2013年山东省枣庄市数学中考真题(word版含答案)
【初三数学】枣庄市九年级数学上(人教版)第21章一元二次方程单元测试题(含答案)

人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(10)一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2 分)计算5821--⨯-的结果是( )。
A .-21B .-1C .9D .112.(2 分)关于代数式 x+1的结果,下列说法一定正确的是( )。
A .比 1 大B .比 1 小C .比 x 大D .比 x 小3.(2 分)如图,菱形 ABCD 中, AB=5 , BD =6 ,则菱形的高为( )。
A .512B .524C .12D .244.(2 分)如图,五边形 ABCDE 中,AB / /CD ,∠1,∠2 ,∠3分别是∠BAE ,∠AED ,∠EDC 的外角,则∠1+∠2+∠3= ( )。
A .90B .180C .120D . 2705.(2 分)计算39999-的结果更接近( )。
A .999B .989C .969D .3396.(2 分)如图,矩形 ABCD 中, AB=3, BC =4 ,点 P 从 A 点出发,按 A →B →C 的方 向在 AB 和 BC 上移动.记 PA=x ,点 D 到直线 PA 的距离为 y ,则 y 关于 x 的函数大致图象是( )。
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直 接填写在答题卡相应位置上)7.(2 分)2016年3月,鼓楼区的二手房均价约为25000元/平方米,若以均价购买一套100平方米的二手房,该套房屋的总价用科学记数法表示为 元.8.(2 分)因式分解:=-a a 1233 .9.(2 分)代数式21-+x x 在实数范围内有意义,则 x 的取值范围是 . 10.(2 分)计算)0(21822≥-a a a 的结果是 .11.(2 分)如图,将一张矩形纸片沿EF 折叠后,点D 、C 分别落在点D ’,C ’的位置;若 ∠1 =40°,则∠D ’EF= .12.(2 分)如图,点 A 在函数)0(>=x xk y 的图象上,点B 在x 轴正半轴上,∆OAB 是边长为2的等边三角形,则k 的值为 .13.(2 分)如图,在▱ABCD 中,E ,F 分别是AB ,CD 中点.当▱ABCD 满足 时, 四边形 EHFG 是菱形.14.(2 分)一元二次方程)0(022≠=++m m mx x 的两个实根分别为1x ,2x ,则=+2121x x x x . 15.(2 分)如果一个正比例函数的图象与反比例函数x y 5=交于 A(x 1,y 1),B(x 2,y 2 ), 那么=--))((2121y y x x .16.(2 分)如图,在矩形 ABCD 中,AB=5,BC=6,点E 是AD 上一点,把∆BAE 沿 BE 向矩形内部折叠,当点 A 的对应点A 1恰落在∠ADC 的平分线上时,DA 1= .三、解答题(本大题共 10 小题,共 68 分.请在答题卡指定区域内作答,解答时应写出文 字说明,证明过程或演算步骤)17.(6 分)求不等式2113-+≤x x 的负整数解.18.(6 分)计算:6)31312(28⨯--.19.(8 分)解方程;(1))1()1(3x x x -=-(2)01422=--x x20.(6 分)(1)化简:21442---x x (2)方程的2121442=---x x 解是 .21.(6 分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需 求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调 查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了 名同学;(2)在条形统计图中,n ;扇形统计图中,艺术类读物所在扇形的圆心角是 度;(3)学校计划购买课外读物 6000 册,请根据样本数据,估计学校购买其他类读物多少册比较合理.22.(7 分)如图,▱ABCD 的对角线 AC 、 BD 相交于点O ,OE人教版九年级上册第二十一章一元二次方程单元练习(含答案)一、单选题1.下列关于x 的方程:①ax 2+bx +c =0;②2430x x+-=;③x 2-4+x 5=0;④3x =x 2.其中是一元二次方程的有( ) A .1个 B .2个 C .3个 D .4个2.已知关于x 的方程x 2-kx -6=0的一个根为x =-3,则实数k 的值为( )A .1B .-1C .2D .-23.若关于x 的一元二次方程为ax 2+bx+5=0(a≠0)的解是x=1,则2013﹣a ﹣b 的值是 A .2018 B .2008 C .2014 D .20124.方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定5.将方程3x 2﹣x =﹣2(x +1)2化成一般形式后,一次项系数为( )A .﹣5B .5C .﹣3D .36.关于x 的一元二次方程(2-a)x 2+x +a 2-4=0的一个根为0,则a 的值为( )A.2B.0C.2或-2D.-27.一元二次方程2460x x --=配方后化为( )A .2(2)10x +=B .2(2)10x -=C .2(2)2x +=-D .2(2)2x +=- 8.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1 B .k≥-1 C .k <-1 D .k≤-19.如果x 1,x 2是一元二次方程2530x x --=的两个实数根,那么x 1+x 2的值是 ( ) A .-5 B .5 C .3 D .-310.(2013年四川泸州2分)若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠0 11.一元二次方程x 2﹣x+2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根12.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( ) A .8%B .9%C .10%D .11%二、填空题13.关于x 的一元二次方程(k-1)x 2+6x+k 2-k=0的一个根是0,则k 的值是______. 14.方程()x x 5x -=的解是______.15.