matlab用布莱克曼窗设计fir滤波器代码
使用MATLAB设计FIR滤波器

使⽤MATLAB设计FIR滤波器1. 采⽤fir1函数设计,fir1函数可以设计低通、带通、⾼通、带阻等多种类型的具有严格线性相位特性的FIR滤波器。
语法形式:b = fir1(n, wn)b = fir1(n, wn, ‘ftype’)b = fir1(n, wn, ‘ftype’, window)b = fir1(n, wn, ‘ftype’, window, ‘noscale’)参数的意义及作⽤:b:返回的FIR滤波器单位脉冲响应,脉冲响应为偶对称,长度为n+1;n:滤波器的介数;wn:滤波器的截⽌频率,取值范围为0<wn<1,1对应信号采样频率⼀半。
如果wn是单个数值,且ftype参数为low,则表⽰设计截⽌频率为wn的低通滤波器,如果ftype参数为high,则表⽰设计截⽌频率为wn的⾼通滤波器;如果wn是有两个数组成的向量[wn1wn2],ftype为stop,则表⽰设计带阻滤波器,ftype为bandpass,则表⽰设计带通滤波器;如果wn是由多个数组成的向量,则根据ftype的值设计多个通带或阻带范围的滤波器,ftype为DC-1,表⽰设计的第⼀个频带为通带,ftype为DC-0,表⽰设计的第⼀个频带为阻带;window:指定使⽤的窗函数,默认为海明窗;noscale:指定是否归⼀化滤波器的幅度。
⽰例:N=41; %滤波器长度fs=2000; %采样频率%各种滤波器的特征频率fc_lpf=200;fc_hpf=200;fp_bandpass=[200 400];fc_stop=[200 400];%以采样频率的⼀半,对频率进⾏归⼀化处理wn_lpf=fc_lpf*2/fs;wn_hpf=fc_hpf*2/fs;wn_bandpass=fp_bandpass*2/fs;wn_stop=fc_stop*2/fs;%采⽤fir1函数设计FIR滤波器b_lpf=fir1(N-1,wn_lpf);b_hpf=fir1(N-1,wn_hpf,'high');b_bandpass=fir1(N-1,wn_bandpass,'bandpass');b_stop=fir1(N-1,wn_stop,'stop');%求滤波器的幅频响应m_lpf=20*log(abs(fft(b_lpf)))/log(10);m_hpf=20*log(abs(fft(b_hpf)))/log(10);m_bandpass=20*log(abs(fft(b_bandpass)))/log(10);m_stop=20*log(abs(fft(b_stop)))/log(10);%设置幅频响应的横坐标单位为Hzx_f=0:(fs/length(m_lpf)):fs/2;%绘制单位脉冲响应%绘制单位脉冲响应subplot(421);stem(b_lpf);xlabel('n');ylabel('h(n)');subplot(423);stem(b_hpf);xlabel('n');ylabel('h(n)');subplot(425);stem(b_bandpass);xlabel('n');ylabel('h(n)');subplot(427);stem(b_stop);xlabel('n');ylabel('h(n)');%绘制幅频响应曲线subplot(422);plot(x_f,m_lpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(424);plot(x_f,m_hpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(426);plot(x_f,m_bandpass(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(428);plot(x_f,m_stop(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);2. 采⽤fir2函数设计,函数算法是:⾸先根据要求的幅频响应向量形式进⾏插值,然后进⾏傅⾥叶变换得到理想滤波器的单位脉冲响应,最后利⽤窗函数对理想滤波器的单位脉冲响应激进型截断处理,由此得到FIR滤波器系数。
利用MATLAB窗函数法设计一个可实现的FIR低通滤波器。

一、实验目的1.掌握在MATLAB中窗函数的使用方法,了解不同窗函数之间的差别。
2.使用窗函数法设计一个可实现的FIR低通滤波器。
3.观察在相同长度下,不同的窗函数设计出来的滤波器有什么差别。
4.观察同一个窗在不同长度下设计出来的滤波器有什么差别。
二、实验条件PC机,MA TLAB7.0三、实验内容1)通过help查找窗函数在MA TLAB中如何实现通过example了解MATLAB中窗函数的实现,并且利用矩形窗,汉宁窗,哈明窗,布莱克曼窗和凯塞窗来进行接下来的实验。
2)设计物理可实现的低通滤波器设计思路:因为要设计FIR有限脉冲响应滤波器,通常的理想滤波器的单位脉冲响应h是无限长的,所以需要通过窗来截断它,从而变成可实现的低通滤波器。
