食品微生物论文
食品微生物检验论文

食品微生物检验论文摘要:食品微生物检测项目主要包括反映食品污染程度的指示菌和致病菌,分子生物学技术、免疫学方法和仪器分析法为主要检测技术。
要从不断提高检测人员素质、设施设备的配置和正确使用、采集有代表性的检测标本和运输保存过程中避免污染等方面,做好质量控制工作,保证检测结果的准确性和可靠性。
关键词:食品微生物检测项目检测技术质量控制随着经济社会的快速发展和人民生活水平的不断提高,出现了各种各样的食品安全问题,成为全世界关注的焦点问题[1]。
食品微生物检验是食品监测必不可少的构成部分,是判断被检食品是否可被食用、衡量食品卫生状况的重要指标和重要判定依据之一。
食品微生物检测结果反映出食品卫生环境和食品加工环境的具体现状,能评价食品为微生物污染的状况,为食品安全监督和管理工作提供重要的科学依据。
为了提高食品卫生质量,保障饮食安全,笔者对食品微生物检验的主要项目、检验技术和质量控制进行分析。
1 食品微生物检验项目1.1 食品污染程度指示菌在食品加工、运输、储存一直到食用前的任何环节,微生物均可以通过各种途径进入食品中造成污染。
检测食品中的大肠菌群和菌落总数,可以评定食品污染的程度。
大肠菌群是指载7 ℃的条件下,能分解乳糖、产气、产酸的需氧和兼性厌氧的革兰氏阴性无芽孢杆菌。
大肠菌群与粪便污染有关,一般认为该菌群细菌可包括大肠埃希氏菌、柠檬酸杆菌、产气克雷白氏菌和阴沟肠杆菌等。
因此将其作为粪便污染指标菌提出,表明食品是否存在粪便污染。
食品中的大肠菌群数是指在100 g或100 mL样本中,大肠菌群数的最近似数(MNP)表示。
大肠菌群数的高低,直接表明了粪便污染的程度,也间接反映了对人体健康危害性的大小。
食品中有粪便污染,则可以推测该食品中存在着肠道致病菌污染的可能性,可能出现食物中毒和流行病,对人体健康具有潜在的危险性。
菌落总数是指载37 ℃的普通琼脂培养基上,1 g或1 mL样品在培养24 h后所生长的菌落总数,是评定生活饮用水和食品污染程度的一个指标。
《食品与微生物》论文

由禽流感病感染人引发的思考摘要:2004年,亚洲爆发了高致病性的禽流感,数以千计的人们感染上了这种病,媒体的高度关注使得我们逐渐的认识到禽流感的严重性。
由于立即采取了一系列的防治措施,在较短的时间内使疫情得到了有效地控制,经历了禽流感流行后,我们对突发的传染性疾病的认识应该有一个新的提高。
尽管之前有其他地方和国家爆发过,但是集中的在中国爆发尚属第一次,也是从这次开始,我们一直思考这次事件背后到底是什么,是人类与大自然的关系?是人类与环境之间的关系,是人类与科技之间的关系?同时我们在这次事件中能看出我们国家还有制度的问题。
我们该建立什么制度呢?在本课程论文,我希望能够从这几个角度看待禽流感感染后留给我们的思考。
关键词:禽流感、大自然、环境、科技、制度1、何为禽流感禽流感是一种古老的禽类疾病,1878年首次在世界上出现。
自1997年科学家发现禽流感具备了感染人类的能力后,从2003年到2005年短短2年时间,全世界有64人因患禽流感而死亡。
禽流感病毒(A IV)属甲型流感病毒。
流感病毒属于RNA病毒的正黏病毒科,分甲、乙、丙3个型。
其中甲型流感病毒多发于禽类,一些亚型也可感染猪、马、海豹和鲸等各种哺乳动物及人类;乙型和丙型流感病毒则分别见于海豹和猪的感染。
甲型流感病毒呈多形性,其中球形直径80~120nm,有囊膜。