若1x ,2x 是一元二次方程2230x x +-=的两个根,则221212x x x x +的值是_________. 16.某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套_______元.三、解答题17.已知关于x 的一元二次方程x 2+(2k−3)x−3k=0.(1)求证:此方程总有两个不相等的实数根;(2)如果方程有一个根为1,求k 的值.18.用适当的方法解下列一元二次方程:(1)()223(2)x x -=-;(2)x (x ﹣3)=10;(3)4y 2= 8y+1 ; (4)21001)36x -=( 19.已知关于x 的一元二次方程x 2﹣2(a ﹣1)x+a 2﹣a ﹣2=0有两个不相等的实数根x 1,x 2. (1)若a 为正整数,求a 的值;(2)若x 1,x 2满足x 12+x 22﹣x 1x 2=16,求a 的值.20.如图,用一根12米长的木材做一个中间有一条横档的日字形窗户.设AB =x 米.(1)用含有x 的代数式表示线段AC 的长.(2)若使透进窗户的光线达到6平方米,则窗户的长和宽各为多少?(3)透进窗户的光线能达到9平方米吗?若能,请求出这个窗户的长和宽;若不能,请说明理由.21.某商场销售某种冰箱,每台进货价为2500元,标价为3000,(1)若商场连续两次降价,每次降价的百分率相同,最后以2430元售出,求每次降价的百分率;(2)市场调研表明:当每台售价为2900元时,平均每天能售出8台,当每台售价每降50元时,平均每天就能多售出4台,若商场要想使这种冰箱的销售利润平均每天达到5000元,则每台冰箱的定价应为多少元?22.阅读下面材料,再解方程:解方程x 2-|x|-2=0解:(1)当x≥0时,原方程化为x2-x-2=0,解得:x1=2,x2=-1(不合题意,舍去)(2)当x<0时,原方程化为x2 + x –2=0,解得:x1=1,(不合题意,舍去)x2= -2 ∴原方程的根是x1=2, x2= - 2(3)请参照例题解方程x2-|x-1|-1=0答案1.A2.B3.A4.C5.D6.D7.B8.C.9.B10.D11.C12.C13.0.14.1x 0=,2x 6=.15.616.50元或60元17.(1)证明:在方程x 2+(2k-3)x-3k=0中,∵△=b 2-4ac=(2k-3)2-4×(-3k )=4k 2-12k+9+12k=4k 2+9>0,∴此方程总有两个不相等的实数根.(2)解:将x=1代入x 2+(2k-3)x-3k=0中,可得:1+(2k-3)-3k=0,解得:k=-2,∴如果方程有一个根为1,k 的值为-2.18.解:(1)()223(2)x x -=-(x-2)2-3(x-2)=0, (x-2)(x-2-3)=0,x-2=0或x-2-3=0,所以1225x x ==,;(2)x (x ﹣3)=10x 2-3x-10=0,(x-5)(x+2)=0,x-5=0或x+2=0,所以1252x x ==-,;(3)4y 2=8y+1y 2-2y=14, y 2-2y+1=14+1, (y-1)2=54 ,,所以y 1,y 2; (4)21001)36x -=(整理得,(x-1)2=925 ,直接开平方得,x-1=±35人教版九年级上第二十一章一元二次方程单元测试(含答案)一、单选题1.下列方程,是一元二次方程的是( )①3x 2+x=20,②2x 2-3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2-3x +3=0 A .①② B .①④⑤ C .①③④ D .①②④⑤2.将一元二次方程5x 2 -1=4x 化成一般形式后,二次项系数、一次项系数和常数项分别为( )A .5、-1、4B .5、4、-1C .5、-4、-1D .5、-1、-43.若a 是方程 的一个解,则 的值为A .3B .C .9D .4.已知﹣4是关于x 的一元二次方程x 2+x ﹣a =0的一个根,则a 的值是( ) A .12 B .﹣20 C .20 D .﹣125.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x -1)2=6C .(x +2)2=9D .(x -2)2=96.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >-1B .k >-1且k ≠0C .k <-1D .k <-1或k =0 7.已知关于x 的一元二次方程(x+1)2-m=0有两个实数根,则m 的取值范围是( ) A .m≥34 B .m≥2 C .m≥1 D .m≥08.三角形的两边长分别为3米和6米,第三边的长是方程x 2﹣6x+8=0的一个根,则这个三角形的周长为( )A .11B .12C .11或 13D .139.一元二次方程(x ﹣1)(x ﹣2)=0的解是( )A.x=1B.x=2C.x 1=1,x 2=2D.x 1=﹣1,x 2=﹣2 10.若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( )A .x 2+3x-2=0B .x 2-3x+2=0C .x 2-3x-2=0D .x 2+3x+2=0 11.有m 支球队参加篮球比赛,共比赛了21场,每两队之间都比赛一场,则下列方程中符合题意的是( )A.B. C. D. 12.据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2, 假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为( )A .27600(1x%)8200+=B .27600(1x%)8200-=C .27600(1x)8200+=D .27600(1x)8200-=二、填空题13.一元二次方程25830x x -+=的一次项系数是____________,常数项是____________. 14.设m 是一元二次方程2270x x +-=的一个根,则2249m m +-=________ 15.已知1x ,2x 是关于x 的一元二次方程2210x x k ++-=的两个实数根,且22121213x x x x +-=,则k 的值为____. 16.一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x ,则列方程为_____.三、解答题17.用适当的方法解方程。
2014年山东省枣庄市中考数学试卷(含解析版)

