电容式传感器
电容式传感器

电容值与电极材料无关,仅取决于电极的几何尺寸,且空 气等介质的损耗很小。因此仅需从强度、温度系数等机械性考 虑,合理选择尺寸即可,本身发热极小,影响稳定性甚微。 2)结构简单,适用性强。
3)动态响应好。 (固有频率很高,动态响应时间很短外,又由于其介质损耗小, 可以用较高频率供电,因此系统工作频率高。 4)可以实现非接触式测量,具有平均效应。
d d0
d d0
2
d d0
3
C
C1
C2
C0
2
d d0
2
d d0
3
2
d d0
C
0
1
d d0
2
d d0
4
略去高次项,则
C
2
d d0
C0
传感器的灵敏度为 K C 2C0 d d0
其非线性误差为
( d )3
d 0 (d /d 0)2 100%
( d ) d0
灵敏度较单组变极距型提高了一倍,非线性大大减小。
②等有U关sc ,与任电何源这电些压参U数的、波固动定都电将容使C0及输电出容特式性传产感生器误的差ε,0因、此A 固定电容C0必须稳定,且需要高精度的交流稳压源。 ③由于电容传感器的电容小,容抗很高,故传感器与放大器之 间的联结,需要有屏蔽措施。 ④不适用于差动式电容传感器的测量。
五、电容式传感器的特点及设计要点
主要缺点:
输出阻抗高,负载能力差 寄生电容影响大
输出特性是非线性
2、设计要点
设计时可从以下几个方面考虑:
1)减小环境温度、湿度等变化所产生的误差,保证绝缘材料
的绝缘性能;
2)消除和减小边缘效应 边缘效应不仅使电容传感器灵敏度降低而且产生非线性,
电容式传感器介绍

电容式传感器介绍
电容式传感器原理
电容式传感器分类
电容式传感器发展趋势
电容式传感器应用实例
电容式传感器原理
电容式传感器定义
电容式传感器是一种通过检测电容变化来测量物理量的传感器。
电容式传感器主要由两个平行电极板组成,其中一个电极板固定,另一个电极板可以移动。
当被测物体靠近或远离固定电极板时,两个电极板之间的电容会发生变化,从而实现对被测物体的测量。
01
工业自动化:用于检测和控制生产过程中的各种参数
02
消费电子:应用于手机、电脑等电子产品的触摸屏和按键控制
03
汽车电子:用于汽车安全气囊、刹车系统等安全设备的控制
04
医疗设备:用于医疗设备的检测和控制,如心电图仪、血压计等
电容式传感器分类
变极距式电容传感器
工作原理:通过改变两个极板之间的距离来改变电容量
4
谢谢
01
变介质式电容传感器
01
原理:利用介质的介电常数变化来检测目标物
02
应用:广泛应用于液位、压力、流量等测量领域
03
特点:结构简单、灵敏度高、响应速度快
04
局限性:受介质特性影响较大,需要选择合适的介质材料
电容式传感器应用实例
触摸屏应用
1
智能手机:电容式触摸屏广泛应用于智能手机,实现多点触控操作。
02
集成化:电容式传感器将与其他传感器进行集成,实现多参数测量,提高测量效果。
微型化:电容式传感器将向微型化方向发展,便于安装和使用,降低成本。
04
节能、环保
低功耗设计:降低能耗,提高能源利用率
1
环保材料:使用环保材料,减少对环境的影响
电容式传感器

0 r1 L0 b0
d0
当L=0时,传感器的初始电容 C 0
0 L0 b0
d0
当被测电介质进入极板间L深度后,引起电容相对变化量为
C C C 0 ( r 2 1) L 电容变化量与电介质移动量L呈线性关系 C0 C0 L0
4. 变极距型电容传感器
初始电容 C 0 若极距缩小△d
d ) C0 0 r s d C C 0 C 2 d d d d 1 1 d d C 0 (1
0 r s
d
非线性关系
若△d/d<<1时,则上式可简化为
d C C0 C0 d
最大位移应小于间距的1/10
差动式改善其非线性 差动式
1 1 Xc d C S
被测量与d 成线性关系 无需满足 d d
3.4 电容式传感器