程序如下:clc;clear all;omga_d=pi/5;omga=0:pi/30:pi;for N=3:4:51;w1= window(@blackman,N);w2 = window(@hamming,N);w3= window(@kaiser,N,2.5);w4= window(@hann,N);w5 = window(@rectwin,N);M=floor(N/2);subplot(311);plot(-M:M,[w1,w2,w3,w4,w5]); axis([-M M 0 1]);legend('Blackman','Hamming','kaiser','hann','rectwin');n=1:M;hd=sin(n*omga_d)./(n*omga_d)*omga_d/pi;hd=[fliplr(hd),1/omga_d,hd];h_d1=hd.*w1';h_d2=hd.*w2';h_d3=hd.*w3';h_d4=hd.*w4';h_d5=hd.*w5';m=1:M;H_d1=2*cos(omga'*m)*h_d1(M+2:N)'+h_d1(M+1);H_d2=2*cos(omga'*m)*h_d2(M+2:N)'+h_d2(M+1);H_d3=2*cos(omga'*m)*h_d3(M+2:N)'+h_d3(M+1);H_d4=2*cos(omga'*m)*h_d4(M+2:N)'+h_d4(M+1);H_d5=2*cos(omga'*m)*h_d5(M+2:N)'+h_d5(M+1);subplot(312);plot(omga,[H_d1,H_d2,H_d3,H_d4,H_d5]);legend('Blackman','Hamming','kaiser','hann','rectwin');subplot(313);plot(abs([fft(h_d1);fft(h_d2);fft(h_d3);fft(h_d4);fft(h_d5)] )');pause();end程序分析:整个对称窗的长度为N,然而为了在MATLAB中看到窗函数在负值时的形状需将N 变为它的一半,即为2M+1个长度。
实验3 用MATLAB窗函数法设计FIR滤波器

实验10 用MATLAB 窗函数法设计FIR 滤波器一、实验目的㈠、学习用MA TLAB 语言窗函数法编写简单的FIR 数字滤波器设计程序。
㈡、实现设计的FIR 数字滤波器,对信号进行实时处理。
二、实验原理㈠、运用窗函数法设计FIR 数字滤波器与IIR 滤波器相比,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。
设FIR 滤波器单位脉冲响应)(n h 长度为N ,其系统函数)(z H 为∑-=-=10)()(N n n zn h z H)(z H 是1-z 的)1(-N 次多项式,它在z 平面上有)1(-N 个零点,原点0=z 是)1(-N 阶重极点。
因此,)(z H 永远是稳定的。
稳定和线性相位特性是FIR 滤波器突出的优点。
FIR 滤波器的设计任务是选择有限长度的)(n h ,使传输函数)(ωj e H 满足技术要求。
主要设计方法有窗函数法、频率采样法和切比雪夫等波纹逼近法。
本实验主要介绍用窗函数法设计FIR 数字滤波器。
图7-10-1 例1 带通FIR 滤波器特性㈡、 用MATLAB 语言设计FIR 数字滤波器例1:设计一个24阶FIR 带通滤波器,通带为0.35<ω<0.65。
其程序如下b=fir1(48,[0.35 0.65]);freqz(b,1,512)可得到如图7-10-1 所示的带通FIR滤波器特性。
由程序可知,该滤波器采用了缺省的Hamming窗。
例2:设计一个34阶的高通FIR滤波器,截止频率为0.48,并使用具有30dB波纹的Chebyshev窗。
其程序如下Window=chebwin(35,30);b=fir1(34,0.48,'high',Window);freqz(b,1,512)可得到如图7-10-2 所示的高通FIR滤波器特性。
图7-10-2 例2 高通FIR滤波器特性例3:设计一个30阶的低通FIR滤波器,使之与期望频率特性相近,其程序如下 f=[0 0.6 0.6 1];m=[1 1 0 0];b=fir2(30,f,m);[h,w]=freqz(b,1,128);plot(f,m,w/pi,abs(h))结果如图7-10-3所示。
利用MATLAB窗函数法设计一个可实现的FIR低通滤波器。

一、实验目的1.掌握在MATLAB中窗函数的使用方法,了解不同窗函数之间的差别。
2.使用窗函数法设计一个可实现的FIR低通滤波器。
3.观察在相同长度下,不同的窗函数设计出来的滤波器有什么差别。
4.观察同一个窗在不同长度下设计出来的滤波器有什么差别。
二、实验条件PC机,MATLAB7.0三、实验内容1)通过help查找窗函数在MATLAB中如何实现通过example了解MATLAB中窗函数的实现,并且利用矩形窗,汉宁窗,哈明窗,布莱克曼窗和凯塞窗来进行接下来的实验。
2)设计物理可实现的低通滤波器设计思路:因为要设计FIR有限脉冲响应滤波器,通常的理想滤波器的单位脉冲响应h是无限长的,所以需要通过窗来截断它,从而变成可实现的低通滤波器。
程序如下:clc;clear all;omga_d=pi/5;omga=0:pi/30:pi;for N=3:4:51;w1= window(@blackman,N);w2 = window(@hamming,N);w3= window(@kaiser,N,2.5);w4= window(@hann,N);w5 = window(@rectwin,N);M=floor(N/2);subplot(311);plot(-M:M,[w1,w2,w3,w4,w5]); axis([-M M 0 1]);legend('Blackman','Hamming','kaiser','hann','rectwin');n=1:M;hd=sin(n*omga_d)./(n*omga_d)*omga_d/pi;hd=[fliplr(hd),1/omga_d,hd];h_d1=hd.*w1';h_d2=hd.*w2';h_d3=hd.*w3';h_d4=hd.*w4';h_d5=hd.*w5';m=1:M;H_d1=2*cos(omga'*m)*h_d1(M+2:N)'+h_d1(M+1);H_d2=2*cos(omga'*m)*h_d2(M+2:N)'+h_d2(M+1);H_d3=2*cos(omga'*m)*h_d3(M+2:N)'+h_d3(M+1);H_d4=2*cos(omga'*m)*h_d4(M+2:N)'+h_d4(M+1);H_d5=2*cos(omga'*m)*h_d5(M+2:N)'+h_d5(M+1);subplot(312);plot(omga,[H_d1,H_d2,H_d3,H_d4,H_d5]);legend('Blackman','Hamming','kaiser','hann','rectwin');subplot(313);plot(abs([fft(h_d1);fft(h_d2);fft(h_d3);fft(h_d4);fft(h_d5)] )');pause();end程序分析:整个对称窗的长度为N,然而为了在MATLAB中看到窗函数在负值时的形状需将N 变为它的一半,即为2M+1个长度。