2014年东省枣庄市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•枣庄)2的算术平方根是()A .±B.C.±4 D.42.(3分)(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万名观众提供安保.将14000000000用科学记数法表示为()A .140×108B.14.0×109C.1.4×1010D.1.4×10113.(3分)(2014•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为()A .17°B.34°C.56°D.124°4.(3分)(2014•枣庄)下列说法正确的是()A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2甲=1.25,s2乙=0.96,则说明乙组数据比甲组数据稳定5.(3分)(2014•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则两圆的位置关系是()A .外离B.外切C.相交D.内切6.(3分)(2014•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A .350元B.400元C.450元D.500元7.(3分)(2014•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A .22 B.18 C.14 D.118.(3分)(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A .x>4 B.x>﹣4 C.x>2 D.x>﹣29.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A .a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣210.(3分)(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于311.(3分)(2014•枣庄)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为()A .y轴B.直线x=C.直线x=2 D.直线x=12.(3分)(2014•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A .B.1C.D.7二、填空题(共6小题,每小题4,满分24分)13.(4分)(2014•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.(4分)(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.15.(4分)(2014•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.16.(4分)(2014•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为cm2.17.(4分)(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F 处.若AE=BE,则长AD与宽AB的比值是.18.(4分)(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.三、解答题(共7小题,满分60分)19.(8分)(2014•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)化简:(﹣)÷.20.(8分)(2014•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.21.(8分)(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D 到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参照数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)22.(8分)(2014•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC 的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.23.(8分)(2014•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB 于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.24.(10分)(2014•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.25.(10分)(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x 轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.2014年东省枣庄市中考数学试卷参照解答与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•枣庄)2的算术平方根是()A .±B.C.±4 D.4考点:算术平方根.解析:根据开方运算,可得算术平方根.解答:解:2的算术平方根是,故选;B.点评:本题考查了算术平方根,开方运算是解题关键.2.(3分)(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万名观众提供安保.将14000000000用科学记数法表示为()A .140×108B.14.0×109C.1.4×1010D.1.4×1011考点:科学记数法—表示较大的数解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:14 000 000 000=1.4×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为()A .17°B.34°C.56°D.124°考点:平行线的性质;直角三角形的性质解析:根据两直线平行,同位角相等可得∠DCE=∠A,再根据直角三角形两锐角互余列式计算即可得解.