完整的维纳滤波器Matlab源程序

合集下载

卡尔曼滤波器及matlab代码

卡尔曼滤波器及matlab代码

信息融合大作业——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真时间:2010-12-6专业:信息工程班级:09030702姓名:马志强1.滤波问题浅谈估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。

由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、金融工程等众多不同的领域。

例如,考虑一个数字通信系统,其基本形式由发射机、信道和接收机连接组成。

发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。

而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。

接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。

随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。

2.维纳最速下降算法滤波器2.1 最速下降算法的基本思想考虑一个代价函数J(J),它是某个未知向量J的连续可微分函数。

函数J(J)将J的元素映射为实数。

这里,我们要寻找一个最优解J。

使它满足如下条件J(J0)≤J(J)(2.1)这也是无约束最优化的数学表示。

特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法:从某一初始猜想J(0)出发,产生一系列权向量J(1),J(2),,使得代价函数J(J)在算法的每一次迭代都是下降的,即J(J(J+1))<J(J(J))其中J(J)是权向量的过去值,而J(J+1)是其更新值。

我们希望算法最终收敛到最优值J0。

迭代下降的一种简单形式是最速下降法,该方法是沿最速下降方向连续调整权向量。

维纳滤波matlab代码

维纳滤波matlab代码

维纳滤波matlab代码维纳滤波是一种经典的图像复原方法,它可以在图像受到模糊和噪声影响时进行恢复。

在Matlab中,你可以使用以下代码来实现维纳滤波:matlab.% 读取原始图像。

originalImage = imread('input_image.jpg');% 转换为灰度图像。

originalImage = rgb2gray(originalImage);% 显示原始图像。

subplot(1, 2, 1);imshow(originalImage);title('Original Image');% 添加高斯噪声。

noisyImage = imnoise(originalImage, 'gaussian', 0, 0.01);% 显示带噪声的图像。

subplot(1, 2, 2);imshow(noisyImage);title('Noisy Image');% 计算模糊点扩散函数(PSF)。

PSF = fspecial('motion', 21, 11);% 使用逆滤波器和维纳滤波器进行图像复原。

estimated_nsr = 0;wnr3 = deconvwnr(noisyImage, PSF, estimated_nsr);% 显示维纳滤波后的图像。

figure, imshow(wnr3);title('Restored Image using Wiener Filter');在这段代码中,我们首先读取原始图像,然后转换为灰度图像。

接着,我们添加高斯噪声来模拟图像受到的噪声干扰。

然后我们计算模糊点扩散函数(PSF),并使用Matlab内置的`deconvwnr`函数来进行维纳滤波处理。

最后,我们显示经过维纳滤波处理后的图像。

需要注意的是,维纳滤波的参数estimated_nsr需要根据实际情况进行调整,它代表了噪声的方差估计。

wiener滤波程序

wiener滤波程序

基于最小均方误差(MMSE )估计的因果维纳滤波的实现一.功能简介基于最小均方误差(MMSE)估计的因果维纳滤波的Matlab 实现,用莱文森—德宾(Levinson —Durbin)算法求解维纳-霍夫方程(Yule-wa1ker)方程,得到滤波器系数,进行维纳滤波。

二.维纳滤波简介信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器,这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。

维纳(Wiener )滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法.一个线性系统,如果它的单位样本响应为h (n ),当输入一个随机信号x (n ),且)()()(n n s n x υ+=其中s (n )表示信号,)(n υ表示噪声,则输出y (n )为∑-=mm n x m h n y )()()(我们希望x (n )通过线性系统h (n )后得到的y (n )尽量接近于s (n ),因此称y (n )为s (n )的估计值,用)(ˆn s表示,即 )(ˆ)(n sn y =维纳滤波器的输入-输出关系如上图所示。

这个线性系统)(⋅h 称为对于s(n)的一种估计器。

如果我们以ss ˆ与分别表示信号的真值与估计值,而用e (n )表示它们之间的误差,即)(ˆ)()(n sn s n e -= 显然,e (n )可能是正的,也可能是负的,并且它是一个随机变量。