3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 电容式传感器的工作原理 电容式传感器主要性能 电容式传感器的特点和设计要点 电容式传感器等效电路 电容式传感器测量电路 电容式传感器的应用 容栅式传感器
由于电容传感器电容量一般都很小,电源频率即使采用几兆赫, 容抗仍很大,而R很小可以忽略,因此
1 1 1 LC 1 j L R j L jCe jC jC jC
2
Ce
C 1 2 LC
C C Ce Ce Ce 2 1 LC 1 2 L(C C ) C C C C C Ce Ce 2 2 1 L(C C ) 1 L(C C ) 1 2 LC
电容式传感器

因此其固有频率很高,适用于动态信号的测量。 ④机械损失小。电容式传感器电极间相互吸引力十分微小,
又无摩擦存在,其自然热效应甚微,从而保证传感器具有较 高的精度。
上一页 下一页 返回
第三节 电气火灾消防知识
(3)接触不良引起过热如接头连接不牢或不紧密、动触点压 力过小等使接触电阻过大,在接触部位发生过热而引起火灾。
(4)通风散热不良大功率设备缺少通风散热设施或通风散热 设施损坏造成过热而引发火灾。
(5)电器使用不当如电炉、电熨斗、电烙铁等未按要求使用, 或用后忘记断开电源,引起过热而导致火灾。
上一页 下一页 返回
第一节 安全用电知识
正确使用绝缘操作用具,应注意以下两点:
(1)绝缘操作用具本身必须具备合格的绝缘性能和机械强度。
(2)只能在和其绝缘性能相适应的电气设备上使用。
2.绝缘防护用具
绝缘防护用具则对可能发生的有关电气伤害起到防护作用。 主要用于对泄漏电流、接触电压、跨步电压和其他接近电气 设备存在的危险等进行防护。常用的绝缘防护用具有绝缘手 套、绝缘靴、绝缘隔板、绝缘垫、绝缘站台等,如图7-3所示。 当绝缘防护用具的绝缘强度足以承受设备的运行电压时,才 可以用来直接接触运行的电气设备,一般不直接触及带电设 备。使用绝缘防护用具时,必须做到使用合格的绝缘用具, 并掌握正确的使用方法。
3.变介电常数式电容传感器 因为各种介质的相对介电常数不同,所以在电容器两极板间
插入不同介质时,电容器的电容量也就不同,利用这种原理 制作的电容传感器称为变介电常数式电容传感器,它们常用 来检测片状材料的厚度、性质,颗粒状物体的含水量以及测 量液体的液位等。
电容式传感器

电容量发生变化。
ΔC
o
传感器的输出特性 不是线性关系,而是如图所示的双曲线Δ关系。
(a)
(b)
工程上常采用以下两种近似处理方法: C
① 近似线性处理
② 近似非线性处理
ΔC
o
Δ
分析表明,提高传感器的灵
敏度和减小非线性误差是相互矛
1
盾的。在实际应用中,为了解决
这一矛盾,常采用如图所示的差
2
动结构。
12
3
1-被测带材; 2-轧辊; 3-电容极板
传感器与测试技术
1-电镀层(定极板);
5
1
2-膜片(动极板);
3-焊接密封圈;
p1
p2
4-隔离膜;5-硅油
4
2
3
2.电容式加速度传感器
加速度传感器均采用弹簧-质量-阻尼系统将被测加速度变换成力或 位移量,然后再通过传感器转换成相应的电参量。下图所示为电容式加速 度传感器的结构示意图。电容式加速度传感器的频率响应快、量程范围大, 阻尼物质采用空气或其他气体。
如图所示。
l
l
ax
x x
hx h
(a)
(a)测量介质厚度
(b)
(b)测量介质位置
d DБайду номын сангаас
(c)
(c)测量介质液位
1.2 电容式传感器的应用
1.电容式压差传感器
下图所示为电容式压差传感器的结构示意图,由一个金属膜片动极板和 两个在凹形玻璃圆盘上电镀成的定极板组成。电容式压差传感器的分辨率很 高,不仅用来测量压差,也可用来测量真空或微小绝对压力(0~0.75 Pa), 响应速度为100 ms。
传感器与测试技术
电容式传感器

电容式传感器
