It is expected that these materials canfind potential application in catalysis and UV-blocking material. AcknowledgmentsThis work was supportedfinancially by the Program for Innovative Research Team in Jiangsu Province(No.SZK[2011]87), Creative and Innovative Talents Introduction Plan(No.SZT[2011]43) and Special Research Foundation of Young teachers of Nanjing University of Technology(No.39701007).References[1]D.Andreeva,I.Ivanov,L.Ilieva,et al.,Nanosized gold catalysts supported on ceriaand ceria–alumina for WGS reaction:influence of the preparation method, Powder Technol.333(2007)153–160.[2]rese,M.L.Granados,F.C.Galisteo,et al.,TWC deactivation by lead:a study ofthe Rh/CeO2system,Appl.Catal.B62(2006)132–143.[3]Y.Dai,B.D.Li,H.D.Quan,et al.,CeCl3Á7H2O as an efficient catalyst for one-potsynthesis of b-amino ketones by three-component Mannich reaction,Chin.Chem.Lett.21(2010)31–34.[4]M.Hajjami,A.G.Choghamarani,M.A.Zolfigol,et al.,An efficient and versatilesynthesis of aromatic nitriles from aldehydes,Chin.Chem.Lett.23(2012) 1323–1326.[5]G.Jacobs,L.Williams,U.Graham,et al.,Low-temperature water–gas shift:in-situDRIFTS reaction study of a Pt/CeO2catalyst for fuel cell reformer applications,J.Phys.Chem.B107(2003)10398–10404.[6]M.S.Tsai,Powder synthesis of nano grade cerium oxide via homogenous precipi-tation and its polishing performance,Mater.Sci.Eng.B110(2004)132–134. [7]D.S.Lim,J.W.Ahn,H.S.Park,et al.,The effect of CeO2abrasive size on dishing andstep height reduction of silicon oxidefilm in STI–CMP,Surf.Coat.Technol.200 (2005)1751–1754.[8]Y.H.Kim,S.K.Kimb,N.Kimb,et al.,Crystalline structure of ceria particlescontrolled by the oxygen partial pressure and STI CMP performances,Ultramicro-scopy108(2008)1292–1296.[9]A.W.Xu,Y.Gao,H.Q.Liu,The preparation,characterization,and their photo-catalytic activities of rare-earth-doped TiO2nanoparticles,J.Catal.207(2002) 151–157.[10]D.C.Koskenmaki,K.A.Gschneidner Jr.,Handbook on the Physics and Chemistry ofRare Earths,vol.1,North-Holland,Amsterdam,1978,pp.338–340.[11]Y.G.Sun,B.Mayers,Y.N.Xia,Template engaged replacement reaction:a one stepapproach to the large scale synthesis of metal nanostructures with hollow interiors,Nano Lett.3(2003)675–679.[12]A.P.Alivisatos,Semiconductor clusters,nanocrystals,and quantum dots,Science271(1996)933–937.[13]K.Li,P.S.Zhao,Synthesis and characterization of CeCO3OH one-dimensionalquadrangular prisms by a simple method,Mater.Lett.63(2009)2013–2015.[14]Z.Y.Guo,F.F.Jian,F.L.Du,Sonochemical synthesis of luminescent CeCO3OH one-dimensional quadrangular prisms,Mater.Res.Bull.207(2011)35–41.[15]Z.Y.Guo, F.L.Du,G.C.Li,et al.,Synthesis and characterization of single-crystal Ce(OH)CO3and CeO2triangular microplates,Inorg.Chem.45(2006) 4167–4169.[16]Z.Y.Guo,F.L.Du,G.C.Li,et al.,Synthesis and Characterization of bundle-likestructures consisting of single crystal Ce(OH)CO3nanorods,Mater.Lett.61(2007) 694–696.[17]M.Y.Cui,J.X.He,N.P.Lu,et al.,Morphology and size control of cerium carbonatehydroxide and ceria micro/nanostructures by hydrothermal technology,Mater.Chem.Phys.121(2010)314–319.[18]Z.Y.Guo,F.L.Du,G.C.Li,et al.,Hydrothermal synthesis of single-crystallineCeCO3OHflower-like nanostructures and their thermal conversion to CeO2, Mater.Chem.Phys.113(2009)53–56.[19]E.L.Qi,L.Y.Man,S.H.Wang,et al.,Microwave homogeneous synthesis andphotocatalytic property of CeO2nanorods,Chin.J.Mater.Res.25(2011)221–224.[20]L.Yan,R.B.Yu,J.Chen,et al.,Template-free hydrothermal synthesis of CeO2nano-octahedrons and nanorods:investigation of the morphology evolution,Cryst.Growth Des.8(2008)1474–1477.[21]X.J.Yang,X.P.Li,X.T.Bai,et al.,Facile synthesis and characterization of uniformCdS colloidal spheres,Chin.Chem.Lett.23(2012)1091–1094.[22]W.T.Yao,S.H.Yu,Recent advances in hydrothermal syntheses of low dimensionalnanoarchitectures,Int.J.Nanotechnol.4(2007)129–162.[23]D.Zhao,J.S.Tan,Q.Q.Ji,et al.,Mn2O3nanomaterials:facile synthesis andelectrochemical properties,Chin.J.Inorg.Chem.26(2010)832–838.[24]Z.H.Han,N.Guo,K.B.Tang,et al.,Hydrothermal crystal growth and characteri-zation of cerium hydroxycarbonates,J.Cryst.Growth219(2000)315–318. [25]C.H.Lu,H.C.Wang,Formation and microstructural variation of cerium carbonatehydroxide prepared by the hydrothermal process,Mater.Sci.Eng.B90(2002) 138–141.[26]K.Li,P.S.Zhao,Synthesis of single-crystalline Ce(CO3)(OH)with novel dendritemorphology and their thermal conversion to CeO2,Mater.Res.Bull.45(2010) 243–246.[27]Z.Wang,M.X.Fang,Y.L.Pan,et al.,Amine-based absorbents selection for CO2membrane vacuum regeneration technology by combined absorption–desorp-tion analysis,Chem.Eng.Sci.93(2013)238–249.[28]Y.W.Zhang,R.Si,C.S.Liao,et al.,Facile alcohothermal synthesis,size-dependentultraviolet absorption,and enhanced CO conversion activity of ceria nanocrystals, J.Phys.Chem.B107(2003)10159–10167.[29]N.Imanaka,T.Masui,H.Hirai,et al.,Amorphous cerium–titanium solid solutionphosphate as a novel family of band gap tunable sunscreen materials,Chem.Mater.15(2003)2289–2291.[30]S.Tsunekawa,T.Fukuda,A.Kasuya,Blue shift in ultraviolet absorption spectra ofmonodisperse CeO2Àx nanoparticles,J.Appl.Phys.87(1999)1318–1321. [31]Y.B.Yin,X.Shao,L.M.Zhao,et al.,Synthesis and characterization of CePO4nanowires via microemulsion method at room temperature,Chin.Chem.Lett.20(2009)857–860.K.Gao et al./Chinese Chemical Letters25(2014)383–386 386。

相关文档
最新文档