因此,用它的均方值来表达误差是合理的,所谓均方误差最小即它的平方的统计平均值最小:[][]22)ˆ()(ss E n e E -=最小 已知希望输出为:1ˆ()()()()N m y n sn h m x n m -===-∑ 误差为:1ˆ()()()()()()N m e n s n sn s n h m x n m -==-=--∑ 均方误差为:1220()(()()())N m E e n E s n h m x n m -=⎡⎤⎡⎤=--⎢⎥⎣⎦⎣⎦∑ 上式对() m=0,1,,N-1h m 求导得到:102(()()())()00,1,21N opt m E s n h m x n m x n j j N -=⎡⎤---==-⎢⎥⎣⎦∑进一步得:[][]1()()()()()0,1,1N opt m E s n x n j h m E x n m x n j j N -=-=--=-∑从而有:1()()()0,1,2,,1N xs opt xx m R j h m R j m j N -==-=-∑于是就得到N 个线性方程:(0)(0)(0)(1)(1)(1)(1)1(1)(0)(1)(1)(0)(1)(2)1(1)(0)(1)(1)(2)(1)(0)xs xx xx xx xs xx xx xx xs xx xx xx j R h R h R h N R N j R h R h R h N R N j N R N h R N h R N h N R ==+++--⎧⎪==+++--⎪⎨⎪⎪=--=-+-++-⎩写成矩阵形式为:(0)(1)(1)(0)(0)(1)(0)(2)(1)(1)(1)(2)(0)(1)(1)xx xx xx xs xx xx xx xs xx xx xx xs R R R N R h R R R N R h R N R N R R N h N -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦简化形式:xx xs R H R = 其中:H=[h(0) h(1)h(N-1)]'是滤波器的系数[](0),(1),(1)'xs xs xs xs R R R R N =-是互相关序列(0)(1)(1)(1)(0)(2)(1)(2)(0)xx xx xx xxxx xx xx xx xx xx R R R N R R R N R R N R N R -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥--⎣⎦是自相关矩阵由上可见,设计维纳滤波器的过程就是寻求在最小均方误差下滤波器的单位脉冲响应或传递函数的表达式,其实质就是解维纳-霍夫(Wiener -Hopf )方程。

维纳、卡尔曼滤波简介及MATLAB实现

维纳、卡尔曼滤波简介及MATLAB实现

现代数字信号处理课程作业维纳、卡尔曼、RLS、LMS算法matlab实现维纳滤波从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。

设维纳滤波器的输入为含噪声的随机信号。

期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。

因此均方误差越小,噪声滤除效果就越好。

为使均方误差最小,关键在于求冲激响应。

如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。

维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。

维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。

因此,维纳滤波在实际问题中应用不多。

下面是根据维纳滤波器给出的图像处理matlab实例,在下面实例中维纳滤波和均值滤波相比较,并且做了维纳复原、边缘提取、图像增强的实验:%****************维纳滤波和均值滤波的比较*********************I=imread('lena.bmp');J=imnoise(I,'gaussian',0,0.01);Mywiener2 = wiener2(J,[3 3]);Mean_temp = ones(3,3)/9;Mymean = imfilter(J,Mean_temp);figure(1);subplot(121),imshow(Mywiener2),title('维纳滤波器输出');subplot(122),imshow(uint8(Mymean),[]),title('均值滤波器的输出');%***********************维纳复原程序********************figure(2);subplot(231),imshow(I),title('原始图像');LEN = 20;THETA =10;PSF = fspecial('motion',LEN,THETA);Blurred = imfilter(I,PSF,'circular');subplot(232),imshow(Blurred),title('生成的运动的模糊的图像');noise = 0.1*randn(size(I));subplot(233),imshow(im2uint8(noise)),title('随机噪声');BlurredNoisy=imadd(Blurred,im2uint8(noise));subplot(234),imshow(BlurredNoisy),title('添加了噪声的模糊图像');Move=deconvwnr(Blurred,PSF);subplot(235),imshow(Move),title('还原运动模糊的图像');nsr = sum(noise(:).^2)/sum(im2double(I(:)).^2);wnr2 = deconvwnr(BlurredNoisy,PSF,nsr);subplot(236),imshow(wnr2),title('还原添加了噪声的图像');%****************维纳滤波应用于边缘提取*********************N = wiener2(I,[3,3]);%选用不同的维纳窗在此修改M = I - N;My_Wedge = im2bw (M,5/256);%化二值图像BW1 = edge(I,'prewitt');BW2 = edge(I,'canny');BW3 = edge(I,'zerocross');BW4 = edge(I,'roberts');figure(3)subplot(2,4,[3 4 7 8]),imshow(My_Wedge),title('应用维纳滤波进行边沿提取'); subplot(241),imshow(BW1),title('prewitt');subplot(242),imshow(BW2),title('canny');subplot(245),imshow(BW3),title('zerocross');subplot(246),imshow(BW4),title('roberts');%*************************维纳滤波应用于图像增强***************************for i = [1 2 3 4 5] K = wiener2(I,[5,5]);end K = K + I; figure(4);subplot(121),imshow(I),title('原始图像'); subplot(122),imshow(K),title('增强后的图像');维纳滤波器输出均值滤波器的输出原始图像生成的运动的模糊的图像随机噪声添加了噪声的模糊图像还原运动模糊的图像还原添加了噪声的图像卡尔曼滤波卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度。

