压力铸造工艺
压力铸造工艺流程

压力铸造工艺流程压力铸造是一种常见的金属件生产工艺,通过在高压下将熔融金属注入模具中,使其在模具中凝固成型。
这种工艺可以生产复杂形状的零件,并且具有较高的生产效率和良好的表面质量。
下面将详细介绍压力铸造的工艺流程。
1. 模具设计与制造首先,需要进行零件的模具设计与制造。
模具设计需要根据零件的形状和尺寸来确定模具的结构和尺寸,同时考虑到金属的液态流动特性和凝固收缩规律。
模具制造一般采用铝合金或钢材料,需要具有一定的强度和耐磨性。
2. 熔炼金属在进行压力铸造之前,需要先将金属材料进行熔炼。
常见的压力铸造金属包括铝合金、锌合金、镁合金等。
熔炼金属需要控制好熔炼温度和熔炼时间,以保证金属的纯净度和流动性。
3. 模具预热在进行压力铸造之前,需要对模具进行预热。
模具预热的目的是为了提高金属的流动性和凝固速度,同时减少金属与模具之间的热应力,防止模具变形或损坏。
4. 注射当模具预热完成后,将熔融金属通过注射系统注入模具中。
注射系统一般由注射机、注射活塞和喷嘴组成,通过控制注射压力和速度来实现金属的注入。
5. 压力保持在金属注入模具后,需要保持一定的压力以确保金属充填模具内部的每一个角落。
这一步需要根据金属的凝固特性和模具的结构来确定压力的大小和保持时间。
6. 凝固与冷却当金属充填模具后,开始凝固和冷却过程。
凝固和冷却的速度需要根据金属的类型和零件的厚度来确定,以保证零件的内部组织和表面质量。
7. 模具开启当零件凝固和冷却完成后,模具打开,取出成型的零件。
在取出零件之前,需要等待一定的时间以确保零件完全凝固。
8. 修整与处理取出零件后,需要进行修整和处理。
修整包括去除浇口、余料和表面氧化层,同时可以进行热处理或表面处理以提高零件的性能和表面质量。
以上就是压力铸造的工艺流程,通过这一流程可以生产出复杂形状的金属零件,并且具有较高的生产效率和良好的表面质量。
压力铸造在汽车、航空航天、电子等领域有着广泛的应用,是一种重要的金属件生产工艺。
压力铸造工艺介绍

卧式压铸机
热压室压铸机
3.压铸工艺三大要素 3.2.1 卧式压铸机工作原理
3.压铸工艺三大要素 3.2.2 立式压铸机工作原理
640~680℃
200℃左右 900~980℃
1. 密度低,比强度高 2. 流动性好 3. 减震性、磁屏蔽性能好
1.熔点低,流动性好,收缩小 2.可塑性好 3.铸件表面光滑,易做各种表面处理
因熔点高,模具寿命低,应减少使用
3.2 压铸机 3.压铸工艺三大要素
压铸机一般分为冷压室压铸机和热压室压铸机两大类。 冷压室压铸机按其压室结构和布置方式分为卧式压铸机和立式压铸机两种。
3.1 压铸合金
压铸合金应具备的特性: 易于压铸:流动性、收缩性、出模性等尽可能满足压铸的要求。 机械性能:强度、延伸性、脆性等满足产品的设计要求。 机械加工性:易于加工及加工表面的质量能达到产品设计的要求。 表面处理性:抛光、电镀、喷漆、氧化等要求能达到产品设计的要求。 抗腐蚀性:产品在最终的使用环境下具有一定的抗腐蚀性。
4.1 压铸各阶段4.压铸工艺的工艺参数
t1:金属液在压室中未承受压力的时间 t2:金属液于压室中在压射冲头的作用下,通过内 浇口充填型腔的时间 t3:充填刚刚结束时的瞬间 t4.压铸工艺的工艺参数
4.2 工艺参数的选4择.压铸工艺的工艺参数
影响充型的主要因素包括:压力、速度、温度、时间,而各个因素是相互影响和制约的。调整某一 因素,其他因素也会随之变化,因此需对这些工艺参数进行正确选择和调整才能保证生产。
2.1 定义
低压铸造和高压铸造

低压铸造和高压铸造低压铸造和高压铸造是两种常见的铸造工艺,它们在生产中起着重要的作用。