用MATLAB设计低通带通高通和带阻FIR数字滤波器

抽样频率为f 为1KHZ的数字带通滤波器,性能要求为:通带范围从200HZ到250HZ,在此两频率处衰减不大于3dB,在100HZ和400HZ频率处频率衰减不得小于20dB,采用巴特沃斯滤波器4阶Butterworth滤波器源代码n = 2;Wn = [200 250]/500;[b,a] = butter(n,Wn);freqz(b,a,512,1000);这个滤波器100Hz、400Hz处衰减在-30db以上。
可以通过增大n增加衰减。
用MATLAB设计低通带通高通和带阻FIR数字滤波器(1)低通滤波器的技术指标:H(ejw)=1,0<w<0.3pi;H(ejw)=0,0.3pi<w<pi.(2)带通滤波器的技术指标:H(ejw=0,0<w<0.4pi;H(ejw)=1;0.4pi<w<0.6pi;H(ejw)=0,0.6<w<pi;(3)高通滤波器的技术指标:H(ejw)=0,0<w<0.7pi;H(ejw)=1,0.7pi<w<pi.(4)带阻滤波器的技术指标:H(ejw)=1,0<w<0.3pi;H(ejw)=0;0.3pi<w<0.7pi;H(ejw)=1,0.7<w<pi;低通采样定理实验1.1 实验目的1.了解数字信号处理系统的一般构成;2.掌握奈奎斯特抽样定理。
1.2 实验仪器1.YBLD智能综合信号源测试仪1台2.双踪示波器1台3.MCOM-TG305数字信号处理与现代通信技术实验箱1台4.PC机(装有MATLAB、MCOM-TG305配套实验软件)1台1.3 实验原理一个典型的DSP系统除了数字信号处理部分外,还包括A/D和D/A两部分。
这是因为自然界的信号,如声音、图像等大多是模拟信号,因此需要将其数字化后进行数字信号处理,模拟信号的数字化即称为A/D转换。
用MATLAB结合窗函数法设计数字带通FIR滤波器

武汉理工大学《Matlab课程设计》报告目录摘要 (I)Abstract (II)1 原理说明 (1)1.1 数字滤波技术 (1)1.2 FIR滤波器 (1)1.3 窗函数 (2)1.4 MATLAB简介 (4)1.5 MATLAB结合窗函数设计法原理 (4)2 滤波器设计 (2)2.1 滤波器设计要求 (2)2.2 设计函数的选取 (2)2.3 窗函数构造 (3)2.4 设计步骤 (4)2.5 利用MATLAB自带函数设计 (4)3 滤波器测试 (9)3.1 滤波器滤波性能测试 (9)3.2 滤波器时延测量................................................................................错误!未定义书签。
3.3 滤波器稳定性测量............................................................................错误!未定义书签。
5 参考文献 (12)附件一: ........................................................................................................ 错误!未定义书签。
摘要现代图像、语声、数据通信对线性相位的要求是普遍的。
数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。
与IIR滤波器相比,FIR的实现是非递归的,总是稳定的;更重要的是,FIR滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。
因此,具有线性相位的FIR数字滤波器在高保真的信号处理,如数字音频、图像处理、数据传输、生物医学等领域得到广泛应用。
用窗函数法设计FIR数字低通滤波器要点
河北科技大学课程设计报告学生姓名: 学号:专业班级:课程名称:学年学期指导教师:20年月课程设计成绩评定表目录1. 窗函数设计低通滤波器1.1设计目的 (1)1.2设计原理推导与计算 (1)1.3设计内容与要求 (2)1.4设计源程序与运行结果 (3)1.5思考题……………………………………………………………………101.6心得体会 (14)参考文献……………………………………………………………………… 151.窗函数设计低通滤波器1.1设计目的1. 熟悉设计线性相位数字滤波器的一般步骤。
2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。
3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。
4. 学会根据指标要求选择合适的窗函数。
1.2设计原理推导与计算如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为()()ωπωωππd e e H n h j j d d ⎰-=21 (4.1)窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即()⎪⎩⎪⎨⎧≤<≤=-πωωωωωαωc c j jd ,,e e H 0,其中21-=N α()()()[]()a n a n d e e d e eH n h c j j j j d d cc--===⎰⎰---πωωπωπωαωωωαωππωsin 2121用有限长单位脉冲响应序列()n h 逼近()n h d 。
