链式栈基本操作C语言实现学习代码

合集下载

栈的实验报告结论(3篇)

栈的实验报告结论(3篇)

第1篇一、实验目的1. 理解栈的基本概念和操作;2. 掌握栈的顺序存储和链式存储实现方法;3. 熟悉栈在程序设计中的应用。

二、实验内容1. 栈的顺序存储结构实现;2. 栈的链式存储结构实现;3. 栈的基本操作(入栈、出栈、判空、求栈顶元素);4. 栈在程序设计中的应用。

三、实验方法1. 采用C语言进行编程实现;2. 对实验内容进行逐步分析,编写相应的函数和程序代码;3. 通过运行程序验证实验结果。

四、实验步骤1. 实现栈的顺序存储结构;(1)定义栈的结构体;(2)编写初始化栈的函数;(3)编写入栈、出栈、判空、求栈顶元素的函数;(4)编写测试程序,验证顺序存储结构的栈操作。

2. 实现栈的链式存储结构;(1)定义栈的节点结构体;(2)编写初始化栈的函数;(3)编写入栈、出栈、判空、求栈顶元素的函数;(4)编写测试程序,验证链式存储结构的栈操作。

3. 栈在程序设计中的应用;(1)实现一个简单的四则运算器,使用栈进行运算符和操作数的存储;(2)实现一个逆序输出字符串的程序,使用栈进行字符的存储和输出;(3)编写测试程序,验证栈在程序设计中的应用。

五、实验结果与分析1. 顺序存储结构的栈操作实验结果:(1)入栈操作:在栈未满的情况下,入栈操作成功,栈顶元素增加;(2)出栈操作:在栈非空的情况下,出栈操作成功,栈顶元素减少;(3)判空操作:栈为空时,判空操作返回真,栈非空时返回假;(4)求栈顶元素操作:在栈非空的情况下,成功获取栈顶元素。

2. 链式存储结构的栈操作实验结果:(1)入栈操作:在栈未满的情况下,入栈操作成功,链表头指针指向新节点;(2)出栈操作:在栈非空的情况下,出栈操作成功,链表头指针指向下一个节点;(3)判空操作:栈为空时,判空操作返回真,栈非空时返回假;(4)求栈顶元素操作:在栈非空的情况下,成功获取栈顶元素。

3. 栈在程序设计中的应用实验结果:(1)四则运算器:成功实现加、减、乘、除运算,并输出结果;(2)逆序输出字符串:成功将字符串逆序输出;(3)测试程序:验证了栈在程序设计中的应用。

数据结构实验报告(C语言)(强力推荐)

数据结构实验报告(C语言)(强力推荐)

数据结构实验实验内容和目的:掌握几种基本的数据结构:集合、线性结构、树形结构等在求解实际问题中的应用,以及培养书写规范文档的技巧。

学习基本的查找和排序技术。

让我们在实际上机中具有编制相当规模的程序的能力。

养成一种良好的程序设计风格。

实验教材:数据结构题集(C语言版)清华大学出版社2007年实验项目:实验一、栈和循环队列㈠、实验内容:①栈掌握栈的特点(先进后出FILO)及基本操作,如入栈、出栈等,栈的顺序存储结构和链式存储结构,以便在实际问题背景下灵活应用。