本文将分别介绍低压铸造和高压铸造的工艺原理、应用领域以及优缺点,以便更好地理解这两种铸造方法。
一、低压铸造低压铸造是一种通过施加低压力来实现铸造的工艺。
在低压铸造中,首先将金属加热至熔化状态,然后将熔融金属注入到模具中。
与传统的铸造工艺相比,低压铸造具有以下特点:1. 工艺原理在低压铸造中,使用一个压力室将金属液体注入到模具中。
通过施加一定的低压力,使金属液体充分填充模具的腔体,并保持一定的压力。
待金属凝固后,通过减小压力,模具可顺利脱模,得到所需的铸件。
2. 应用领域低压铸造适用于生产复杂形状、精度要求较高的零件。
例如,汽车发动机缸体、航空航天部件、工程机械零部件等都可以采用低压铸造工艺。
3. 优缺点低压铸造具有以下优点:首先,铸件的内部结构致密,无气孔,力学性能较好;其次,铸件表面光洁度高,无需二次加工;此外,低压铸造可实现自动化生产,提高生产效率。
然而,低压铸造的设备成本较高,操作要求较严格,对模具的要求较高,且生产周期较长。
二、高压铸造高压铸造是一种通过施加高压力来实现铸造的工艺。
在高压铸造中,金属经过加热熔化后,以较高的压力迅速注入模具中,填充整个腔体。
相比于低压铸造,高压铸造具有以下特点:1. 工艺原理在高压铸造中,金属液体被注入到模具中后,通过施加较高的压力,使其充分充实模具腔体。
随着金属的凝固,压力逐渐减小,直至脱模。
高压铸造一般会使用压铸机进行操作。
2. 应用领域高压铸造广泛应用于汽车、电子、家电等行业的零部件生产。
由于高压铸造能够生产出高精度、高强度的铸件,因此在各个领域都有重要的地位。
3. 优缺点高压铸造具有以下优点:首先,生产效率高,适用于大规模、批量生产;其次,产品精度高,表面光洁度好;此外,高压铸造可使用多种材料,适应性强。
然而,高压铸造设备成本较高,模具制造周期长,且对模具的要求较高。
压铸工艺

4.全立式冷压室压铸机的压铸过程
(1)冲头上压式
2
3
4 5 6
7
1
1—压射冲头 2—熔融合金 3—压室 4—动模 5—定模 6—型腔 7—余料
a)熔融合金浇入压室 c)开模→冲头上升推出余料
b)合模→压射→熔融合金充填型腔 d)推出压铸件→冲头复位
8
<压铸模、锻模及其他模具>
4.全立式冷压室压铸机的压铸过程
面的形状和位置精度,同时,压铸件的变形也是不可忽略的 影响因素。
表1-5 压铸件平行度和垂直度公差;
表1-6 压铸件同轴度和对称度公差。
18
<压铸模、锻模及其他模具>
二.压铸件的表面质量
压铸件的表面粗糙度值,一般比模具成型表面的粗糙度 值低两级。新模具可获得Ra值为0.8μm的压铸件。
模具在正常使用寿命内: 锌合金铸件Ra=1.6-3.2μm 铝、镁合金铸件Ra=3.2μm 铜合金铸件受模具龟裂的影响表面质量最差。
6.经济效益好。
11
<压铸模、锻模及其他模具>
但是压铸生产也存在一些缺点: 1.压铸件易出现气孔和缩松; 2.不适合小批量生产; 3.模具的寿命低; 4.受压铸件结构和合金种类所限。
目前主要压铸锌合金、铝合金及铜合金,黑色合金压铸生产尚不普遍。
12
压铸模、锻模与其他模具
第一章
压铸工艺
Chapter2 The technology of die casting
<压铸模、锻模及其他模具>
四.压铸件的结构工艺性
1.压铸件的壁厚
厚壁压铸件中心层晶粒较大,易产生气孔、缩孔等缺陷,使其强度 和致密性随壁厚的增大而下降。 因此,在保证强度和刚度的前提下,应尽量减小壁厚,通常工艺条 件下以不超过4.5mm为宜。同时,要尽量使各截面壁厚均匀,在较厚部 分采用设加强肋的方法防止铸件缺陷。 需要注意的是,铸件壁厚太薄将会导致欠铸、冷隔现象的产生。
《压铸工艺及模具设计》复习题答案