电容式传感器是把被测量的变化转换为电容量 变化的一类传感器。实质上是一个具有可变参数 的电容器。最常用的是平行板电容传感器和圆柱 形电容传感器。
可用来测量压力、力、位移、振动、液位、 成份含量等。
1.1 平行板电容式传感器工作原理
设两极板相互覆盖的有效面积为S(m2),两极板间 的距离为d0(m),极板间介质的介电常数为ε(F/m)。若 忽略板极边缘的影响,平板电容器的电容量C(F)为:
式中:f0为等效电路谐振频率,
f0
2
1 LC
一般当f≤10MHz时,还可忽略L的影响,并且 实际使用时,只要使用条件能保证与传感器标定时 的接线条件,L可不考虑。
ZC
(RS
RP
)
1 2 RP2C 2
j( RP2C 1 2 RP2C 2
L)
由于传感器的并联电阻Rp很大,串联电阻RS很
小,忽略这两项,则等效阻抗ZC为:
ZC 1 jL jC
因此,电容传感器的等效电容Ce可由下式求得:
1 1 jL jCe jC
Ce
C
1 2LC
1
(
C f
f0 )2
2.变介质圆柱形电容式传感器(变介电常数型)
当被测液体的液面在 同心圆柱形电极间发生变 化时,将导致电容的变化。
此时,相当于两个同 轴圆柱形电容C0、C1并联:
C
C0
C1
20 (h
ln R2
x)
21x
ln R2
2 0 h
ln R2
2
(1
ln
0
R2
)x
R1
R1
R1
R1
电容式液位计属于该类。输出电容与液面高度呈线性关系。
简述电容式传感器的工作原理及分类

简述电容式传感器的工作原理及分类1. 引言大家好,今天咱们聊聊电容式传感器。
这玩意儿其实很有意思,感觉就像是给我们生活加了点神奇的调料。
电容式传感器是利用电容的变化来检测各种物理量,比如距离、压力、湿度等,听起来是不是挺酷的?别急,让我慢慢给你道来。
2. 工作原理2.1 基本原理电容式传感器的核心在于“电容”,它的基本原理其实不复杂。
电容就像一个小小的储存器,能存储电荷。
它由两个导体和一个绝缘体构成,导体之间的距离和面积会影响电容的大小。
想象一下,如果你把这两个导体之间的距离拉近,电容就会增加;如果拉远,它就会减少。
这就像拉开了跟好朋友的距离,感觉远了点,但心还是连着的!传感器利用这个原理,检测到的电容变化就能转化为电信号,从而告诉我们所需的信息。
2.2 应用领域这玩意儿可不止是好玩,还在很多地方派上了用场呢!比如在手机屏幕上,电容式触摸屏就是用这种原理,轻轻一碰就能反应,真是科技的魔力。
此外,在工业领域,电容式传感器也能监测液位、压力等等,帮助工厂提高效率。
这就像是在忙碌的城市中,一位默默无闻的守护者,时刻关注着每一个细节。
3. 分类3.1 按照工作方式电容式传感器其实还有不少分类,按照工作方式可以分为接触式和非接触式。
接触式传感器需要和被测物体接触,像是在测量物体的表面距离;而非接触式传感器则是远程“观察”,就像是个好奇的小侦探,远远地就能知道情况。
这两者各有千秋,接触式通常精度高,但可能受环境影响;而非接触式则灵活多变,适合各种环境。
3.2 按照测量对象再者,根据测量对象,我们也可以把电容式传感器分为位置传感器、压力传感器和湿度传感器等等。
位置传感器就像是小道消息,随时掌握物体的移动;压力传感器则是个“忍者”,默默监测压力的变化,及时发出警报;湿度传感器则在关心空气的湿润程度,给植物、房间等提供最适宜的环境。
它们的身影无处不在,构成了我们生活的“无形卫士”。
4. 小结综上所述,电容式传感器的工作原理和分类其实并不复杂,充满了趣味性。
教案项目电容式传感器

教案项目:电容式传感器一、教学目标1. 了解电容式传感器的原理和应用。
2. 掌握电容式传感器的接线方式和基本操作。
3. 能够分析电容式传感器的测量数据并进行误差处理。
二、教学内容1. 电容式传感器概述定义:电容式传感器是一种利用电容变化来检测物体或物质的传感器。
特点:灵敏度高、响应速度快、非接触式测量等。