基因组为分节段禽流感病毒单股负链RNA。
依据其外膜血凝素(H)/和神经氨酸酶(N)蛋白抗原性的不同,目前可分为16个H亚型(H1~H16)和9个N亚型(N1~N9)。
感染人的禽流感病毒亚型主要为H5N1、H9N2、H7N7,其中感染H5N1的患者病情重,病死率高。
研究表明,原本为低致病性禽流感病毒株(H5N2、H7N7、H9N2),可经6~9个月禽间流行的迅速变异而成为高致病性毒株(H5N1)。
微生物与食品安全论文

微生物与食品安全论文微生物与食品安全摘要:微生物污染是指由细菌与细菌毒素、霉菌与霉菌毒素和病毒造成的动物性食品生物性污染。
这种污染危害人类健康,不仅较为多见,且易发生。
所以,了解微生物与食品安全的关系,能够让人们更好的选择食品,从而更加健康的生活。
关键词:微生物食品安全人体健康应用前景前言:人类对食品微生物的利用,起源很早。
远在公元前16~前11世纪,中国就会利用微生物酿酒。
16世纪,荷兰人A.van列文虎克首次制成了放大200~300倍的显微镜后,才看到微生物。
1857年,微生物学家L.巴斯德证实酒精的发酵过程由酵母引起,并经长期研究,奠定了微生物学的基础,解决了当时法国由于酒的变质给酿造业带来的重大损失问题,开创了巴斯德灭菌法(现称巴氏灭菌法)。
20世纪以来,由于电子显微镜的发明,生物化学和化学分析技术等学科的发展,促进了微生物学从细胞水平、亚细胞水平进入分子水平。
尤其是70年代遗传工程科学的发展,有力地推动了食品微生物学的发展。
通过诱变、细胞融合等技术,选育出高产的发酵食品微生物优良菌株,可提高产量,改变食品工业的面貌。
正文:食品微生物(food microorganisms)是与食品有关的微生物的总称。
包括生产型食品微生物(醋酸杆菌,酵母菌等)和使食物变质(霉菌,细菌等)和食源性病原微生物(大肠杆菌,肉毒杆菌等)。
微生物无处不在,可在食物链的任何环节侵入食品:从动物到田间的植物、从加工的食品到端上餐桌的食物。
如果我们食用的食物中有微生物繁殖,就可能造成疾病。
食品从生产原料、加工,一直到食用以前都有可能遭到微生物污染。
食品微生物包括3大类:①: 通过它的作用,可生产出各种饮料、酒、醋、酱油、味精、馒头和面包等发酵食品。
②:是引起食品变质败坏的微生物。
③:又称食源性病原微生物。
包括能引起人们食物中毒和使人、动植物感染而发生传染病的病原微生物。
可能对食品造成污染的微生物主要来自土壤、空气、水、人和植物及食品加工设备与包装材料。
食品微生物卫生与检验课程论文.doc

我国食品常见污染微生物及其监测分析摘要:食品安全直接关系到人民群众生命、健康、社会稳定的重大公共安全问题。
而微生物污染又是这其中最为重要的因素。
食品法典委员会将微生物健康危害列为食源性危害的三大原因之一。
我国对食物中毒案例的分析资料显示,微生物食物中度比例高达67%。
在国家质检总局每年的食品质量监督抽查中,微生物指标不合格的情况也相当严重。
近年来,我国食品安全问题尤其是奶制品安全事故时有发生,奶制品企业社会责任的缺失程度令人震惊, 2004年爆发的劣质奶粉事件促使全国的奶制品行业进行新的整顿;2008年的三鹿奶粉事件致使三鹿企业倒闭关门;然而蒙牛眉山黄曲霉素事件又一次挑战了消费者的底线。