解答:解:∵AB∥CD,∴∠DCE=∠A=34°,∵∠DEC=90°,∴∠D=90°﹣∠DCE=90°﹣34°=56°.故选C.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.4.(3分)(2014•枣庄)下列说法正确的是()A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2甲=1.25,s2乙=0.96,则说明乙组数据比甲组数据稳定考点:概率的意义;全面调查与抽样调查;中位数;众数;方差解析:根据概率的意义,众数、中位数的定义,以及全面调查与抽样调查的选择,方差的意义对各选项解析判断利用排除法求解.解答:解:A、“明天降雨的概率是50%”表示明天降雨和不降雨的可能性相等,不表示半天都在降雨,故本选项错误;B、数据4,4,5,5,0的中位数是4,众数是4和5,故本选项错误;C、要了解一批钢化玻璃的最少允许碎片数,应采用抽样调查的方式,故本选项错误;D、∵方差s2甲>s2乙,∴乙组数据比甲组数据稳定正确,故本选项正确.故选D.点评:本题解决的关键是理解概率的意义以及必然事件的概念;用到的知识点为:不太容易做到的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等.5.(3分)(2014•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则A .外离B.外切C.相交D.内切考点:圆与圆的位置关系解析:由⊙O1、⊙O2的直径分别为8和6,圆心距O1O2=2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得两圆位置关系.解答:解:∵⊙O1、⊙O2的直径分别为6cm和8cm,∴⊙O1、⊙O2的半径分别为3cm和4cm,∴1<d<7,∵圆心距O1O2=2,∴⊙O1与⊙O2的位置关系是相交.故选C.点评:此题考查了圆与圆的位置关系.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.6.(3分)(2014•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A .350元B.400元C.450元D.500元考点:一元一次方程的应用解析:设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解答:解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.答:该服装标价为400元.故选B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.7.(3分)(2014•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A .22 B.18 C.14 D.11考点:菱形的性质解析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.解答:解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选A.点评:本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.8.(3分)(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A .x>4 B.x>﹣4 C.x>2 D.x>﹣2考点:一次函数图象与几何变换解析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围.解答:解:∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0,则x=﹣4,x=0时,y=2,如图:∴y>0,则x的取值范围是:x>﹣4,故选:B.点评:此题主要考查了一次函数图象与几何变换以及图象画法,得出函数图象进而判断x的取值范围是解题关键.9.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A .a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2考点:平方差公式的几何背景解析:根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.10.(3分)(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A .x1小于﹣1,x2大于3B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3考点:解一元二次方程-直接开平方法;估算无理数的大小解析:利用直接开平方法解方程得出两根进而估计无理数的大小得出解答.解答:解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x1=1+>3,x2=1﹣<﹣1,故选:A.点评:此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键.11.(3分)(2014•枣庄)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为()A .y轴B.直线x=C.直线x=2 D.直线x=考点:二次函数的性质解析:由于x=1、2时的函数值相等,然后根据二次函数的对称性列式计算即可得解.解答:解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选D.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,比较简单.12.(3分)(2014•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A .B.1C.D.7考点:三角形中位线定理;等腰三角形的判定与性质解析:由等腰三角形的判定方法可知三角形AGC是等腰三角形,所以F 为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.解答:解:∵AD是其角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC,∵AB=4,AC=3,∴BG=1,∵AE是中线,∴BD=CD,∴EF为△CBG的中位线,∴EF=BG=,故选A.