压铸模具设计复习题一、名词解释1、压力铸造:压力铸造是将熔融状态或者半熔融状态的金属浇入压铸机的压室,在高压力的作用下,以极高的速度充填在压铸模(压铸型)的型腔内,并在高压下使熔融或者半熔融的金属冷却凝固成形而获得铸件的高效益、高效率的精密铸造方法。
2、压射压力:压射压力Fy是压射机构(压射缸内压射活塞)推动压室冲头运动的力,即压射冲头作用于压室中金属液面上的力。
3、压射速度:即压室内压射冲头推动金属液的移动速度(又称冲头速度)4、内浇口速度:是指金属液通过内浇口时的线速度(又称充填速度)5、合金浇注温度:是指金属液从压室进入型腔的平均温度,因测量不便,通常以保温炉内的温度表示。
一般高于合金液相线20~30℃6、模具的工作温度:模具的工作温度是连续工作时模具需要保持的温度。
7、充填时间:金属液自开始进入模具型腔直至充满型腔所需的时间称为充填时间。
8、增压建压时间:是指金属液在充模的增压阶段,从充满型腔的瞬时开始,至达到预定增压压力所需的时间,也就是比压由压射比压上升到增压比压所需的时间。
9、压室充满度:浇入压室的金属液量占压室容量的百分数称压室充满度。
10、压铸机的压射机构:是将金属液推送进模具型腔填充成型为压铸件的机构。
二、填空题(每空1分,共计20分)1、金属液充填理论主要有:喷射充填理论、全壁厚充填理论、三阶段充填理论2、压铸按压铸机分类:热室压铸、冷室压铸3、液态金属成型新技术有:真空密封造型、气压铸造、冷冻造型4、压铸用低熔点类合金主要有:锌、锡、铅。
5、压铸生产中,要获得表面光滑及轮廓清晰的压铸件,下列因素起重要作用:(1)压射速度(冲头速度);(2)压射比压;(3)充填速度(内浇口速度)。
6、压铸铁合金种类:压铸灰铸铁、可锻铸铁、球墨铸铁、低碳钢、不锈钢、合金钢和工具钢等。
7、铸造方法有砂型铸造、特种铸造。
压铸工艺属于特种铸造工艺范畴。
8、常见压铸的分类方法:按压铸材料分类、按压铸机分类、按合金状态分类9、压铸按压铸材料分类:单金属压铸、合金压铸10、压铸用高熔点类合金主要有:铝、镁、铜。
压力铸造设备及其工艺

压铸的三要素—压铸模:
压铸模的结构
就是由优质钢材围成的可以形成零件的空腔。
就是将合金液引入成型系统,并排除气体和杂质的通道。
由结构钢组成的用以支撑、定位、导向的结构。
保证模具的工作温度。(保证模具的温度符合工艺的要求,提高模具的寿命;包括冷却水道、软管铜管、接头、模温机等。铝合金压铸模 预热温度:150~200℃ 工作温度:180~225℃ )
通常主要按机器结构和压射室(以下简称压室)的位置及其工作条件加以分类: 压铸机分热压室压铸机和冷压室压铸机两大类。 冷压室压铸机按其压室结构和布置方式又分卧式、立式两种形式。
压铸机的分类及其工作方式:
热压室压铸机 冷压室压铸机 热压室压铸机与冷压室压铸机的合模机构是一样的,其区别在于压射、浇注机构不同。热压室压铸机的压室与熔炉紧密地连成一个整体,而冷压室压铸机的压室与熔炉是分开的。 立式压铸机
压铸工艺的过程:
集中融化 机边保温 配置涂料 压铸操作循环
压铸过程
压铸过程
压铸过程
压铸过程
压铸过程
压铸过程
压铸过程
压铸的三要素--原材料;
压铸的三要素--压铸模;
压铸的三要素--压铸机;
压铸的三要素:
压铸的三要素--原材料:
对原材料的要求
满足两方面要求
良好的成型工艺性 包括: 1.铸造成型工艺性; 2.切削加工性; 3.焊接性能; 4.电镀性能; 5.热处理性能等;
合模机构
PART ONE
液压系统 电气系统