关键词:奶制品微生物污染一、奶制品的供应链奶制品供应链是指以奶制品企业为核心,有关奶制品生产销售和流通的相关联的主体之间形成的一种网链结构我国奶业多采用公司+ 奶站+ 农户模式,即分散饲养集中挤奶模式,使得奶制品供应链涉及原奶环节奶站环节生产企业环节流通销售环节消费环节等奶农分散饲养奶牛,将原奶销售给奶站;奶站将统一收购的原奶再汇总卖给奶制品加工厂;加工厂将原奶制成各式奶制品,包括奶粉纯牛奶酸奶冰激凌等等;再流经销售环节(包括批发商各大超市便利店等),最后进入到消费领域二、奶制品的污染微生物奶与奶制品富含蛋白质、脂肪、糖、无机盐、维生素等多种营养物质,且易被人体消化吸收,适宜各个年龄段的人食用。
但奶与奶制品易受到微生物的污染,在适宜条件下,微生物在奶和奶制品中可迅速生长和繁殖,这不但降低了奶与奶制品的营养价值,影响其风味,而且会对消费者的健康造成损害。
奶制品的营养成分比较完全,都含有丰富的蛋白质,极易吸收的钙和完全维生素等。
所以奶与奶制品是微生物的良好培养基。
奶与奶制品被为污染后不及时处理,乳中的微生物机会大量繁殖,分解糖、蛋白质和脂肪等,产生酸性物、色素、气体及有碍产品风味及卫生的小分子产物及毒素,从而导致奶品出现酸凝固,色泽异常,风味异常等腐败变质现象。
微生物与食品安全论文

微生物与食品安全摘要:食品的微生物污染是指食品在加工、运输、贮藏、销售过程中被微生物及其毒素的污染。
其中微生物污染食品而危害人类健康最易发生,而且较为多见。
所以,了解微生物与食品安全、人类健康意义重大。
关键词:微生物食品安全人类健康应用前景前言:人类对食品微生物的利用,起源很早。
远在公元前16~前11世纪,中国就会利用微生物酿酒。
古书曾记载有:“仪狄作酒,禹饮而甘之”。
《商书》中也记载有:“若作酒醴,尔维曲;若作禾羹,尔维盐媒”。
“曲”是用谷物培养霉菌等微生物制成,“”是发芽的谷物,如作啤酒的麦芽,“媒”是含有乳酸菌之类的菜卤。
当时人们还不知道这是微生物的存在和作用。
直到16世纪,荷兰人A.van列文虎克首次制成了放大200~300倍的显微镜后,才看到微生物。
1857年,微生物学家L.巴斯德证实酒精的发酵过程由酵母引起,并经长期研究,奠定了微生物学的基础,解决了当时法国由于酒的变质给酿造业带来的重大损失问题,开创了巴斯德灭菌法(现称巴氏灭菌法)。
这种灭菌方法至今仍应用于酒、醋、酱油、牛奶、果汁等食品的灭菌。
20世纪以来,由于电子显微镜的发明,生物化学和化学分析技术等学科的发展,促进了微生物学从细胞水平、亚细胞水平进入分子水平。
尤其是70年代遗传工程科学的发展,有力地推动了食品微生物学的发展。
通过诱变、细胞融合等技术,选育出高产的发酵食品微生物优良菌株,可提高产量,改变食品工业的面貌。
正文:1.1微生物,有时也称细菌,实际上包括细菌、霉菌、酵母和病毒等引起食物中毒的有害微生物(注意:有些微生物是有益的,如乳酸菌、面包酵母等)。
由于这些生物个体十分微小,要通过显微镜才能看到,因此称为微生物。
微生物无处不在,可在食物链的任何环节侵入食品:从动物到田间的植物、从加工的食品到端上餐桌的食物。
如果我们食用的食物中有微生物繁殖,就可能造成疾病。
食品从生产原料、加工,一直到食用以前都有可能遭到微生物污染。
食品微生物包括3大类:①: 通过它的作用,可生产出各种饮料、酒、醋、酱油、味精、馒头和面包等发酵食品。
微生物与食品制造论文

微生物学与食品制造内容摘要:微生物与食品工业的关系随着人们对微生物认识的不断深入,微生物已被广泛应用于食品生产中。
此论文叙述了微生物在食品制造工业中的应用。