由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到:()()()n n h n h d ω=(4.2)()n h 就作为实际设计的FI R数字滤波器的单位脉冲响应序列,其频率响应函数()ωj e H 为()()nj N n j en h eH ωω∑-==1ﻩ ﻩ(4.3)式中,N 为所选窗函数()n ω的长度。
fir滤波器设计matlab函数
w = rect(n);w = hanning(n);w = hamming(n);w = blackman(n);w = kaiser(n, beta)Any of these window function w can be plotted usingstem(n,w)Their magnitude and phase responses may be plotted as follows:[mag,phase,ww] = dtft(w);plotdtft(mag,phase,ww,2);The impulse response for an ideal low pass filter is given by the equationimplemented in Matlab as:h1 = omega1*sinc(n*omega1);where omega1 =The function makelp can be used to find the impulse response for a windowed FIR filter:h = makelp(n,omega1,window);h = makelp(n,omega1,‘kaiser’,beta);Note that the impulse response samples for an FIR filter are identical to its b k coefficients. In other words,b = makelp(n,omega1,window);orb = makelp(n,omega1,‘kaiser’,beta);The frequency response that corresponds to the low pass impulse response may be obtained using the following commands:[mag,phase,w] = dtft(h);plotdtft(mag,phase,w,2)where option 2 has been used to plot gain in dB and phase in degrees.For example, the commandsh = makelp(101,0.25,’hamming’);[mag,phase,w] = dtft(h);plotdtft(mag,phase,w,2);produce the plots shown below.Magnitude ResponsePhase ResponseBand pass and high pass filters can be designed using the function makebp. This function is similar to makelp, but, in addition to the parameters required by that function, the parameter omega0 must also be supplied. Omega0 = , where 0 is the digital center frequency of the filter, in radians. The form is:h = makebp(n,omega1,omega0,window);For example, the commandsh = makebp(81,0.1,0.6,’kaiser’,8);[mag,phase,w] = dtft(h);plotdtft(mag,phase,w,1)produce the frequency response shown.Magnitude ResponsePhase ResponseBand stop and band pass filters can be created using the bandfilt function. This function is used as follows:h = bandfilt(n,omegal,omegah,type,window);where type = 0 for band stop and type = 1 for band pass, and window is one of: ‘rect’, ‘hanning’, ‘hamming’, or ‘blackman’. Omegal marks the beginning of the filter’s stop or pass band, and omegah marks the end of it. Omegah must be greater than omegal. For example, the commands:h = bandfilt(101,0.5,0.85,0,'hamming');[mag,phase,w] = dtft(h);plotdtft(mag,phase,w,2)produce the magnitude response shown below.Magnitude ResponseAs another example, the commands:h=bandfilt(101,0.3,0.6,1,'hamming'); [mag,phase,w] = dtft(h);plotdtft(mag,phase,w,2)produce the magnitude response shown below. Magnitude Response。