压铸机的工作方式: (1)合拢模具; (2)将金属液以人工或自动方式浇入压室(多数以自动方式); (3)压射冲头按预定的速度和一定的压力推送金属液填充进入模具型腔; (4)填充完毕,冲头保持一定的压力,直至金属液完全凝固成为压铸件为止; (5)打开模具,冲头与开模动作同步移动,从而推着余料饼随着压铸件和浇口一同留在动模而脱离定模,到达一定的距离时,冲头便返回复位; (6)开模后,压铸件、浇口和余料饼留在动模上,随即顶出并取出压铸件; 至此,完成一次压铸循环。
压力铸造工艺过程
压力铸造工艺过程压力铸造工艺过程工艺(technology、craft)是指劳动者利用各类生产工具对各种原材料、半成品进行加工或处理,最终使之成为成品的方法与过程。
下面是小编收集整理的压力铸造工艺过程,仅供参考,希望能够帮助到大家。
压铸模锻工艺是一种在专用的压铸模锻机上完成的工艺。
它的基本工艺过程是:金属液先低速或高速铸造充型进模具的型腔内,模具有活动的型腔面,它随着金属液的冷却过程加压锻造,既消除毛坯的缩孔缩松缺陷,也使毛坯的内部组织达到锻态的破碎晶粒。
毛坯的综合机械性能得到显著的提高。
另外,该工艺生产出来的毛坯,外表面光洁度达到7级(Ra1.6),如冷挤压工艺或机加工出来的表面一样,有金属光泽。
所以,我们将压铸模锻工艺称为“极限成形工艺”,比“无切削、少余量成形工艺”更进了一步。
压铸模锻工艺还有一个优势特点是,除了能生产传统的铸造材料外,它还能用变形合金、锻压合金,生产出结构很复杂的零件。
这些合金牌号包括:硬铝超硬铝合金、锻铝合金,如LY11、LY12、6061、6063、LYC、LD等)。
这些材料的抗拉强度,比普通铸造合金高近一倍,对于铝合金汽车轮毂、车架等希望用更高强度耐冲击材料生产的部件,有更积极的意义。
一、压铸简介压力铸造简称压铸,是一种将熔融合金液倒入压室内,以高速充填钢制模具的型腔,并使合金液在压力下凝固而形成铸件的铸造方法。
压铸区别于其它铸造方法的主要特点是高压和高速。
①金属液是在压力下填充型腔的,并在更高的压力下结晶凝固,常见的压力为15—100MPa。
②金属液以高速充填型腔,通常在10—50米/秒,有的还可超过80米/秒,(通过内浇口导入型腔的线速度—内浇口速度),因此金属液的充型时间极短,约0.01—0.2秒(须视铸件的大小而不同)内即可填满型腔。
压铸机、压铸合金与压铸模具是压铸生产的三大要素,缺一不可。
所谓压铸工艺就是将这三大要素有机地加以综合运用,使能稳定地有节奏地和高效地生产出外观、内在质量好的、尺寸符合图样或协议规定要求的合格铸件,甚至优质铸件。
铸造工艺与方法
铸造工艺与方法铸造是一种通过熔化金属并将其倒入模具中,然后让其冷却凝固的制造工艺。
铸造工艺广泛应用于制造各种金属零件和组件。
它提供了一种经济、快捷且适用于大批量生产的方式,同时还能制造出复杂形状的产品。
在本文中,我们将深入探讨铸造工艺的几种常见方法和一些重要的工艺要点。
一、砂型铸造砂型铸造是最常见的铸造方法之一。
它的工艺流程包括模具制备、芯型制备、铸型浇注、冷却凝固、脱模和清理等几个重要步骤。
在砂型铸造中,铸造材料通常是一种基于石英砂或其他矿物砂的砂浆。
这种砂浆可以轻松塑造出复杂的产品形状,并具有较好的耐高温性能。
二、金属型铸造金属型铸造是一种利用金属模具进行铸造的方法。
与砂型铸造相比,金属型铸造可以制造出更加精确和表面光滑的产品。
金属型通常采用铸铁、铸钢或铝合金等材料制成。
这种方法适用于制造高精度、高质量要求的零件,但成本相对较高。
三、压力铸造压力铸造是一种通过施加高压将熔融金属注入模具中,使其快速凝固的方法。
压力铸造可分为冷室压力铸造和热室压力铸造两种类型。
压力铸造具有生产周期短、产品质量稳定的优点,广泛用于制造汽车零部件、航空航天零件等高要求的产品。
四、蜡型铸造蜡型铸造是一种精密铸造方法,通常用于制造复杂形状的零件。
在蜡型铸造中,首先制作出与最终产品形状相同的蜡模。