关键词:微生物代谢产物,生产工艺,发酵乳制品,酵母菌,酶引言:食品是人类赖以生存的营养来源和能量来源。
而微生物是所有形体微小、单细胞或个体结构简单的多细胞以至没有细胞结构的低等生物的总称¨。
微生物种类繁多、分布广、代谢类型多、代谢能力强、生长繁殖快、易培养、易变异、适应能力强,正是上述特性,使微生物与人类关系密切,几千年的人类生活积累了极为丰富的利用微生物制造食品或提高食品风味和防止微生物腐败食品的经验,至今理论上也已有很大的发展。
微生物与食品工业的关系随着人们对微生物认识的不断深入,微生物已被广泛应用于食品生产中。
今天,基因工程、固定化酶、固定化细胞等先进技术的应用,进一步发掘了微生物在食品工业中的巨大潜力。
我们要充分利用微生物有利的方面为食品工业服务,消除其有害影响,造福人类。
正文:一、微生物代谢产物的应用【细菌的应用】1 食醋食醋是我国劳动人民在长期的生产实践中制造出来的一种酸性调味品。
它能增进食欲,帮助消化,在人们饮食生活中不可缺少。
在我国的中医药学中醋也有一定的用途。
全国各地生产的食醋品种较多。
著名的山西陈醋、镇江香醋、四川麸醋、东北白醋、江浙玫瑰米醋、福建红曲醋等是食醋的代表品种。
食醋按加工方法可分为合成醋、酿造醋、再制醋三大类。
其中产量最大且与我们关系最为密切的是酿造醋,原理:它是用粮食等淀粉质为原料,经微生物制曲、糖化、酒精发酵、醋酸发酵等阶段酿制而成。
其主要成分除醋酸(3%~5%)外,还含有各种氨基酸、有机酸、糖类、维生素、醇和酯等营养成分及风味成分,具有独特的色、香、味。
它不仅是调味佳品,长期食用对身体健康也十分有益。
生产工艺:(1)原料目前酿醋生产用的主要原料有:薯类如甘薯、马铃薯等。
粮谷类;如玉米、大米等。
粮食加工下脚料如碎米、麸皮、谷糠等。
有关食品微生物检测论文范文

有关食品微生物检测论文范文【论文关键词】:食品微生物实验教学实验开放管理如何加强食品微生物实践教学的组织指导,如何调动学生的积极性,提高实验教学效果一直是我们关注和探索的问题。
下面简单谈一下我们在食品微生物实验教学中遇到的问题,解决的方法和对一些问题的思考。
1精心选择实验内容,调动学习积极性2强化基础技能的训练,有效组织管理实验教学食品微生物学是在掌握微生物的基本实验技能的基础上开展的,学生无菌操作观念的培养、正确使用、掌握微生物的实验仪器,如光学显微镜、灭菌消毒器械等都非常重要。
但基于很多原因,学生的这些基础技能还是很薄弱,所以我们在进行食品微生物的每一个实验的每一个步骤中只要涉及这些基础性的知识,都会给予强调,亲自演示。
学生微生物基础技能培养和形成,不是一两堂课能完成,也不是单单有老师演示后学生就可以掌握,必须让学生每人亲自动手。
但在实际教学过程中,由于学生人数的增加,硬件等条件限制,人手一套实验器材不现实,那么在有限人力、有限资源情况下,使每一位同学都能动手操作并熟悉实验过程,有效组织和管理实验教学过程就尤为重要。
(1)首先任课教师和实验技术人员充分做好预实验,对实验的关键步骤和关键操作点都做到心中有数,在授课过程中有重点地强调,并分析某步骤出现问题可能会出现的结果。
(3)在实验过程中则需要任课教师和实验技术人员相互协作,并充分发挥学生班干部和小组长的作用。
课堂理论教学课和实验课最大的区别在于,实验课更注重学生的动手参与,以及实验过程出现问题发现问题的及时解决。