数字滤波器的设计及其MATLAB实现
设计低通数字滤波器,要求在通带内频率低于0.2pirad时,允许幅度误差在1dB以内,在频率0.3pi rad~pi rad之间的阻带衰减大于15dB,用脉冲响应不变法设计数字滤波器,T=1: 切比雪夫I型模拟滤波器的设计子程序:function [b,a]=afd_chb1(Omegap,Omegar,Ar)if Omegap<=0error('通带边缘必须大于0')endif(Dt<=0)|(Ar<0)error('通带波动或阻带衰减必须大于0');endep=sqrt(10^(Dt/10)-1);A=10^(Ar/20);OmegaC=Omegap;OmegaR=Omegar/Omegap;g=sqrt(A*A-1)/ep;N=ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));fprintf('\n***切比雪夫I型模拟低通滤波器阶数=%2.0f\n',N);[b,a]=u_chblap(N,Dt,OmegaC);设计非归一化切比雪夫I型模拟低通滤波器原型程序:function [b,a]=u_chblap(N,Dt,OmegaC)[z,p,k]=cheb1ap(N,Dt);a=real(poly(p));aNn=a(N+1);p=p*OmegaC;a=real(poly(p));aNu=a(N+1);k=k*aNu/aNn;b0=k;B=real(poly(z));b=k*B;直接形式转换成级联形式子程序:function [C,B,A]=sdir2cas(b,a)Na=length(a)-1;Nb=length(b)-1;b0=b(1);b=b/b0;a0=a(1);a=a/a0;C=b0/a0;p=cplxpair(roots(a));K=floor(Na/2);if K*2==NaA=zeros(K,3);for n=1:2:NaArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);elseif Na==1A=[0 real(poly(p))];elseA=zeros(K+1,3);for n=1:2:2*KArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);endA(K+1,:)=[0 real(poly(p(Na)))];endz=cplxpair(roots(b));K=floor(Nb/2);if Nb==0B=[0 0 poly(z)];elseif K*2==NbB=zeros(K,3);for n=1:2:NbBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endelseif Nb==1B=[0 real(poly(z))];elseB=zeros(K+1,3);for n=1:2:2*KBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endB(K+1,:)=[0 real(poly(z(Nb)))];End计算系统函数的幅度响应和相位响应子程序:function [db,mag,pha,w]=freqs_m(b,a,wmax)w1=0:500;w=w1*wmax/500;h=freqs(b,a,w);mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);脉冲响应不变法程序:function [b,a]=imp_invr(c,d,T)[R,p,k]=residue(c,d);p=exp(p*T);[b,a]=residuez(R,p,k);b=real(b).*T;数字滤波器响应子程序:function [db,mag,pha,grd,w]=freqz_m(b,a);[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);grd=grpdelay(b,a,w);直接转换成并联型子程序:function [C,B,A]=dir2par(b,a)M=length(b);N=length(a);[r1,p1,C]=residuez(b,a);p=cplxpair(p1,10000000*eps);x=cplxcomp(p1,p);r=r1(x);K=floor(N/2);B=zeros(K,2);A=zeros(K,3);if K*2==Nfor i=1:2:N-2br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br');A((fix(i+1)/2),:)real(ar');end[br,ar]=residuez(r(N-1),p(N-1),[]);B(K,:)=[real(br') 0];A(K,:)=[real(ar') 0];elsefor i=1:2:N-1br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br);A((fix(i+1)/2),:)real(ar);endEnd比较两个含同样标量元素但(可能)有不同下标的复数对及其相位留数向量子程序:function I=cplxcomp(p1,p2)I=[];for