本程序采用的是链栈结构,具有初始化一个栈、PUSH、POP、显示所有栈里的元素四个功能。

②循环队列掌握队列的特点(先进先出FIFO)及基本操作,如入队、出队等,学会循环队列的实现,以便在实际问题背景下灵活运用。

本程序具有初始化一个队列、入队、出队、显示队列的所有元素、队列长度五个功能。

㈡、实验代码①栈程序代码:#include <stdio.h>#include <malloc.h>#define Stack_Size 6#define ERROR 0#define OK 1typedef int SElemType;typedef struct SNode{SElemType data;struct SNode *next;}SNode,*LinkStack;int CreatTwo(LinkStack &head,int n){int i;SNode *p;head=(LinkStack)malloc(sizeof(SNode));head->next=NULL;printf("请输入数据(数字):\n");for(i=n;i>0;--i){p=(SNode *)malloc(sizeof(SNode));scanf("%d",&p->data);p->next=head->next;head->next=p;}return 1;}int menu_select(){int sn;for(;;){scanf("%d",&sn);if(sn<1||sn>6)printf("\n\t输入错误,请重新输入\n");elsebreak;}return sn;}int Push(LinkStack &top,SElemType e){SNode *q;q=(LinkStack)malloc(sizeof(SNode));if(!q){printf("溢出!\n");return(ERROR);}q->data=e;q->next=top->next;top->next=q;return(OK);}int Pop(LinkStack &top,SElemType &e){SNode *q;if(!top->next){printf("error!\n");return(ERROR);}e=top->next->data;q=top->next;top->next=q->next;free(q);return(OK);}void main(){ int e;LinkStack top;printf("1.初始化一个栈;\n2.PUSH;\n3.POP;\n4.显示所有栈里的元素;\n5.结束;\n");while(1){switch(menu_select()){case 1:if(CreatTwo(top,Stack_Size))printf("Success!\n");break; case 2:printf("Push:\n");scanf("%d",&e);if(Push(top,e))printf("Success!\n");break;case 3:if(Pop(top,e))printf("Success!\n");printf("%d\n",e);break;case 4:LinkStack p;printf("所有栈里的元素:\n");p=top;while(p->next){p=p->next;printf("%7d",p->data);}printf("\n");break;case 5:return;}}}运行结果:②循环队列程序代码:#include<stdlib.h>#include<stdio.h>#define OVERFLOW -1#define OK 1#define ERROR 0#define MAXSIZE 100typedef struct{int *elem;//队列存储空间int front;int rear;}SqQueue;//判断选择是否正确int menu_select(){int sn;for(;;){scanf("%d",&sn);if(sn<1||sn>6)printf("\n\t输入错误,请重新输入\n");elsebreak;}return sn;}//参数(传出)SqQueue &Q,循环队列(空)int InitQueue(SqQueue &Q){Q.elem=(int *)malloc(MAXSIZE*sizeof(int));if(!Q.elem)exit(OVERFLOW);Q.front=Q.rear=-1;for(int i=0;i<MAXSIZE;i++)Q.elem[i]=-1;return OK;}//返回Q的元素个数int QueueLength(SqQueue Q){return (Q.rear-Q.front+MAXSIZE)%MAXSIZE;}//显示队列的元素void Display(SqQueue Q){for(int i=0;i<=QueueLength(Q);i++)if(Q.elem[i]!=-1)printf("%d ",Q.elem[i]);printf("\n");}//入队int EnQueue(SqQueue &Q,int e){Q.rear=(Q.rear+1)%MAXSIZE;if(Q.rear==Q.front)return ERROR;Q.elem[Q.rear]=e;return OK;}//出队int DeQueue(SqQueue &Q,int &e){if(Q.front==Q.rear)return ERROR;e=Q.elem[Q.front+1];Q.elem[Q.front+1]=-1;Q.front=(Q.front+1)%MAXSIZE;return OK;}void main(){SqQueue Q;InitQueue(Q);int elem,e;printf("请输入队列元素(以0结束):\n");scanf("%d",&elem);while(elem!=0){EnQueue(Q,elem);scanf("%d",&elem);}printf("队列为:\n");Display(Q);printf("1.初始化一个队列;\n2.入队;\n3.出队;\n4.显示队列的所有元素;\n5.队列长度:\n6.结束;\n");while(1){switch(menu_select()){case 1:printf("请输入队列元素(以0结束):\n");scanf("%d",&elem);while(elem!=0){EnQueue(Q,elem);scanf("%d",&elem);}printf("队列为:\n");Display(Q);fflush(stdin);break;case 2:scanf("%d",&elem);EnQueue(Q,elem);printf("队列为:\n");Display(Q);fflush(stdin);break;case 3:DeQueue(Q,elem);printf("队列为:\n");Display(Q);break;case 4:printf("\n队列的所有元素:\n");Display(Q);break;case 5:printf("%d\n",QueueLength(Q));break;case 6:return;}}}运行结果:实验二、数组㈠、实验内容:数组一般不做插入或删除操作,也就是说,一旦建立了数组,则结构中的数据元素个数和元素之间的关系就不再发生变动。

《数据结构(C语言)》第3章 栈和队列

《数据结构(C语言)》第3章 栈和队列
Data structures

❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(1) 栈的静态分配顺序存储结构描述 ② top为整数且指向栈顶元素 当top为整数且指向栈顶元素时,栈空、入栈、栈满 及出栈的情况如图3.2所示。初始化条件为 S.top=-1。
(a) 栈空S.top==-1 (b) 元素入栈S.stack[++S.top]=e (c) 栈满S.top>=StackSize-1 (d) 元素出栈e=S.stack[S.top--]
/*栈顶指针,可以指向栈顶
元素的下一个位置或者指向栈顶元素*/
int StackSize; /*当前分配的栈可使用的以 元素为单位的最大存储容量*/
}SqStack;
/*顺序栈*/
Data structures

❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(2) 栈的动态分配顺序存储结构描述 ① top为指针且指向栈顶元素的下一个位置 当top为指针且指向栈顶元素的下一个位置时,栈空 、入栈、栈满及出栈的情况如图3.3所示。初始化条 件为S.top=S.base。
…,n-1,n≥0} 数据关系:R={< ai-1,ai>| ai-1,ai∈D,i=1,2
,…,n-1 } 约定an-1端为栈顶,a0端为栈底 基本操作:
(1) 初始化操作:InitStack(&S) 需要条件:栈S没有被创建过 操作结果:构建一个空的栈S (2) 销毁栈:DestroyStack(&S) 需要条件:栈S已经被创建 操作结果:清空栈S的所有值,释放栈S占用的内存空间
return 1;
}
Data structures

c语言初学必背代码

c语言初学必背代码

c语言初学必背代码C 语言初学必背代码C 语言作为一门基础的编程语言,对于初学者来说,掌握一些关键的代码片段是非常有帮助的。

这些代码不仅能够帮助你理解 C 语言的基本语法和概念,还能为你后续的学习打下坚实的基础。

接下来,让我们一起看看 C 语言初学必背的代码。

一、输出“Hello World”这可能是学习任何编程语言的第一步,它简单却具有象征意义。

```cinclude <stdioh>int main(){printf("Hello World\n");return 0;}```在这个代码中,`include <stdioh>`是预处理指令,用于包含标准输入输出头文件。

`main`函数是 C 语言程序的入口点。

`printf`函数用于输出指定的内容,`\n`是换行符。

二、变量的定义和使用```cinclude <stdioh>int main(){int num = 10; //定义一个整型变量并初始化float price = 125; //定义一个浮点型变量并初始化char letter ='A';//定义一个字符型变量并初始化printf("num =%d\n", num);printf("price =%f\n", price);printf("letter =%c\n", letter);return 0;}```在上述代码中,我们定义了整型、浮点型和字符型的变量,并使用`printf`函数输出它们的值。

其中,`%d`用于输出整型,`%f`用于输出浮点型,`%c`用于输出字符型。

三、算术运算```cint main(){int a = 5, b = 3;int sum = a + b;int difference = a b;int product = a b;int quotient = a / b;printf("sum =%d\n", sum);printf("difference =%d\n", difference);printf("product =%d\n", product);printf("quotient =%d\n", quotient);return 0;}```这里展示了 C 语言中的基本算术运算:加法、减法、乘法和除法。

代码实现链式队列,输入数字入队,输入字符出队(c语言)

代码实现链式队列,输入数字入队,输入字符出队(c语言)

以下是使用C语言实现链式队列的代码,可以实现输入数字入队,输入字符出队的功能:#include <stdio.h>#include <stdlib.h>#include <string.h>// 定义链式队列结构体typedef struct QueueNode {int data; // 存储数字struct QueueNode* next; // 指向下一个节点} QueueNode;// 定义链式队列结构体typedef struct {QueueNode* front; // 指向队头节点QueueNode* rear; // 指向队尾节点} LinkedQueue;// 初始化链式队列void InitQueue(LinkedQueue* queue) {queue->front = NULL;queue->rear = NULL;}// 入队操作void EnQueue(LinkedQueue* queue, int data) {QueueNode* newNode =(QueueNode*)malloc(sizeof(QueueNode)); // 创建新节点newNode->data = data; // 将数字存储到新节点中newNode->next = NULL; // 新节点的下一个节点为空if (queue->rear == NULL) { // 如果队列为空,将新节点设置为队头和队尾queue->front = newNode;queue->rear = newNode;} else { // 如果队列不为空,将新节点添加到队尾,并更新队尾指针queue->rear->next = newNode;queue->rear = newNode;}}// 出队操作,返回出队的字符,如果队列为空,返回-1char DeQueue(LinkedQueue* queue) {if (queue->front == NULL) { // 如果队列为空,返回-1表示失败return -1;} else { // 如果队列不为空,将队头节点从队列中删除,并返回其存储的字符,同时更新队头指针char data = queue->front->data;QueueNode* temp = queue->front;queue->front = queue->front->next;free(temp); // 释放已删除节点的内存空间return data;}}。

栈的基本操作实验报告

栈的基本操作实验报告

一、实验目的1. 掌握栈的定义、特点、逻辑结构,理解栈的抽象数据类型。

2. 熟练掌握顺序栈和链栈两种结构类型的定义、特点以及基本操作的实现方法。

3. 了解栈在解决实际问题中的应用。

二、实验内容1. 编写顺序栈和链栈的基本操作函数,包括入栈(push)、出栈(pop)、判断栈空(isEmpty)、获取栈顶元素(getTop)等。

2. 利用栈实现字符序列是否为回文的判断。

3. 利用栈实现整数序列中最大值的求解。

三、实验步骤1. 创建顺序栈和链栈的结构体,并实现相关的基本操作函数。

2. 编写一个函数,用于判断字符序列是否为回文。

该函数首先将字符序列中的字符依次入栈,然后逐个出栈,比较出栈的字符是否与原序列相同,若相同则表示为回文。