然后将蜡模浸入石膏混合物中,形成石膏壳体。
当石膏干燥后,将其放入高温烘箱中,使蜡模燃尽,留下空腔。
最后,将熔融金属倒入石膏壳体,待其冷却凝固后,获得成品。
蜡型铸造可以制造出高精度和精细表面处理的产品。
五、连铸连铸是一种用于生产连续坯料(铜、铁、铝等)的铸造工艺。
它是通过将熔融金属倒入长型模具中,然后通过冷却凝固使其形成坯料。
连铸工艺具有高效性和高质量的优点,被广泛应用于钢铁和有色金属工业中。
在选择合适的铸造工艺时,需要考虑到产品的设计要求、成本、生产周期以及所需材料等因素。
此外,铸造过程中还应注意控制合金的化学成分、铸型的温度和湿度,以及铸造过程中的冷却速度,以确保产品质量。
压力铸造工艺介绍
压力铸造工艺介绍压力铸造是一种将熔融金属通过压力注入模具中形成所需零件的工艺。
它通常用于生产具有复杂几何形状的零部件,比如汽车发动机缸体、航空航天部件和电子设备外壳等。
本文将介绍压力铸造的工艺流程、设备和应用。
压力铸造的工艺流程包括准备工作、注射、凝固和取模四个主要步骤。
首先,需要准备好模具,并在其内表面涂上涂料或涂腻子,以防止金属液渗透。
然后,将金属锭放入熔炉中进行熔化。
一旦金属达到所需温度,就可以开始注射。
注射是指将熔融金属通过高压注射机注入预先准备好的模具中。
在注射期间,金属会快速充满整个模腔,并且根据模具的形状形成所需零件。
完成注射后,金属将开始凝固。
在凝固过程中,金属会从熔融态变为固态,并逐渐获得足够的强度。
最后,完成凝固后,可以取出铸件,并进行进一步的处理和加工。
为了实现高质量的压力铸造,必须使用特定的设备。
注射机是压力铸造的核心设备。
它通常由注射缸、注射橡胶、压力缸和压力橡胶组成。
注射缸和压力缸之间通过活塞连接,活塞由液压系统提供动力。
注射缸的功能是将金属注射到模具中,而压力缸则用于施加额外的压力,以确保金属充实整个模具。
此外,还需要一些辅助设备,如熔炉、模具加热系统和模具翻转装置等。
压力铸造具有许多优点,使其成为制造业中广泛应用的一种工艺。
首先,由于金属在高压下被迫充实整个模具,因此可以得到高密度、无缺陷的铸件。
其次,压力铸造可以生产具有复杂几何形状的零件,这是其他铸造工艺无法达到的。
此外,压力铸造具有较高的生产效率和较短的周期时间,适用于大规模生产。
最后,压力铸造能够使用各种金属材料,如铝合金、镁合金、铜合金和锌合金等。
在汽车制造、航空航天和电子行业,压力铸造被广泛应用于生产各种零件。
在汽车制造领域,凭借其高度精密的加工能力,压力铸造可以生产出轻型、高强度的发动机缸体、曲轴壳体和转向器等零件。
在航空航天领域,压力铸造可以制造出复杂的涡轮叶片、喷气发动机零件和飞机外壳等关键部件。
压力铸造
简述压力铸造技术1.引言1.1压铸技术的起源压铸技术最早用于泥制备青铜生活器具、钱币等,后来发展了金属型制备简单的武器,如青铜箭头。
金属型的大量使用在印刷机械中出现制备铅字以后,国外在1872年发明了世界上第一台最简单的手动小型压铸机,并于1920年制造出了冷室压铸机,1927年发明了立式冷室压铸机。
1.2 我国压铸技术的发展我国的压铸件工业化生产开始于20世纪50年代,那时靠仿制原捷克斯洛伐克和前苏联生产的500KN和1000KN卧式冷室压铸机和进口他们的立式压铸机和卧式冷室压铸机;发展到今天国内现在的压铸机厂家可生产最大的280000KN 卧式冷室压铸机和4000KN以下热室压铸机及3150KN以下立式冷室压铸机。
1.3近几年国际压铸技术的发展⑴压铸计算机模拟技术分析压铸过程有了大的理论突破。
⑵压铸机和辅助设备方面有了很大的发展。
⑶压铸产品检测方面,特别是内部缺陷的无损检测:如X射线、荧光、超声波探测等得到了发展。
⑷压铸模具材料和寿命的发展。