i=1:length(p2)for j=1:length(p1)if(abs(p1(j)-p2(i))<0.0001)I=[I,j];endendendI=I';双线性变换巴特沃斯低通滤波器设计:巴特沃思模拟滤波器的设计子程序:function [b,a]=afd_butt(wp,ws,Rp,rs)if wp<=0error('通带边缘必须大于0');endif ws<=wperror('阻带边缘必须大于通带边缘');endif(Rp<=0)|(Rs<0)error('通带波动或阻带衰减必须大于0');endN=ceil((log10((10^(Rp/10)-1)/(10^(Rs/10)-1)))/(2*log10(wp/ws))); fprintf('\n***Butterworth Filter Order=%2.0f\n',N);OmegaC=wp/((10^(Rp/10)-1)^(1/(2*N)));[b,a]=u_buttap(N,OmegaC)设计非归一化巴特沃思模拟低通滤波器原型子程序:function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));直接型到级联型形式的转换:function [b0,B,A]=dir2cas(b,a)b0=b(1);b=b/b0;a0=a(1);a=a/a0;b0=b0/a0;M=length(b);N=length(a);if N>Mb=[b,zeros(1,N-M)];a=[a,zeros(1,M-N)];elseNM=0;endk=floor(N/2);B=zeros(k,3);A=zeros(k,3);if k*2==Nb=[b,0];a=[a,0];endbroots=cplxpair(roots(b));aroots=cplxpair(roots(a));for i=1:2:2*kbr=broots(i:1:i+1,:);br=real(polt(br));B((fix(i+1)/2),:)=br;ar=aroots(i:1:i+1,:);ar=real(polt(ar));A((fix(i+1)/2),:)=ar;Endfunction [db,mag,pha,grd,w]=freqz_m(b,a)[h,w]=freqz(b,a,1000,'whole');h=(h(1:501))';w=(w(1:501))';mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);grd=grdelay(b,a,w);设计一个巴特沃思高通滤波器,要求通带截止频率为0.6pi,通带内衰减不大于1dB,阻带·起始频率为0.4pi,阻带内衰减不小于15dB,T=1:>> wp=0.6*pi;ws=0.4*pi;>> Rp=1;Rs=15;T=1;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs) 计算巴特沃思滤波器阶数和截止频率N =4wn =>> [b,a]=butter(N,wn,'high'); 频率变换法计算巴特沃思高通滤波器>> [C,B,A]=dir2cas(b,a)C =0.0751B =1.0000 -2.0000 1.00001.0000 -2.0000 1.0000A =1.0000 0.1562 0.44881.0000 0.1124 0.0425>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi,db);椭圆带通滤波器的设计--ellip函数的应用:>> ws=[0.3*pi 0.75*pi]; 数字阻带边缘频率>> wp=[0.4*pi 0.6*pi]; 数字通带边缘频率>> Rp=1;Rs=40;>> Ripple=10^(-Rp/20); 通带波动>> Attn=10^(-Rs/20); 阻带衰减>> [N,wn]=ellipord(wp/pi,ws/pi,Rp,Rs) 计算椭圆滤波器参数N =4wn =0.4000 0.6000>> [b,a]=ellip(N,Rp,Rs,wn); 数字椭圆滤波器的设计>> [b0,B,A]=dir2cas(b,a) 级联形式实现b0 =0.0197B =1.0000 1.5066 1.00001.0000 0.9268 1.00001.0000 -0.9268 1.00001.0000 -1.5066 1.0000A =1.0000 0.5963 0.93991.0000 0.2774 0.79291.0000 -0.2774 0.79291.0000 -0.5963 0.9399>> figure(1);>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,2,1);plot(w/pi,mag);>> grid on;>> subplot(2,2,3);plot(w/pi,db);grid on;>> subplot(2,2,2);plot(w/pi,pha/pi);grid on;>> subplot(2,2,4);plot(w/pi,grd);设计一个巴特沃思带阻滤波器,要求通带上下截止频率为0.8pi、0.2pi,通带内衰减不大于1dB,阻带上起始频率为0.7pi、0.4pi,阻带内衰减不小于30dB:>> wp=[0.2*pi 0.8*pi];>> ws=[0.4*pi 0.7*pi];>> Rp=1;Rs=30;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs);>> [b,a]=butter(N,wn,'stop');>> [C,B,A]=dir2cas(b,a)C =0.0394B =1.0000 0.3559 0.99941.0000 0.3547 