MATLAB的自适应滤波器设计

MATLAB的自适应滤波器设计

MATLAB的⾃适应滤波器设计基于MATLAB的⾃适应滤波器设计第⼀章绪论1.1 引⾔滤波器根据其逼近函数的形式不同, 可设计出多种滤波器. 常⽤的有巴特沃思滤波器、切⽐雪夫é 型滤波器、切⽐雪夫ê 型滤波器、椭圆滤波器、巴塞尔滤波器。

对于这些滤波器的设计, 都是先给定其副频特性的模平⽅?H ( j X) ? 2, 再求出系统函数H (s)。

设计滤波器时, 需由经典式求出滤波器的系统函数H (s) , 求出极点S k (k= 1, 2, ??2N ) , 给定N , X c,E, 即可求得2N 个极点分布。

然后利⽤归⼀化函数, 得出归⼀化的电路组件值, 即可得到满⾜要求的滤波器。

此种设计中, 需要进⾏烦琐、冗长的数字计算, 这对于电路设计者来说, 不仅费时费⼒, 准确性不易把握, ⽽且不符合当今⾼速发展的时代要求。

⾃适应滤波器是近30 年来发展起来的关于信号处理⽅法和技术的滤波器,其设计⽅法对滤波器的性能影响很⼤。

⾃适应滤波器能够得到⽐较好的滤波性能,当输⼊信号的统计特性未知,或者输⼊信号的统计特性变化时,⾃适应滤波器能够⾃动地迭代调节⾃⾝的滤波器参数,以满⾜某种准则的要求,从⽽实现最优滤波。

⾃适应滤波器⼀般包括滤波器结构和⾃适应算法两个部分,这两部分不同的变化与结合,可以导出许多种不同形式的⾃适应滤波器。

1.2 MATLAB简介Matlab是由美国MathWorks公司推出的软件产品。

它是⼀完整的并可扩展的计算机环境, 是⼀种进⾏科学和⼯程计算的交互式程序语⾔。

它的基本数据单元是不需要指定维数的矩阵, 它可直接⽤于表达数学的算式和技术概念, ⽽普通的⾼级语⾔只能对⼀个个具体的数据单元进⾏操作。

在Matlab内部还配备了涉及到⾃动控制、信号处理、计算机仿真等种类繁多的⼯具箱, 所以Matlab 的应⽤⾮常⼴泛, 它可涉⾜于数值分析、控制、信号分析、通信等多种领域。

1.3 ⾃适应滤波器的应⽤适应滤波器在信号检测、信号恢复、数字通信等许躲领域中被⼴泛应⽤,因⽽⼀直是学术界⼀个重要研究课题。

滤波matlab代码

滤波matlab代码

滤波matlab代码滤波是信号处理中常用的技术,用于去除信号中的噪声或者滤波信号以得到感兴趣的频率成分。

在MATLAB中,有多种滤波函数可以使用,例如`filter`、`designfilt`和`fir1`等。

本文将介绍这些函数的用法和原理,并通过实例说明如何使用MATLAB进行滤波。

我们来介绍一下`filter`函数。

该函数可以用于实现各种滤波器,如低通滤波器、高通滤波器和带通滤波器等。

其基本语法为:```Matlaby = filter(b,a,x)```其中,`b`和`a`是滤波器的系数,`x`是输入信号的向量。

这个函数将输出滤波后的信号`y`。

接下来,我们来看一个实例。

假设我们有一个包含噪声的信号`x`,我们希望通过低通滤波器来去除噪声。

我们可以使用`filter`函数来实现这个功能。

首先,我们需要设计一个低通滤波器的系数。

可以使用`fir1`函数来设计一个FIR滤波器的系数。

例如,我们可以使用以下代码来设计一个阶数为10的低通滤波器:```Matlaborder = 10; % 滤波器阶数cutoff = 0.2; % 截止频率b = fir1(order, cutoff);```然后,我们可以使用这个滤波器对信号进行滤波:```Matlaby = filter(b, 1, x);```这样,我们就得到了滤波后的信号`y`。