点评:本题考查了等腰三角形的判定和性质、三角形的中位线性质定理:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(共6小题,每小题4,满分24分)13.(4分)(2014•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有3种.考点:利用轴对称设计图案解析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解答:解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故解答为:3.点评:考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形.14.(4分)(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.考点:二元一次方程组的解;因式分解-运用公式法解析:根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得解答.解答:解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故解答为:.点评:本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.15.(4分)(2014•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.考点:列表法与树状图法专题:计算题.解析:列表得出所有等可能的情况数,找出差为负数的情况数,即可求出所求的概率.解答:解:列表得:2 3 43 (2,3)(3,3)(4,3)4 (2,4)(3,4)(4,4)5 (2,5)(3,5)(4,5)所有等可能的情况有9种,其中差为负数的情况有5种,则P=.故解答为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2014•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为4﹣πcm2.考点:扇形面积的计算;相切两圆的性质解析:根据题意可知图中阴影部分的面积=边长为2的正方形面积﹣一个圆的面积.解答:解:∵半径为1cm的四个圆两两相切,∴四边形是边长为2cm的正方形,圆的面积为πcm2,阴影部分的面积=2×2﹣π=4﹣π(cm2),故解答为:4﹣π.点评:此题主要考查了圆与圆的位置关系和扇形的面积公式.本题的解题关键是能看出阴影部分的面积为边长为2的正方形面积减去4个扇形的面积(一个圆的面积).17.(4分)(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F 处.若AE=BE,则长AD与宽AB的比值是.考点:翻折变换(折叠问题)解析:由AE=BE,可设AE=2k,则BE=3k,AB=5k.由四边形ABCD是矩形,可得∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.由折叠的性质可得∠EFC=∠B=90°,EF=EB=3k,CF=BC,由同角的余角相等,即可得∠DCF=∠AFE.在Rt△AEF中,根据勾股定理求出AF==k,由cos∠AFE=cos∠DCF得出CF=3k,即AD=3k,进而求解即可.解答:解:∵AE=BE,∴设AE=2k,则BE=3k,AB=5k.∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.∵将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处,∴∠EFC=∠B=90°,EF=EB=3k,CF=BC,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∴cos∠AFE=cos∠DCF.在Rt△AEF中,∵∠A=90°,AE=2k,EF=3k,∴AF==k,∴=,即=,∴CF=3k,∴AD=BC=CF=3k,∴长AD与宽AB的比值是=.故解答为.点评:此题考查了折叠的性质,矩形的性质,勾股定理以及三角函数的定义.解此题的关键是数形结合思想与转化思想的应用.18.(4分)(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.考点:平面展开-最短路径问题;截一个几何体解析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故解答为:(3+3).点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.三、解答题(共7小题,满分60分)19.(8分)(2014•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)化简:(﹣)÷.考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂专题:计算题.解析:(1)原式第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=﹣8+3﹣5+1=﹣9;(2)原式=•(x﹣1)=•(x﹣1)=﹣.点评:此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则解本题的关键.20.(8分)(2014•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.考点:条形统计图;扇形统计图;模拟实验解析:(1)用摸到红色球的次数除以占的百分比即是实验总次数,用总次数减去红黄绿球的次数即为摸蓝球的次数,再补全条形统计图即可;(2)用摸到黄色小球次数除以实验总次数,再乘以360°即可得摸到黄色小球次数所在扇形的圆心角度数;(3)先得出摸到绿色小球次数所占的百分比,再用口袋中有10个红球除以红球所占的百分比得出口袋中小球的总数,最后乘以绿色小球所占的百分比即可.解答:解:(1)50÷25%=200(次),所以实验总次数为200次,条形统计图如下:(2)=144°;(3)10÷25%×=2(个),答:口袋中绿球有2个.点评:本题主要考查了条形统计图,用样本估计总体,弄清题意是解本题的关键.21.