3. 编写一个函数,用于求解整数序列中的最大值。

该函数首先将序列中的元素依次入栈,然后逐个出栈,每次出栈时判断是否为当前栈中的最大值,并记录下来。

四、实验结果与分析1. 顺序栈和链栈的基本操作函数实现如下:```c// 顺序栈的基本操作void pushSeqStack(SeqStack s, ElemType x) {if (s->top < MAXSIZE - 1) {s->top++;s->data[s->top] = x;}}void popSeqStack(SeqStack s, ElemType x) {if (s->top >= 0) {x = s->data[s->top];s->top--;}}bool isEmptySeqStack(SeqStack s) {return s->top == -1;}ElemType getTopSeqStack(SeqStack s) {if (s->top >= 0) {return s->data[s->top];}return 0;}// 链栈的基本操作void pushLinkStack(LinkStack s, ElemType x) {LinkStack p = (LinkStack )malloc(sizeof(LinkStack)); if (p == NULL) {exit(1);}p->data = x;p->next = s->top;s->top = p;}void popLinkStack(LinkStack s, ElemType x) { if (s->top != NULL) {LinkStack p = s->top;x = p->data;s->top = p->next;free(p);}}bool isEmptyLinkStack(LinkStack s) {return s->top == NULL;}ElemType getTopLinkStack(LinkStack s) {if (s->top != NULL) {return s->top->data;}return 0;}```2. 判断字符序列是否为回文的函数实现如下:```cbool isPalindrome(char str) {SeqStack s;initStack(&s);int len = strlen(str);for (int i = 0; i < len; i++) {pushSeqStack(&s, str[i]);}for (int i = 0; i < len; i++) {char c = getTopSeqStack(&s);popSeqStack(&s, &c);if (c != str[i]) {return false;}}return true;}```3. 求解整数序列中最大值的函数实现如下:```cint getMax(int arr, int len) {LinkStack s;initStack(&s);int max = arr[0];for (int i = 0; i < len; i++) {pushLinkStack(&s, arr[i]);if (arr[i] > max) {max = arr[i];}}while (!isEmptyLinkStack(&s)) {popLinkStack(&s, &max);}return max;}```五、实验心得通过本次实验,我对栈的基本操作有了更深入的理解。

数据结构c语言版创建单链表的代码

数据结构c语言版创建单链表的代码

数据结构c语言版创建单链表的代码单链表作为常用的线性结构之一,常常用于解决以链式方式存储数据的问题。

创建单链表需要掌握一些基础的数据结构知识以及对C语言的熟练运用。

接下来,本文将分步骤地阐述数据结构C语言版创建单链表的代码。

第一步,定义单链表结构体并定义节点类型。

在C语言中,我们可以通过结构体的方式定义单链表,其中结构体中包含两个成员变量,分别为存储数据的data和指向下一个节点的指针next。

对于节点类型,我们可以使用typedef对节点类型进行定义,例如:```struct ListNode {int data;struct ListNode *next;};typedef struct ListNode ListNode;```在以上代码中,我们首先定义了一个结构体ListNode作为单链表的元素类型,其中包含存储数据的data和指向下一个元素的指针next。

接着我们使用typedef将结构体ListNode定义为仿函数ListNode,从而使其更加方便使用。

第二步,初始化单链表。

在创建单链表之前,我们需要先将单链表的头指针初始化为NULL,表示当前链表为空。

具体代码如下:```ListNode *createLinkedList() {ListNode *head = NULL;return head;}```以上代码中,函数createLinkedList用于创建并初始化单链表,其中head表示单链表头指针,我们将其初始化为NULL。

第三步,向单链表中添加元素。

在单链表中添加元素需要借助于指针的指向关系。

具体来说,我们需要先创建新的节点,将其数据添加到节点中,然后将新节点的next指针指向之前的头节点,最后将头指针指向新节点。

具体过程如下:```ListNode *addListNode(ListNode **head, int val) {ListNode *newNode = (ListNode *)malloc(sizeof(ListNode)); newNode->data = val;newNode->next = *head;*head = newNode;return *head;}```在以上代码中,函数addListNode接收一个指向头指针的指针head,以及需要添加的元素值val。

栈的基本操作代码

栈的基本操作代码

栈的基本操作代码引言栈(Stack)是一种常见的数据结构,具有后进先出(Last In First Out,LIFO)的特性。

栈的基本操作包括入栈(Push)、出栈(Pop)、获取栈顶元素(Top)和判断栈是否为空(IsEmpty)。

本文将详细介绍栈的基本操作代码及其实现。

一、栈的定义栈是一种线性数据结构,仅允许在一端进行插入和删除操作。

这一端被称为栈顶,另一端称为栈底。

栈的插入操作叫做入栈,删除操作叫做出栈。

栈的特性决定了最后插入的元素最先删除。

二、栈的基本操作2.1 入栈(Push)入栈操作将一个元素添加到栈的栈顶。