⑸快速成型设计及制造技术在压铸生产中得到应用。
⑹压铸材料的发展,如镁合金及金属基复合材料。
⑺压铸新技术的开发,如真空压铸、充氧压铸、局部加压压铸等2.压铸特点和应用范围2.1 压铸工艺过程压力铸造(简称压铸)是在高压作用下将液态或半液态金属快速压入铸型中,并在压力下凝固而获得铸件的方法。
压铸所用的压力一般为30~70MPa,充型速度可达5~100m/s,充型时间为0.05~0.2s。
金属的压力铸造广泛用于汽车、冶金、机电、建材等行业。
目前90%的镁铸件和60%的铝铸件都采用压力铸造成型。
金属液在高压下以高速填充铸型,并在压力下冷却,是压铸区别于其他铸造工艺的重要特征。
压力铸造的主要工序可分为:合型、压射、顶出三个阶段。
压铸机的主要结构简图如图2-1所示。
图2-1 压铸机主要结构简图1—拉杆;2—合模座;3—动模座;4—定模座;5—压铸模2.2压铸的特点(1)优点①生产率高,压铸机没小时可压铸50~150次,甚至有的可达500次;便于实现自动化或半自动化;②铸件的尺寸精度高,标准公差可达IT8~11;表面粗糙度低,Ra=0.8~3.2,可直接铸造出螺纹;③由于在压力下凝固,且速度快,因此,铸件晶粒细小、表面紧实、强度和硬度高;④便于采用镶铸法(嵌铸法)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力铸造工艺一、压铸及特点1. 压铸定义及特点压力铸造(简称压铸)是在压铸机的压室内,浇入液态或半液态的金属或合金,使它在高压和高速下充填型腔,并且在高压下成型和结晶而获得铸件的一种铸造方法。
由于金属液受到很高比压的作用,因而流速很高,充型时间极短。
高压力和高速度是压铸时液体金属充填成型过程的两大特点,也是压铸与其他铸造方法最根本区别之所在。
比如压射比压在几兆帕至几十兆帕范围内,甚至高达500MPa;充填速度为0.5—120m/s,充型时间很短,一般为0.01-0.2s,最短只有干分之几秒。
2. 压铸的优缺点优点:1) 产品质量好。
由于压铸型导热快,金属冷却迅速,同时在压力下结晶,铸件具有细的晶粒组织,表面坚实,提高了铸件的强度和硬度,此外铸件尺寸稳定,互换性好,可生产出薄壁复杂零件;2) 生产率高,压铸模使用次数多;3) 经济效益良好。
压铸件的加工余量小,一般只需精加工和铰孔便可使用,从而节省了大量的原材料、加工设备及工时。
缺点:1) 压铸型结构复杂,制造费用高,准备周期长,所以,只适用于定型产品的大量生产;2) 压铸速度高,型腔中的气体很难完全排出,加之金属型在型中凝固快,实际上不可能补缩,致使铸件容易产生细小的气孔和缩松,铸件壁越厚,这种缺陷越严重,因此,压铸一般只适合于壁厚在6mm以下的铸件;3) 压铸件的塑性低,不宜在冲击载荷及有震动的情况下工作;4) 另外,高熔点合金压铸时,铸型寿命低,影响压铸生产的扩大应用。
综上所述,压力铸造适用于有色合金,小型、薄壁、复杂铸件的生产,考虑到压铸其它技术上的优点,铸件需要量为2000-3000件时,即可考虑采用压铸。
3.压铸的应用范围压铸是近代金属加工工艺中发展较快的一种高效率、少无切削的金属成型精密铸造方法,是一种“好、快、省”高经济双效益的铸造方法。
压铸零件的形状大体可以分为六类:1)圆盘类——号盘座等;2)圆盖类——表盖、机盖、底盘等;3)圆环类——接插件、轴承保持器、方向盘等;4)筒体类——凸缘外套、导管、壳体形状的罩壳盖、上盖、仪表盖、探控仪表罩、照像机壳与化油器等;5)多孔缸体、壳体类——汽缸体、汽缸盖及油泵体等多腔的结构较为复杂的壳体(这类零件对机械性能和气密性均有较高的要求,材料一般为铝合金)。
例如汽车与摩托车的汽缸体、汽缸盖;6)特殊形状类——叶轮,喇叭、字体由筋条组成的装饰性压铸件等。