(8分)(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D 到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参照数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)考点:解直角三角形的应用解析:(1)根据三角函数分别表示出OE和DE,再根据点D到点O的距离为30cm可列方程求解;(2)在Rt△BDE中,根据三角函数即可得到滑动支架的长.解答:解:(1)在Rt△BOE中,OE=,在Rt△BDE中,DE=,则+=30,解得BE≈10.6cm.故B点到OP的距离大约为10.6cm;(2)在Rt△BDE中,BD=≈25.3cm.故滑动支架的长25.3cm.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.22.(8分)(2014•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC 的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.考点:全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定专题:计算题.解析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.解答:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,即OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.点评:此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.23.(8分)(2014•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB 于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.考点:切线的性质专题:计算题.解析:(1)设⊙O的半径为R,根据切线定理得OB⊥AB,则在Rt△ABO中,利用勾股定理得到R2+122=(R+8)2,解得R=5,即OD的长为5;(2)根据垂径定理由CD⊥OB得DE=CE,再证明△OEC∽△OBA,利用相似比可计算出CE=,所以CD=2CE=.解答:解:(1)设⊙O的半径为R,∵AB切⊙O于点B,∴OB⊥AB,在Rt△ABO中,OB=R,AO=OC+AC=R+8,AB=12,∵OB2+AB2=OA2,∴R2+122=(R+8)2,解得R=5,∴OD的长为5;(2)∵CD⊥OB,∴DE=CE,而OB⊥AB,∴CE∥AB,∴△OEC∽△OBA,∴=,即=,∴CE=,∴CD=2CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、垂径定理和相似三角形的判定与性质.24.(10分)(2014•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.考点:反比例函数与一次函数的交点问题解析:(10根据正切值,可得OE的长,可得A点坐标,根据待定系数法,可得反比例函数解析式,根据点的坐标满足函数解析式,可得B点坐标,根据待定系数法,可得一次函数解析式;(2)根据面积的和差,可得解答.解答:解:(1)如图:,tan∠AOE=,OE=6,A(6,2),y=的图象过A(6,2),∴,k=12,反比例函数的解析式为y=,B(﹣4,n)在y=的图象上,n==﹣3,B(﹣4,﹣3),一次函数y=ax+b过A、B点,,解得,一次函数解析式为y=﹣1;(2)当x=0时,y=﹣1,C(0,﹣1),当y=﹣1时,﹣1=,x=﹣12,D(﹣12,﹣1),s OCDB=S△ODC+S△BDC=+|﹣12|×|﹣2|=6+12=18.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法求解析式的关键,利用面积的和差求解四边形的面积.25.(10分)(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x 轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.考点:二次函数综合题解析:(1)由抛物线已知,则可求三角形OBC的各个顶点,易知三角形形状及内角.(2)因为抛物线已固定,则S四边形OCDB固定,对于坐标系中的不规则图形常用分割求和、填补求差等方法求面积,本图形过顶点作x轴的垂线及可将其分为直角梯形及直角三角形,面积易得.由此可得E点坐标,进而可求ED直线方程,与抛物线解析式联立求解即得P点坐标.(3)PF的长度即为y F﹣y P.由P、F的横坐标相同,则可直接利用解析式作差.由所得函数为二次函数,则可用二次函数性质讨论最值,解法常规.解答:解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+2),∴由题意得,A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4).在Rt△OBC中,∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.(2)如图1,过点D作DH⊥x轴于H,此时S四边形OCDB=S梯形OCDH+S△HBD,∵OH=1,OC=3,HD=4,HB=2,∴S梯形OCDH=•(OC+HD)•OH=,S△HBD=•HD•HB=4,∴S四边形OCDB=.∴S△OCE=S四边形OCDB==,∴OE=5,∴E(5,0).设l DE:y=kx+b,∵D(1,﹣4),E(5,0),∴,解得,∴l DE:y=x﹣5.∵DE交抛物线于P,设P(x,y),∴x2﹣2x﹣3=x﹣5,解得x=2 或x=1(D点,舍去),∴x P=2,代入l DE:y=x﹣5,∴P(2,﹣3).(3)如图2,设l BC:y=kx+b,∵B(3,0),C(0,﹣3),∴,解得,∴l BC:y=x﹣3.∵F在BC上,∴y F=x F﹣3,∵P在抛物线上,∴y P=x P2﹣2x P﹣3,∴线段PF长度=y F﹣y P=x F﹣3﹣(x P2﹣2x P﹣3),∵x P=x F,∴线段PF长度=﹣x P2+3x P=﹣(x P﹣)2+,(1<x P≤3),∴当x P=时,线段PF长度最大为.点评:本题考查了抛物线图象性质、已知两点求直线解析式、直角三角形性质及二次函数最值等基础知识点,题目难度适中,适合学生加强练习.。