(4)教师要严于律已,教师要严格要求自己,实验过程中耐心指导,热情帮助,回答好学生提出的每个问题,并随时纠正不正确或不规范操作。
实验课的成绩给定,往往包括实验课出勤率和实验报告成绩两方面综合。
所以首先就要求教师认真考勤,只有学生的出勤率有保证才能有效地组织教学活动。
其次,要求实验报告书写规范,详细完成实验报告,对实验结果进行讨论,实验失败要分析原因。
探究微生物在食品工业中的应用

探究微生物在食品工业中的应用微生物在食品工业中的应用摘要:微生物是食品加工中不可或缺的关键角色。
本论文探究了微生物在食品工业中的应用,包括发酵食品、酿酒和酿造、食品安全和质量控制等方面。
微生物的应用不仅提高了食品的营养成分和风味,还带来了经济效益和环境友好性。
然而,食品工业中的微生物应用还面临着一些挑战,如微生物污染、抗生素耐药性等。
通过加强监测和控制措施,可以最大限度地发挥微生物在食品工业中的正向作用。
关键词:微生物,食品工业,应用,营养成分,风味,安全和质量控制一、引言微生物广泛存在于自然界的各个角落,包括土壤、水、空气和生物体中。
它们是一类生命力强大的微小生物,包括细菌、真菌、病毒和其他微生物。
微生物在人类的生活中起着至关重要的作用,尤其是在食品工业中。
微生物的应用不仅可以改善食品的口感和风味,还可以增加食品的营养成分和延长其保质期。
本论文将探究微生物在食品工业中的应用,并讨论其带来的益处和挑战。
二、微生物在食品工业中的应用1. 发酵食品发酵食品是微生物应用在食品工业中最常见的领域。
发酵是一种通过微生物代谢产物的作用来改变食品特性的过程。
酵母菌、乳酸菌和霉菌等微生物在发酵过程中通过产生酸、醇、酶、氨基酸和维生素等物质,改变食品的味道、营养价值和质地。
常见的发酵食品包括酸奶、酒精饮料、酱油、味精、面包和乳酪等。
发酵食品不仅美味,而且具有健康的营养成分,如益生菌和维生素B。
此外,一些发酵食品还具有抗菌和抗氧化性质,有助于预防疾病和提高人体免疫力。
2. 酿酒和酿造酿酒和酿造是微生物在食品工业中的另一个重要应用领域。
酿酒是利用酵母菌进行发酵,将果实(如葡萄)、谷物(如大麦)或其他植物材料转化为含有酒精和芳香化合物的饮料。
不同的酿酒方式和微生物菌种可以生产出各种口味和质地的葡萄酒、啤酒和烈酒等。
酿造是利用霉菌进行发酵,将大豆、麦芽或其他植物材料转化为酱油、豆腐和醋等调味品。
酒类和酿造品不仅丰富了人们的饮食选择,而且成为了经济中的重要部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微生物食品——单细胞蛋白
PS
湛江师范学院生命科学与技术学院,湛江 524048
摘要:微生物都是核酸和蛋白质的实体,大多是单细胞,用发酵法生产这些单细胞微生物就可以得到极为丰富的单细胞蛋白。
微生物的繁殖速度惊人,一头体重500千克的牛,每天只能合成0.5千克的蛋白质。
而500千克的活菌体,只要有合适的条件,在24小时内能够生产1250千克的单细胞蛋白质。
单细胞微生物制造出来的蛋白质可以制造人造肉、人造鱼、人造面粉等食品。
关键词:微生物、食品、单细胞蛋白、营养
在日常生活中,我们不论有意无意,经常直接食用微生物或含有微生物的食品。
平常我们吃的蘑菇就是微生物的一种,令人难以置信,细菌和其他微生物含有和牛排一样多的蛋白质。
微生物食品在人类食谱中的比例越来越重。
目前,世界上还有2/3的人营养不良,缺少动物性蛋白,可见人类对蛋白质的需要越来越大。