2. 电容式传感器的工作原理电容的定义和公式:电容是电荷存储的能力,C = Q/V。
电容式传感器的测量原理:通过测量电容的变化来检测物体或物质的变化。
3. 电容式传感器的接线方式和基本操作接线方式:电容式传感器通常有单端式和差分式两种接线方式。
基本操作:如何连接电源、信号输出、接地等。
4. 电容式传感器的测量数据分析和误差处理测量数据分析:如何分析电容式传感器的输出信号,并进行数据处理和显示。
误差处理:常见的误差类型和处理方法,如系统误差、偶然误差、粗大误差等。
三、教学方法1. 讲授法:讲解电容式传感器的原理、接线方式和基本操作。
2. 实践操作法:学生亲自动手进行电容式传感器的接线和操作,并进行测量数据分析和误差处理。
3. 问题解答法:针对学生提出的问题进行解答和讨论。
四、教学准备1. 教具:电容式传感器、示波器、信号发生器等。
2. 教材或讲义:关于电容式传感器的相关知识。
五、教学步骤1. 引入:介绍电容式传感器在工业和科研中的应用,激发学生的兴趣。
2. 讲解电容式传感器的原理和接线方式,并展示示例图片。
3. 学生进行实践操作,接线和操作电容式传感器,并记录测量数据。
4. 学生进行分析数据,识别和处理误差。
5. 学生提出问题,教师进行解答和讨论。
六、教学评估1. 学生自评:学生对自己的学习过程和掌握情况进行评价,包括理解程度、操作技能等。
2. 同伴评价:学生之间互相评价,互相学习,提高彼此的操作技能和解决问题的能力。
3. 教师评价:教师对学生的学习情况进行评价,包括理论知识的掌握和实际操作能力等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 变极距型电容传感器
当传感器的εr和S为常数, 初始极距为d0时, 可知其初始电容
量C0为
c0
0 r S
d0
h
7
若电容器极板间距离由初始值d0
d
d d
C0
d 1d
d
可知, 传感器的输出特性C =f(d)不是线性关系, 而是双曲 线关系。
此时ΔC与Δd近似呈线性关系, 所以变极距型电容式传感 器只有在Δd/d0很小时, 才有近似的线性输出。
一般变极板间距离电容式传感器的起始电容在 20-100pF 之间, 极板间距离在25-200μm的范围内, 最大位移应小于间距的 1/10, 故在微位移测量中应用最广。
h
11
二、 变面积型电容式传感器
改变极板间覆盖面 积的电容式传感器,常 用的有线位移型和角位 移型两种。
线位移型电容式传 感器主要分为:
C 2x
ln(r2 / r1)
x——外圆筒与内圆筒覆盖部 分长度; r1、r2——外圆筒内半径与内 圆筒(或内圆柱)外半径,即 它们的工作半径 其灵敏度为:
dC 20 常数
dx ln(r2/r1)
h
14
图为典型的角位移型电 容式传感器,当动板有 一转角时,与定板之间 相互覆盖的面积就发生 变化,因而导致电容量 变化。
第四章 电容式传感器
电容式传感器是将被测量(如尺寸、压 力等)的变化转换成电容变化量的一种传 感器。实际上,它本身(或和被测物)就是 一个可变电容器。
我们先来看几个例子,来体会一下将非 电量转化为电容值的变化。
h
1
实例:指纹识别传感器
图为IBM
ThinkpadT4
2/T43 的指纹识
别传感器
h
2
❖ 指纹识别所需电容传感器包含一个大约有数万个金属导体的阵 列,其外面是一层绝缘的表面。当用户的手指放在上面时,金 属导体阵列/绝缘物/皮肤就构成了相应的小电容器阵列。它们 的电容值随着脊(近的)和沟(远的)与金属导体之间的距离 不同而变化。
2 H
C0= ln D
d 0 2 rl
d
由式可见, 此变换器的电容增量正比于被测液位高度h。
h
19
h
20
2.变介质型电容传感器有较多的结构型式, 可以用来测量纸张,
绝缘薄膜等的厚度, 也可用来测量粮食、纺织品、木材或煤等
非导电固体介质的湿度。图示为一种常用的测量长度或位移的