除了`filter`函数,MATLAB还提供了`designfilt`函数用于设计各种类型的滤波器。

该函数可以设计IIR滤波器、带通滤波器、带阻滤波器等。

使用`designfilt`函数需要指定滤波器的类型、阶数以及其他参数。

例如,我们可以使用以下代码来设计一个IIR低通滤波器:```Matlaborder = 6; % 滤波器阶数cutoff = 0.2; % 截止频率d = designfilt('lowpassiir', 'FilterOrder', order, 'PassbandFrequency', cutoff);```然后,我们可以使用这个滤波器对信号进行滤波:```Matlaby = filter(d, x);```同样地,我们得到了滤波后的信号`y`。

butterworth滤波器 的matlab实现

butterworth滤波器 的matlab实现

butterworth滤波器的matlab实现如何在MATLAB中实现Butterworth滤波器Butterworth滤波器是一种常见的线性相位滤波器,用于将输入信号中的特定频率成分通过,而抑制其他频率成分。

它的设计原理是在通带内具有最平坦的幅频特性,因此被广泛应用于信号处理和通信领域。

在本文中,我们将一步一步地介绍如何在MATLAB中实现Butterworth滤波器。

第一步:导入信号在MATLAB中实现Butterworth滤波器之前,我们首先需要导入需要滤波的信号。

可以通过使用MATLAB的信号处理工具箱中的函数`audioread()`导入音频信号,或者使用`wavread()`函数导入.wav文件。

在这里,我们将使用一个名为`input_signal.wav`的音频文件作为例子。

matlab导入信号[input_signal,fs] = audioread('input_signal.wav');以上代码将导入音频信号,并将其存储在`input_signal`变量中。

采样率将存储在`fs`变量中。

第二步:设计Butterworth滤波器在MATLAB中,我们可以使用`butter()`函数来设计Butterworth滤波器。

这个函数的语法如下:matlab[b, a] = butter(n,Wn,ftype)- `n`:滤波器的阶数,取决于滤波器的陡度。

阶数越高,滤波器的陡度越大。

- `Wn`:截止频率,它是一个长度为2的数组,包含了通带和阻带的截止频率。

在Butterworth滤波器设计中,截止频率是以Nyquist频率为单位的。

例如,如果信号采样率为1000 Hz,通带的截止频率为200 Hz,阻带的截止频率为400 Hz,则`Wn = [200 400]/(fs/2)`,其中`fs`是采样率。

- `ftype`:滤波器类型,可以是'low'(低通滤波器)、'high'(高通滤波器)或'bandpass'(带通滤波器)。

matlab filter函数源代码

matlab filter函数源代码

matlab filter函数源代码MATLAB中的filter函数是一种数字滤波器设计和信号处理的工具。

它可以用于对数字信号进行滤波处理,滤除信号中的噪声或干扰,使得信号更加平滑和清晰。

filter函数的源代码如下:```matlabfunction y = filter(b, a, x)% 设置输入和输出数组的长度nx = length(x);ny = nx + max(length(a), length(b)) - 1;% 初始化输出数组y = zeros(ny, 1);% 进行滤波处理for n = 1:nyfor k = 1:length(b)if n-k+1 > 0 && n-k+1 <= nxy(n) = y(n) + b(k) * x(n-k+1);endendfor k = 2:length(a)if n-k+1 > 0 && n-k+1 <= nyy(n) = y(n) - a(k) * y(n-k+1);endendy(n) = y(n) / a(1);endend```该函数的输入参数包括滤波器的系数b和a,以及待滤波的输入信号x。