2013年山东省潍坊市数学中考真题(word版含答案)

2013年潍坊市初中学业水平考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页,为选择题,36分;第Ⅱ卷8页,为非选择题,84分;共120分.考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、准考证号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷 (选择题 共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1. 实数0.5的算术平方根等于( ).(A )2 (B )2 (C )22 (D )21 2. 下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).3. 2012年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排农村义务教育经费保障机制改革资金达865.4亿元.数据“865.4亿元”用科学记数法可表示为( )元.(保留3个有效数字)(A )810865⨯ (B )91065.8⨯ (C )101065.8⨯ (D )1110865.0⨯4.如图是常用的一种圆顶螺杆,它的俯视图正确的是( ).5. 在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).(A )众数 (B )方差 (C )平均数 (D )中位数6. 设点()11,y x A 和()22,y x B 是反比例函数xk y =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限7. 用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).8.如图,O ⊙的直径12AB =,CD 是O ⊙的弦,CD AB ⊥,垂足为P ,且15BP AP =∶∶,则CD 的长为( ).(A )24 (B )28(C )52 (D )549. 一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).(A )310海里/小时(B ) 30海里/小时(C )320海里/小时(D )330海里/小时10. 已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( ). (A )当0=k 时,方程无解(B )当1=k 时,方程有一个实数解(C )当1-=k 时,方程有两个相等的实数解(D )当0≠k 时,方程总有两个不相等的实数解11. 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( ).(A )⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y x (B )⎪⎩⎪⎨⎧=+=-10000%5.0%5.222y x y x (C )⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x (D )⎪⎩⎪⎨⎧=-=+22%5.0%5.210000y x y x 12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ). (A )40 (B )45 (C )51 (D )562013年潍坊市初中学业水平考试数 学 试 题第Ⅱ卷 (非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分.)13. 方程012=++x x x 的根是_________________.14. 如图,ABCD 是对角线互相垂直的四边形,且OB OD =,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)15. 分解因式:()()=+-+a a a 322_________________.16. 一次函数b x y +-=2中,当1=x 时,y <1;当1-=x 时,y >0.则b 的取值范围是_____________.17.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示,n 是正整数)答案:24n n +18. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB ,6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF △沿DF 折叠,使点A 落在线段DB 上,对应点记为1A ;AD 的中点E 的对应点记为1E .若11E FA △∽1E BF △,则AD =________.三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(本题满分10分)如图,四边形ABCD 是平行四边形,以对角线BD 为直径作O ⊙,分别与边BC 、AD 相交于点E 、F .(1)求证:四边形BEDF 为矩形;(2)若BC BE BD ⋅=2,试判断直线CD 与O ⊙的位置关系,并说明理由.20. (本题满分10分)为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的用电量分三个档次计费,具体规定见右图.小明统计了自家2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题.(1)若小明家计划2013年全年的用电量不超过2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6月至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?21.(本题满分10分)随着我国汽车产业的发展,城市道路拥堵问题日益严峻.某部门对15个城市的交通状况进行(1)根据上班花费时间,将下面的频数分布直方图补充完整;(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定: 100%=⨯-上班堵车时间城市的堵车率上班花费时间上班堵车时间,比如:北京的堵车率=%100145214⨯-=36.8%;沈阳的堵车率=%100123412⨯-=54.5%.