结构。 图中两平行电极固定不动, 极距为d0, 相对介电常数为εr2 的电介质以不同厚度插入电容器中, 从而改变两种介质的厚度。
h
5
4.1 电容式传感器的工作原理和结构
由绝缘介质分开的两个平行金属板组成的平板电容器, 如果不考虑边缘效应, 其电容量为
c S d
式中: ε——电容极板间介质的介电常数, ε =ε0·εr, 其中ε0为真 空介电常数, εr为极板间介质相对介电常数;
S
S——两平行板所覆盖的面积;
d——两平行板之间的距离。
h
6
图 4-1 平 板 电 容 器
当被测参数变化使得式中的S、d或ε发生变化时, 电容量C 也随之变化。如果保持其中两个参数不变, 而仅改变其中一个 参数, 就可把该参数的变化转换为电容量的变化, 通过测量电 路就可转换为电量输出。因此, 电容式传感器可分为变极距型、 变面积型和变介质型三种类型。
传感器总电容量C为
cc1c20b0r1(Ld00L)
式中: L0, b0——极板长度和宽度;
L—— 第 二 种 介 质 进 入 极 板 间 的 长 度 。 若 电 介 质 εr1=1, 当L=0时, 传感器初始电容C0=ε0εr1L0b0/d0。 当介质εr2进入极间 L后, 引起电容的相对变化为
h
21
ccc0 (r2 1)L
c0
c0
L0
可见, 电容的变化与电介质εr2的移动量L呈线性关系。
平面线位移型和圆 柱线位移型两种。
图示为平面线位移 型
h
12
❖ 对于平面线位移型电容式传感器,当宽度为b的动板 沿箭头x方向移动时,覆盖面积变化,电容量也随之 变化
❖ 电容量为:C =(ε0εbx)/ δ ❖ 其灵敏度为 :
dC 0b常数 dx
h
13
❖ 图示为圆柱线位移型电容式 传感器,当覆盖长度x变化时, 电容量也随之变化,其电容 为:
h
3
❖ 指纹识别目前最常用的是电容式传感器, 也被称为第二代指纹识别系统。
❖ 下图为指纹经过处 理后的成像图:
优点:体积小、成本低、 成像精度高、耗电量很 小,因此非常适合在消 费类电子产品中使用。
h
4
4.1 电容式传感器的工作原理和结构 4.2 电容式传感器的灵敏度及非线性 4.3 电容式传感器的特点及设计要点 4 .4 电容式传感器的测量电路 4 .4 电容式传感器的应用
内筒外径为d, 外筒内径为D, 则此时变可换看器作电若容干值不为同半径的圆
c
21h2(Hh)
lnD
lnD
d
d
2H
lnD d
2hl(n筒其1Dd电中)容半器径c0串为联r2的。电(ln1容Dd器)电 h容:
C=02rl/dr
式中:ε——空气介电常数;
总电容:
1
C0——由变换器的基本尺寸决定的初始电容D 值d,r
h
15
❖ 当覆盖面积对应的中心角为a、极板半径为r时,覆 盖面积为 s=ar2/2,电容量为 :
❖ 其灵敏度为:
c 0rar2 2
d
C
r2 0
常数
da 2
h
16
h
17
三、 变介质型电容式传感器
1.图示为一种变极板间介质的电容式传感器用于测量液位 高低的结构原理图。
h
18
设被测介质的介电常数为ε1, 液面高度圆为筒h,电变容换器器电总容高计度算为:H,
h
8
h
9
另外, 在d0较小时, 对于同样的Δd变化所引起的ΔC可以增 大, 从而使传感器灵敏度提高。但d0过小, 容易引起电容器击 穿或短路。为此, 极板间可采用高介电常数的材料(云母、塑
料膜等)作介质, 此时电容C变为
c S dg d0 0 g 0
式中: εg——云母的相对介电常数, εg= 7;
ε0——空气的介电常数, ε0= 1;
d0——空气隙厚度;
dg—云母片的厚度。
h
10
云母片的相对介电常数是空气的7倍, 其击穿电压不小于 1000 kV/mm, 而空气的仅为3kV/mm。 因此有了云母片, 极板间 起始距离可大大减小。同时, 上式中的 (dg/ε0εg)项是恒定值, 它能使传感器的输出特性的线性度得到改善。