二、压铸机简介压铸机是压力铸造的基本设备。
压铸机共分两大类:热室压铸机和冷室压铸机。
(1) 热室压铸机热室压铸机如图2-14所示,其特点是压室与合金熔化炉连成一体,压室浸在熔化的液态金属中,其压射机构安置在保温坩埚上面。
当压射冲头3上升时,金属液1通过进口5进入压室4中,随后压射冲头下压,金属液沿通道6经喷嘴7充填压型型腔8。
冷凝后冲头回升,多余金属液回流至压室中,然后打开压型取出铸件。
(图2-14 热室压铸机原理)热室压铸机的特点是生产工序简单,生产效率高,容易实现自动化;金属液消耗少,工艺稳定,压入型腔的金属液干净、无氧化夹杂,铸件质量好。
但由于压室和冲头长时间浸在金属液中,影响使用寿命。
目前,大多数用于压铸锌合金等低熔点合金铸件,但也有用于压铸镁铝铸件。
(2) 冷室压铸机该机的压室与保温炉是分开的。
压铸时,要从保温炉中将金属液倒入压室后进行压铸。
冷室压铸机有立式和卧室两种。
立式压铸机压室的中心线是垂直的。
压铸模与压室的相对位置及压铸过程如图2-15所示。
合模后,浇入压室2的金属液3被已封住喷嘴孔6的反料冲头8托住,当压射冲头向下压到金属液面时,反料冲头开始下降,打开喷嘴6,金属液被压入型腔。
凝固后,压射冲头退回,反料冲头上升,切断余料9,并将其顶出压室,余料取走后再降到原位,然后开模取出铸件。
(图2-15 立式冷室压铸机原理)卧室压铸机压室的中心线是水平的。
压铸模与压室的相对位置及压铸过程如图2-16所示。
合模后,金属液浇入压室2,压射冲头1向前推进,将金属液经浇道压入型腔6,开模时,余料借助压射冲头前伸的动作离开压室,同铸件一起取出。
(图2-16 卧式冷室压铸机原理图)两种压铸机相比较,在结构上仅仅压射机构不同,立式压铸机有切断、顶出余料的下油缸,因结构比较复杂,故增加了维修的困难。
卧室压铸机压室简单,维修方便。
在工艺上,立式压铸机压室内空气不会随金属液进入型腔,便于开设中心浇口,但由于浇口过长,金属耗量大,充填过程中能量损失也较大。
卧式压铸机金属液进入型腔的流程短,压力损失小,有利于传递最终压力,便于提高比压,故使用较广。
冷室压铸机多用液压驱动,压力较高,适用于熔点较高的合金。
目前,生产中采用冷室压铸机较多。
三、压铸过程原理压铸过程是利用高压力、高速度,迫使浇入压铸机压室内的熔融或半熔融状态金属在极短的时间内充满压铸模的型腔。
压铸过程有三种主要现象:其一压入,其二熔融合金液流动,其三冷却凝固。
完成压铸过程有三大要素:一是熔融或半熔融状态金属:二是压铸模:三是压铸机。
压铸压力、压铸速度是压铸过程主要的工艺参数。
1.压铸压力压铸压力—般用压射力,比压表示。
压射力是由压铸机的规格所定。
它是压铸机的压射机构推动压射冲头的力:Pr=PG•πD2/4压射比压:Pb = Pr / F = 4 P r/ πd2四个阶段:慢速封孔;充填;增压;保压2。
压铸速度压铸速度有压射速度和充填速度两个不同的概念。
压射速度:压铸时压射缸内液压推动压射冲头前进的速度;充填速度:熔融合金在压力作用下,通过内浇口导入型腔的线速度。
其中充填速度的主要作用有:将熔融合金在凝固之前迅速输入型腔,是获得轮廓清晰、表面光洁的铸件重要因素;为了得到高的流体动压力。
充填速度的选择可根据合金的性能及铸件结构的特点,充填速度与压射比压、压射速度及内浇口截面积等因素有关。
由于压铸特点是速度快,当充填速度较高时,即使用较低的比压也可以获得表面光洁的铸件。
过高的充填速度会引起许多工艺上的缺点,造成压铸过程的不利条件:(1)包住空气而形成气泡。