输出结果为滤波后的信号y。

在filter函数的实现中,首先根据输入信号的长度确定输出信号的长度。

然后,根据滤波器的系数和输入信号的延迟,对输入信号进行滤波处理。

具体而言,通过两个嵌套的for循环,分别计算输出信号的每个样本值。

第一个for循环用于计算输出信号的每个样本值的前向部分,即滤波器的前向传递。

第二个for循环用于计算输出信号的每个样本值的反向部分,即滤波器的反向传递。

最后,将每个样本值除以a(1)进行归一化,得到最终的输出信号。

使用filter函数可以实现多种滤波器设计和信号处理的应用。

例如,可以使用滤波器系数设计一个低通滤波器,将高频噪声从输入信号中滤除,得到一个平滑的信号。

也可以使用滤波器系数设计一个高通滤波器,将低频噪声从输入信号中滤除,得到一个突出高频成分的信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完整的维纳滤波器Matlab源程序学术2009-11-20 20:31:58 阅读308 评论0 字号:大中小完整的维纳滤波器Matlab源程序clear;clc;%输入信号A=1; %信号的幅值f=1000; %信号的频率fs=10^5; %采样频率t=(0:999); %采样点Mlag=100; %相关函数长度变量x=A*cos(2*pi*f*t/fs); %输入正弦波信号xmean=mean(x); %正弦波信号均值xvar=var(x,1); %正弦波信号方差xn=awgn(x,5); %给正弦波信号加入信噪比为20dB的高斯白噪声figure(1)plot(t,xn) %绘制输入信号图像title('输入信号图像')xlabel('x轴单位:t/s','color','b')ylabel('y轴单位:f/HZ','color','b')xnmean=mean(xn) %计算输入信号均值xnms=mean(xn.^2) %计算输入信号均方值xnvar=var(xn,1) %计算输入信号方差Rxn=xcorr(xn,Mlag,'biased'); %计算输入信号自相关函数figure(2)subplot(221)plot((-Mlag:Mlag),Rxn) %绘制自相关函数图像title('输入信号自相关函数图像')[f,xi]=ksdensity(xn); %计算输入信号的概率密度,f 为样本点xi处的概率密度subplot(222)plot(xi,f) %绘制概率密度图像title('输入信号概率密度图像')X=fft(xn); %计算输入信号序列的快速离散傅里叶变换Px=X.*conj(X)/600; %计算信号频谱subplot(223)semilogy(t,Px) %绘制在半对数坐标系下频谱图像title('输入信号在半对数坐标系下频谱图像')xlabel('x轴单位:w/rad','color','b')ylabel('y轴单位:w/HZ','color','b')pxx=periodogram(xn); %计算输入信号的功率谱密度subplot(224)semilogy(pxx) %绘制在半对数坐标系下功率谱密度图像title('输入信号在半对数坐标系下功率谱密度图像')xlabel('x轴单位:w/rad','color','b')ylabel('y轴单位:w/HZ','color','b')%fir滤波wp=0.4*pi; %通带截止频率ws=0.6*pi; %阻带截止频率DB=ws-wp; %过渡带宽度N0=ceil(6.6*pi/DB);M=N0+mod(N0+1,2); %计算fir滤波器阶数wc=(wp+ws)/2/pi; %计算理想低通滤波器通带截止频率(关于π归一化)hn=fir1(M,wc); %调用fir1计算FIRDF的h(n)y1n=filter(hn,1,xn); %将输入信号通过fir滤波器figure(3)plot(y1n) %绘制经过fir滤波器后信号图像title('经过fir滤波器后信号图像')xlabel('x轴单位:f/HZ','color','b')ylabel('y轴单位:A/V','color','b')y1nmean=mean(y1n) %计算经过fir滤波器后信号均值y1nms=mean(y1n.^2) %计算经过fir滤波器后信号均方值y1nvar=var(y1n,1) %计算经过fir滤波器后信号方差Ry1n=xcorr(y1n,Mlag,'biased'); %计算经过fir滤波器后信号自相关函数figure(4)subplot(221)plot((-Mlag:Mlag),Ry1n) %绘制自相关函数图像title('经过fir滤波器后信号自相关函数图像')[f,y1i]=ksdensity(y1n); %计算经过fir滤波器后信号的概率密度,f为样本点xi处的概率密度subplot(222)plot(y1i,f) %绘制概率密度图像title('经过fir滤波器后信号概率密度图像')Y1=fft(y1n); %计算经过fir滤波器后信号序列的快速离散傅里叶变换Py1=Y1.