毕竟地球上的动植物有限,产生的蛋白质更是有限的,因此需要在微生物方面做文章,势在必行。
(一)单细胞蛋白概念
1966年,在麻省理工学院召开的会议上,第一次提出单细胞蛋白的概念。
单细胞蛋白又叫微生物蛋白、菌体蛋白。
按生产原料不同,可以分为石油蛋白、甲醇蛋白、甲烷蛋白等;按产生菌的种类不同,又可以分为细菌蛋白、真菌蛋白等。
1967年在第一次全世界单细胞蛋白会议上,将微生物菌体蛋白统称为单细胞蛋白。
(二)单细胞蛋白含丰富营养物质及其原料来源
单细胞蛋白所含的营养物质极为丰富。
其中,蛋白质含量高达40%~80%,比大豆高10%~20%,比肉、鱼、奶酪高20%以上;氨基酸的组成较为齐全,含有人体必需的8种氨基酸,尤其是谷物中含量较少的赖氨酸。
一般成年人每天食用10~15 g干酵母,就能满足对氨基酸的需要量。
单细胞蛋白中还含有多种维生素、碳水化合物、脂类、矿物质,以及丰富的酶类和生物活性物质,如辅酶A、辅酶Q、谷胱甘肽、麦角固醇等。
而且单细胞蛋白质里氨基酸的种类比较齐全,有几种在一般食物里缺少的氨基酸,再单细胞蛋白里却大量存在.另外,还含有多种维生素,这也是一般食物所不及.正是由于单细胞蛋白具有这些突出的优点,现在人们用它加上相应的调味品做成鸡、鱼、猪肉的代替
品,不仅外形相象,而且味道鲜美,营养也不亚于天然的鱼肉制品;用它掺和在饼干、饮料、奶制品中,则能提高这些产品的营养价值.在畜禽的饲料中,只要添加3-10%的单细胞蛋白,便能大大的提高饲料的营养价值和利用率.用来喂猪可增加瘦肉率;用来养鸡可多产蛋;用来饲养奶牛还可提高产奶量.在井冈霉素、肌苷、抗菌素等发酵它又可代替粮食原料.
原料来源广泛:可作为单细胞蛋白生产原料的资源有:矿物(石油、液蜡、甲烷、泥炭等)、纤维资源(秸秆、木屑、糠稗、蔗渣等)、糖类资源(糖蜜、甘薯、木薯等)、工业有机废液(味精废液、淀粉废液、豆制品废液、酒精废液等)等。
既可变废为宝,又可获得高层次的综合经济效益,解决环境污染问题。
有些原料目前用于生产尚困难,但潜力很大,有广阔开发前景。
(三)单细胞蛋白优点
第一,生产效率高,比动植物高成千上万倍,这主要是因为微生物的生长繁殖速率快。
微生物世代间隔很短,生长速度比高等动、植物快得多。
肉牛体重加倍周期,肉牛为2个月,肉鸡为l0天,豆科牧草为2周,藻类6小时,酵母1~3小时,细菌只有0.5—1小时。
500公斤的奶牛,平均每天生产0.5公斤的蛋白质;而500公斤酵母种,1天可生产1250公斤蛋白质。
单细胞蛋白的生产投资如按年产1吨100%的蛋白质计算,分别为近海渔业、养蛋鸡和养猪业投资的56%、47%和12.7%
第二,生产原料来源广,一般有以下几类:
①农业废物、废水,如秸秆、蔗渣、甜菜渣、木屑等含纤维素的废料及农林产品的加工废水;
②工业废物、废水,如食品、发酵工业中排出的含糖有机废水、亚硫酸纸浆废液等;
③石油、天然气及相关产品,如原油、柴油、甲烷、乙醇等;④H2、CO2等废气。
第三,可以工业化生产,它不仅需要的劳动力少,不受地区、季节和气候的限制,而且产量高,质量好。
工业化生产单细胞蛋白,不与粮食和牧草争土地,不受气候的影响和约束,生产环境易控制,并能连续生产。
微生物是在大型立体的发酵罐中培养,即是在小面积的土地上生产大量菌体,不受季节及阳光的限制,且生产效率高,生产能力可达每时每立方米2~6公斤。
如以200立方米的培养罐,每日可以生产9600—28800公斤干酵母。