具体实现如下:class Stack:def __init__(self):self.stack = []def push(self, item):self.stack.append(item)2.2 出栈(Pop)出栈操作将栈顶元素删除并返回。

具体实现如下:class Stack:def __init__(self):self.stack = []def push(self, item):self.stack.append(item)def pop(self):if not self.is_empty():return self.stack.pop()else:return None2.3 获取栈顶元素(Top)获取栈顶元素操作不改变栈的结构,仅返回栈顶元素的值。

具体实现如下:class Stack:def __init__(self):self.stack = []def push(self, item):self.stack.append(item)def pop(self):if not self.is_empty():return self.stack.pop()else:return Nonedef top(self):if not self.is_empty():return self.stack[-1]else:return None2.4 判断栈是否为空(IsEmpty)判断栈是否为空操作用于检测栈内是否还有元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#define_CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#define datatype int
struct stack1
{
int num;
datatype data;
struct stack1*pnext;
};
typedef struct stack1stack;
stack*init(stack*phead);//初始化
stack*push(stack*phead,int num,datatype data);//压栈stack*pop(stack*phead,stack*tnode);//出栈
stack*freeall(stack*phead);//清空
void printf1(stack*phead);//打印
源文件
#define_CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include"abc.h"
stack*init(stack*phead)
{
return NULL;
}
stack*push(stack*phead,int num,datatype data)
{
stack*p=(stack*)malloc(sizeof(stack));
p->num=num;
p->data=data;
p->pnext=NULL;
if(phead==NULL)
{
phead=p;
return phead;
}
else
{
stack*q=phead;
while(q->pnext!=NULL)
q=q->pnext;
}
q->pnext=p;
return phead;
}
}
void printf1(stack*phead)
{
if(phead==NULL)
{
return;
}
else
{
printf("本结点地址=%p,后一个结点地址=%p,结点编号=%d,结点数据=%d\n",phead,phead->pnext,phead->num,phead->data);
printf1(phead->pnext);
//printf("本结点地址=%p,后一个结点地址=%p,结点编号=%d,结点数据=%d\n", phead, phead->pnext, phead->num, phead->data);
}
}
stack*pop(stack*phead,stack*tnode)
{
if(phead==NULL)
{
return NULL;
}
else if(phead->pnext==NULL)
{
tnode->num=phead->num;
tnode->data=phead->data;
free(phead);
phead=NULL;
return phead;
}
else
{
stack*p=phead;
stack*q=phead->pnext;
while(q->pnext!=NULL)
{
p=q;
q=q->pnext;
}
p->pnext=NULL;
tnode->num=q->num;
tnode->data=q->data;
free(q);
return phead;
}
}
stack*freeall(stack*phead)
{
if(phead==NULL)
{
return NULL;
}
else
{
stack*p=phead;
stack*q=NULL;
while(p!=NULL)
{
q=p->pnext;
free(p);
p=q;
//q = q->pnext;
}
return NULL;
}
}
测试代码
#define_CRT_SECURE_NO_WARNINGS #include<stdio.h>
#include<stdlib.h>
#include"abc.h"
void main()
{
stack*pp=NULL;
//init(pp);
//pp = push(pp, 1, 10);
//pp = push(pp, 2, 11);
//pp = push(pp, 3, 12);
//pp = push(pp, 4, 13);
//pp = push(pp, 5, 14);
//printf("入栈之后\n");
//printf1(pp);
//printf("出栈之后\n");
///*pp = freeall(pp);
//printf1(pp);*/
//while (pp != NULL)
//{
// stack *p = (stack *)malloc(sizeof(stack));
// pp = pop(pp, p);
// printf1(pp);
// printf("出栈的数据\n%d,%d\n", p->num, p->data);
//}
int num=10,i=0;
while(num)
{
i++;
pp=push(pp,i,num%2);
num=num/2;
}
printf1(pp);
system("pause");
}。

相关文档
最新文档