*conj(Y1)/600; %计算信号频谱subplot(223)semilogy(t,Py1) %绘制在半对数坐标系下频谱图像title('经过fir滤波器后信号在半对数坐标系下频谱图像')xlabel('x轴单位:w/rad','color','b')ylabel('y轴单位:w/HZ','color','b')py1n=periodogram(y1n); %计算经过fir滤波器后信号的功率谱密度subplot(224)semilogy(py1n) %绘制在半对数坐标系下功率谱密度图像title('经过fir滤波器后信号在半对数坐标系下功率谱密度图像')xlabel('x轴单位:w/rad','color','b')ylabel('y轴单位:w/HZ','color','b')%维纳滤波N=100; %维纳滤波器长度Rxnx=xcorr(xn,x,Mlag,'biased'); %产生输入信号与原始信号的互相关函数rxnx=zeros(N,1);rxnx(:)=Rxnx(101:101+N-1);Rxx=zeros(N,N); %产生输入信号自相关矩阵Rxx=diag(Rxn(101)*ones(1,N));for i=2:Nc=Rxn(101+i)*ones(1,N+1-i);Rxx=Rxx+diag(c,i-1)+diag(c,-i+1);endRxx;h=zeros(N,1);h=inv(Rxx)*rxnx; %计算维纳滤波器的h(n) yn=filter(h,1,xn); %将输入信号通过维纳滤波器figure(5)plot(yn) %绘制经过维纳滤波器后信号图像title('经过维纳滤波器后信号信号图像')xlabel('x轴单位:f/HZ','color','b')ylabel('y轴单位:A/V','color','b')ynmean=mean(yn) %计算经过维纳滤波器后信号均值ynms=mean(yn.^2) %计算经过维纳滤波器后信号均方值ynvar=var(yn,1) %计算经过维纳滤波器后信号方差Ryn=xcorr(yn,Mlag,'biased'); %计算经过维纳滤波器后信号自相关函数figure(6)subplot(221)plot((-Mlag:Mlag),Ryn) %绘制自相关函数图像title('经过维纳滤波器后信号自相关函数图像')[f,yi]=ksdensity(yn); %计算经过维纳滤波器后信号的概率密度,f为样本点xi处的概率密度subplot(222)plot(yi,f) %绘制概率密度图像title('经过维纳滤波器后信号概率密度图像')Y=fft(yn); %计算经过维纳滤波器后信号序列的快速离散傅里叶变换Py=Y.*conj(Y)/600; %计算信号频谱subplot(223)semilogy(t,Py) %绘制在半对数坐标系下频谱图像title('经过维纳滤波器后信号在半对数坐标系下频谱图像')xlabel('x轴单位:w/rad','color','b')ylabel('y轴单位:w/HZ','color','b')pyn=periodogram(yn); %计算经过维纳滤波器后信号的功率谱密度subplot(224)semilogy(pyn) %绘制在半对数坐标系下功率谱密度图像title('经过维纳滤波器后信号在半对数坐标系下功率谱密度图像')xlabel('x轴单位:w/rad','color','b')ylabel('y轴单位:w/HZ','color','b')---------------------------------------------------------------------------------------------Matlab维纳滤波器最小均方误差可以为零吗v(n)=sin(2*pi/4*n)s(n)=sin(2*pi/16*n)x(n)=s(n)+v(n)y(n)=s(n)e(n)=y(n)-x(n)*h(n)h=rxx^-1*ryx rxx,ryx分别是x的自相关函数和y、x的互相关函数=(rvv+rss)^-1*rss计算的r00、r11前8个数值如下:rss=[0.0313,0.0289,0.0227,0.0141,0.0047,-0.0039,-0.0105,-0.0144];rvv=[0.5,0,-0.25,0,0.5,0,-0.25,0];fir取6阶时,对应最小均方误差为:0.0089fir取8阶时,对应最小均方误差为:0.0074均没有达到最小误差为零的要求,应该可以理解为x(n)经过维纳滤波器h(n)的输出没有得到所期望的y(n)=s(n).但若采用一般的滤波器,由于s(n)、v(n)的频谱分离,应该能够无失真的恢复出信号s (n).若照这样理解的话是不是可以认为一般的滤波器在某些情况下要比用维纳滤波器好一些,还是我理解有错误,欢迎大家讨论。

相关文档
最新文档