1.00401.0000 0.3522 0.99541.0000 0.3499 1.00461.0000 0.3475 0.99601.0000 0.3463 1.0006A =1.0000 1.3568 0.79281.0000 1.0330 0.46331.0000 0.6180 0.17751.0000 -0.2493 0.11131.0000 -0.6617 0.37551.0000 -0.9782 0.7446>> [db,mag,pha,grd,w]=freqz_m(b,a); >> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi);数字低通---数字带阻:function [bz,az]=zmapping(bZ,aZ,Nz,Dz) bzord=(length(bZ)-1)*(length(Nz)-1); azord=(length(aZ)-1)*(length(Dz)-1);bz=zeros(1,bzord+1);for k=0:bzordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:bzord-k-1pld=conv(pld,Dz);endbz=bz+bZ(k+1)*conv(pln,pld); endfor k=0:azordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:azord-k-1pld=conv(pld,Dz);endaz=az+aZ(k+1)*conv(pln,pld); endall=az(1);az=az/az1;bz=bz/az1;线性相位FIR滤波器的幅度特性:function pzkplot(num,den)hold on;axis('square');x=-1:0.01:1;y=(1-x.^2).^0.5;y1=-(1-x.^2).^0.5;plot(x,y,'b',x,y1,'b');num1=length(num);den1=length(den);if(num1>1)z=roots(num);elsez=0;endif(den1>1)p=roots(den);elsep=0;endif(num>1&den1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max_z=max(r_max_z,i_max_z);r_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max_p=max(r_max_p,i_max_p);a_max=max(a_max_z,a_max_p);elseif (num1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max=max(r_max_z,i_max_z);elser_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max=max(r_max_p,i_max_p);endaxis([-a_max a_max -a_max a_max]);plot([-a_max a_max],[0 0],'b');plot([0 0],[-a_max a_max],'b');plot([-a_max a_max],[a_max a_max],'b');plot([a_max a_max],[-a_max a_max],'b');Lz=length(z);for i=1:Lz;plot(real(z(i)),imag(z(i)),'bo');endLp=length(p);for j=1:Lpplot(real(p(j)),imag(p(j)),'bx');endtitle('The zeros-pole plot');xlabel('虚部');ylabel('实部');function [Hr,w,a,L]=Hr_Type1(h)M=length(h);L=(M-1)/2;a=[h(L+1) 2*h(L:-1:1)];n=[0:1:L];w=[0:1:500]'*pi/500;Hr=cos(w*n)*a';设计I型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,a,L]=Hr_Type1(h);>> amax=max(a)+1;>> amin=min(a)-1;>> subplot(2,2,1);stem(n,h);>> axis([-1 2*L+1 amin amax]);text(2*L+1.5,amin,'n'); >> xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(0:L,a);>> axis([-1 2*L+1 amin amax]);>> xlabel('n');ylabel('a(n)');title('a(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);>> grid on;text(1.05,-20,'频率pi');>> xlabel('频率');ylabel('Hr');title('I 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);>> title('零极点分布');function [hr,w,b,L]=Hr_Type2(h)M=length(h);L=M/2;b=2*h(L:-1:1);n=[1:1:L];n=n-0.5;w=[0:1:500]'*pi/500;hr=cos(w*n)*b';II型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,b,L]=Hr_Type2(h);Warning: Integer operands are required for colon operator when used as index. > In Hr_Type2 at 2>> bmax=max(b)+1;bmin=min(b)-1;>> subplot(2,2,1);stem(n,h);axis([-1 2*L+1 bmin bmax]);text(2*L+1.5,bmin,'n');xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(1:L,b);axis([-1 2*L+1 bmin bmax]);xlabel('n');ylabel('b(n)');title('b(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);grid on;text(1.05,-20,'频率pi');xlabel('频率');ylabel('Hr');title('II 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);title('零极点分布');function [hr,w,c,L]=Hr_Type3(h)M=length(h);L=(M-1)/2;b=2*h(L+1:-1:1);n=[1:1:L];w=[0:1:500]'*pi/500;hr=cos(w*n)*c';用MA TLAB编程绘制各种窗函数的形状。
MATLAB在FIR滤波器中的应用
一、基本窗函数 二、窗函数法设计FIR滤波器 三、频率抽样法设计FIR滤波器
基本窗函数
• 1、矩形窗(Rectanglar Window) W=boxcar(n) n-窗函数的长度 example
n=50; y=boxcar(n); [h,w]=freqz(y,1); subplot(2,1,1); stem(y); subplot(2,1,2); plot(w/pi,20*log(abs(h)/abs(h(1))))
• • • •
6、凯塞窗 w=kaiser(n,beta) n-窗函数的长度, beta-用于控制旁瓣的高度,n一定, beta越大,其旁瓣就越小。
二、利用窗函数法设计FIR滤波器
• 1、Fir1函数:设计具有标准频率响应的FIR
• • • • • • (1) b=fir1(n,wn) b=fir1(n,wn,’high’) b=fir1(n,wn,’low’) b=fir1(n,wn,’bandpass’) b=fir1(n,wn,’stop’)
• • • • • •
2、三角窗 w=triang(n) 3、汉宁窗函数 w=hanning(n) w=hanning(n,’symmetric’) w=hanning(n,’periodic’)
• 4、海明窗函数 w=hamming(n) w=hamming(n,sflag) 5、布莱克曼窗函数 w=blackman(n) w=blackman(n,sflag)
三、频率抽取法设计FIR数字滤波器
• 1、Remez函数:通过最佳逼近法设计 FIR滤波器 • b=remez(n,f,a) • 通过最大误差最小化原则,设计一个由f 和a指定幅频响应和实线性相位对称的n 阶FIR数字滤波器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab用布莱克曼窗设计fir滤波器代码
如何使用Matlab设计带有布莱克曼窗的FIR滤波器。
布莱克曼窗是一种用于设计数字滤波器的常见窗函数之一。
它具有非常好的频域特性,可以用于实现各种滤波器,比如低通、高通、带通、带阻等。
在本文中,我们将详细介绍如何使用Matlab来设计带有布莱克曼窗的FIR 滤波器。
步骤1:确定设计规格
在设计FIR滤波器之前,我们首先需要确定滤波器的一些规格,如滤波器的类型(低通、高通等)、截止频率、阶数等。
这些规格将决定最终滤波器的性能。
假设我们要设计一个低通滤波器,截止频率为0.2,阶数为50。
步骤2:计算滤波器系数
使用Matlab的fir1函数可以计算出FIR滤波器的系数。
该函数的使用语法如下:
h = fir1(N, Wn, window)
其中,N表示滤波器的阶数,Wn表示归一化的截止频率,window表示所采用的窗函数。
对于布莱克曼窗,我们可以使用matlab中的blackman函数来生成窗函数:
window = blackman(N+1)
在这里,我们需要注意一个细节:由于Matlab的fir1函数使用的是双边频率表示法,而我们通常使用的是单边频率表示法。
因此,我们需要将截止频率进行一些处理,将其从正常范围[0, 0.5]映射到[-0.5, 0.5]上。
Wn = 2 * 0.2
完成上述计算后,我们可以编写Matlab代码如下:
N = 50;
Wn = 2 * 0.2;
window = blackman(N+1);
h = fir1(N, Wn, window);
步骤3:绘制滤波器的频率响应
为了验证我们设计的滤波器效果,我们可以绘制其频率响应。
使用freqz 函数可以绘制滤波器的幅频特性:
freqz(h,1)
上述代码将绘制出滤波器的振幅响应和相位响应。
步骤4:应用滤波器
完成滤波器的设计后,我们可以将其应用于信号上。
假设我们有一个需要滤波的信号x,我们可以使用filter函数实现滤波效果:
y = filter(h, 1, x)
其中,x表示输入信号,y表示输出信号。
综上所述,我们使用Matlab设计了一个带有布莱克曼窗的FIR滤波器,主要步骤包括确定设计规格、计算滤波器系数、绘制滤波器的频率响应以及应用滤波器。
借助Matlab的强大功能,我们可以轻松地设计和验证各
种滤波器的性能。
在实际应用中,我们可以根据需求进行调整和优化,以满足具体的信号处理要求。