每年工作按300日计,可产2880—8640吨的优质蛋白质饲料;相当于3350~10050吨优质大豆,相当于2.2~6.7万亩土地栽培大豆的生产力。
(四)单细胞蛋白存在的问题
单细胞蛋白含有较多的核酸(6~18%)。
这种核酸过多会抑制动物的生长,而且大多
数动物和人代谢利用的能力有限,还可导致体内尿酸积存。
另外,细胞中有难于消化的类脂——细胞膜,影响蛋白质等营养物质的消化吸收。
因此在使用时要限量使用。
但生产上发现在家禽业和水产养殖业中应用效果很好,已经广泛应用;在营养平衡的条件下,可以代替鱼粉。
随着科学的发展,有可能辨认生产内源性核糖核酸酶的微生物和酶解细胞膜的酶解物,上述问题是可以解决的。
(五)单细胞蛋白的应用
早在第一次世界大战期间,德国的科学家就提出了大量培养微生物来补充人和动物的蛋白来源以解决食物短缺问题,并付诸实践。
他们不仅研制成功了大规模培养酵母以生产蛋白质的方法,而且创造出了营养丰富、味道鲜美的人造肉,开创了利用微生物生产蛋白质,造福于人类的先例。
1、直接应用——食用菌
近几十年来,人们逐渐认识了食用菌的生长规律,改进了古老的依靠孢子、菌丝自然传播的生产方式。
人工培养栽培种的菌丝,加快了食用菌的繁殖速度和获得高产的可能性。
有些国家还建成了年产鲜菇千吨以上的工厂。
1950年,全世界较大面积的栽培食用菌约5类,产量约7万吨,西欧一些生产蘑菇的国家,每平方米栽培面积的平均产量约为2000克左右。
到1980年,栽培种类已超过12类,产量约121万吨、有的国家每平方米的产量已提高到27千克。
近年来,还发展了既供观赏又供食品的家庭种菇和用菌丝体液体发酵生产食品添加剂的技术。
中国广泛栽培的食用菌有蘑菇、香菇、草菇、木耳、银耳、平菇、滑菇等7类,1982年总产量约15万吨,在掌握选育优良品种、改进制种和栽培技术的基础上,食用菌的发展速度正迅速提高。
科学家们预言,21世纪食用菌将发展成为人类主要的蛋白质食品之一。
2、间接应用——食品添加剂等
20世纪80年代中期,全世界的单细胞蛋白年产量已达2.0×106 t,广泛用于食品加工和饲料中。
单细胞蛋白不仅能制成“人造肉”,供人们直接食用,还常作为食品添加剂,用以补充蛋白质或维生素、矿物质等。
由于某些单细胞蛋白具有抗氧化能力,使食物不容易变质,因而常用于婴儿粉及汤料、作料中。
干酵母的含热量低,常作为减肥食品的添加剂。
此外,单细胞蛋白还能提高食品的某些物理性能,如意大利烘饼中加入活性酵母,可以提高饼的延薄性能。
酵母的浓缩蛋白具有显著的鲜味,已广泛用作食品的增鲜剂。
单细胞蛋白作为饲料蛋白,也在世界范围内得到了广泛应用。
任何一种新型食品原料的问世,都会产生可接受性、安全性等问题。
单细胞蛋白也不例外。
例如,单细胞蛋
白的核酸含量在4%~18%,食用过多的核酸可能会引起痛风等疾病。
总之,微生物单细胞蛋白工业在我国大有潜力可挖,也更适合我国的国情,一但进入大规模的商品化生产,必将对缓解蛋白饲料紧张、促进养殖业的迅速发展、增强人民的体质发挥重要的作用。
参考文献:
[1]卢金星.微生物与健康.北京,化学工业出版社,2004.8
[2]单细胞蛋白生产与应用/moncia/blog/item/e33ac1f59e2cc620bc310988.html
[3]单细胞蛋白/hy/xmsy/slyyy/200806/t20080603_394662.htm。