因为高速度合金液流可能堵住排气系统,使空气被包在型腔内,同时快速冷却液可能使得熔体内溶解的气体不能有效析出;(2)合金液流成喷雾状进入型腔并粘附于型壁上,后进入的合金液不能与它熔合,而形成表面缺陷,降低铸件表面质量;(3)产生旋涡,包住空气和最先进入型腔的冷合金,使铸件产生气孔和氧化夹杂的缺陷;(4)冲刷压铸模型壁,使压铸模磨损加速,减少压铸模寿命。
充填速度与压射速度、作用于熔融合金上的压射比压以及合金液本身的密度、压室内径和内浇口截面积等有关。
压射速度越大,则充填速度越大,合金液上的压射比压越大,充填速度也越大。
可通过调整变化压射速度和压射比压、改变压室的内径和增大内浇口截面积(厚度)等来改变充填速度。
四、压铸件设计压铸件设计是压铸生产技术中十分重要的工作环节,压铸件设计的合理程度和工艺适应性直接影响到:分型面的选择,浇口的开设;顶出的布置;收缩规律;精度的保证;缺陷的部位以及生产效率等。
压铸件结构工艺特定要求如下:①消除内部侧凹,便于抽芯。
②改进壁厚,消除缩孔、气孔;③改善结构,消除不易压出的侧凹;④利用筋,防止变形;⑤改善结构,消除尖角或棱角;⑥改善结构,便于抽芯、简化压铸模制造;⑦消除深陷,使铸件易脱模;⑧改进结构,避免型芯交叉等特定要求。
五、压铸合金及其选择对压铸合金的要求:①高温下有足够的强度和可塑性,无热脆性(或热脆性小);②尽可能小的收缩;③结晶温度范围小;④在过热温度不高时有足够的流动性。
选择压铸合金考虑的因素有:(1)压铸件的受力状态,这是选择合金主要依据;(2) 压铸件工作环境状态;①工作温度:高温和低温要求,②接触的介质:如潮湿大气、海水;③密闭性要求:气压、液压密闭性。
(3)压铸件在整机或部件中所处的工作条件;(4)对压铸件的尺寸和重量所提出的要求;(5)生产条件:熔化设备、压铸机、工艺装置及材料等;(6)经济性。
六、压铸型在压铸生产中,压铸型(简称压模或压型)是最重要的工艺装备。
从结构上讲,完整的压铸型由以下几部分组成(图2-17是压铸型结构的实例。
):①静型部分:固定于压铸机压室一方的静型安装板上,是金属液开始进入铸型的部分,也是压铸型型腔的组成部分,其上有直浇道直接与压铸机的喷嘴或压室联接;②动型部分:固定于压铸机的动型安装板上,随动型安装板向左、向右移动,与静型部分分开和合拢,一般抽芯机构和铸件顶出机构设置在这部分内,是压铸型型腔的组成部分;③成型部分:是构成铸件几何形状的部分。
构成铸件外形的部分称为型腔,构成铸件内部形状的部分称为型芯;④浇注系统:连接成形部分与压室,引导金属液按一定方向进入铸型的成型部分,包括直浇道、横浇道和内浇口;⑤抽芯机构:构成复杂铸件的侧凹和孔,采用活动型芯,依靠抽芯机构在顶出铸件之前完成抽芯动作;⑥顶出机构:铸件成型后,待动、静型分开,把铸件从铸型中,这套机构一般均设在动型部分;⑦排气部分;⑧加热、冷却部分:为了平衡铸型温度,不致使铸型温度有急剧的变化,从而影响铸件质量,很多场合下,压铸型有必要安装加热或冷却装置;⑨其它:压铸型内还需设有定位、导向、紧固等元件。
七、压铸件缺陷压铸件的缺陷多种多样,一般分为表面缺陷、表面损伤、内部缺陷、裂纹、几何形状与图样不符、材料性能与要求不符、杂质等。
表面缺陷包括流痕及花纹、网状毛翅、冷隔、缩陷、印痕、铁豆等;表面损伤包括机械拉伤、粘模拉伤和碰伤;内部缺陷包括气孔、气泡、缩孔缩松;几何形状与图样不符一般指欠铸及轮廓不清晰、变形、飞翅、多肉或带肉、错边或错扣、型芯偏位;材料性能与要求不符一般指化学成分和力学性能不符合要求;杂质缺陷指夹渣和硬点。
虽然压铸件缺陷多种多样,但仔细分析,就知道它们都与压铸工艺参数的选择、压铸型的设计及人员操作有关。
比如,对于流痕及花纹缺陷,有可能是模温过低、比压偏低、内浇道面积过小等原因产生,当然,解决办法就是提高模温、调整内浇道截面积或者调整压射速度及压力。