某人欲从北京、沈阳、上海、温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.22. (本题满分11分)如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE F D ''',旋转角为α.(1)当点D '恰好落在EF 边上时,求旋转角α的值;(2)如图2,G 为BC 中点,且0°<α<90°,求证:GD E D ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '△与CBD '△能否全等?若能,直接写出旋转角α的值;若不能,说明理由.23.(本题满分12分)为了改善市民的生活环境,我市在某河滨空地处修建一个如图所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点E D 、在斜边AB 上,G F 、分别在直角边AC BC 、上;又分别以AC BC AB 、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米324=AB ,︒=∠60BAC .设x EF =米,y DE =米.(1)求y 与x 之间的函数解析式;(2)当x 为何值时,矩形DEFG 的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的31?24.(本题满分13分)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线l 是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线l 平分四边形OBDC 的面积,求k 的值;(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l 交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.2013年潍坊市初中学业水平考试数 学 参考答案注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页,为选择题,36分;第Ⅱ卷8页,为非选择题,84分;共120分.考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、准考证号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷 (选择题 共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1. C2. A3. C4. B5. D6. A7. C8. D9. D10. C11. B12. C二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分.) 13. 0x =14.答案:OA OC =或AD BC =或AD BC ∥或AB BC =等(答案不唯一) 15. (1)(4)a a -+16. 23b -<<17. 24n n + 18. 165三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(本题满分10分)(1)证明:BD 为O ⊙的直径,90DEB DFB ∴∠=∠=°.(2分) 又四边形ABCD 是平行四边形,AD BC ∴∥,(3分)90FBC DFB ∴∠=∠=°,90EDA BED ∠=∠=°.∴四边形BEDF 为矩形.(5分) (2)直线CD 与O ⊙的位置关系为相切.(6分)理由如下:2BD BE BC =·,BD BC BE BD∴=.(7分) DBC CBD ∠=∠,BED BDC ∴△∽△.(8分)90BDC BED ∴∠=∠=°,即BD CD ⊥.CD ∴与O ⊙相切.(10分)20. (本题满分10分)解:(1)设小明家6至12月份平均每月用电量为x 度,根据题意得:130072520x +≤.(2分) 解得122017437x ≤≈.,(4分) 所以小明家6至12月份平均每月用电量最多为174度.(5分) (2)小明家前5个月平均每月用电量13002605==(度).(6分) 全年用电量260123120=⨯=(度),(7分)因为252031204800<<,所以总电费2520055(31202520)06=⨯+-⨯..(8分) 138********=+=(元)所以小明家2013年应交总电费为1746元.(10分)21.(本题满分10分)解:(1)补全的统计图如图所示(阴影部分)(2分)(2)平均上班堵车时间14124112726253015+⨯+⨯+⨯+⨯+⨯+=25833=≈.(分钟)(4分) (3)上海的堵车率11100%306%4711=⨯=-.. 温州的堵车率5100%250%255=⨯=-.. 堵车率超过30%的城市有北京、沈阳和上海.(6分)从四个城市中选两个的所有方法有6种:(北京,沈阳),(北京,上海),(北京,温州),(沈阳,上海),(沈阳,温州),(上海,温州).(8分)其中两个城市堵车率均超过30%的情况有3种:(北京,沈阳),(北京,上海),(沈阳,上海).(9分)所以,选取的两个城市堵车率都超过30%的概率3162P ==.(10分)22. (本题满分11分)(1)DC EF ∥,DCD CD E ''∴∠=∠=α.(1分)1sin 2CE CE CD CD ∴α==='.(3分) 30∴α=°.(4分)(2)G 为BC 中点,1GC CE CE '===.(5分)90D CG DCG DCD ''∠=∠+∠=+α°,90DCE D CE DCD ''''∠=∠+∠=+α°.D CG DCE ''∴∠=∠,(7分)又CD CD '=,GCD E CD ''∴△≌△,GD E D ''∴=.(9分)(3)能.α=135°或α=315°.(11分)23.(本题满分12分)解:(1)在直角ABC △中,由题意得AC =36BC =米,30ABC ∠=°,所以tan 60DG AD x ===°,tan 30EF BE ==°,(2分) 又AD DE BE AB ++=,所以y x ==.(018)x <<.(3分)(2)矩形DEFG 的面积2S xy x ⎛⎫===+ ⎪⎝⎭=29)x -+(5分)所以当9x =米时,矩形DEFG的面积最大,最大面积是(7分)(3)记AC 为直径的半圆、BC 为直径的半圆、AB 为直径的半圆面积分别为1S 、2S 、3S ,两弯新月面积为S ,则211π8S AC =,221π8S BC =,231π8S AB =, 由222AC BC AB +=,可知123S S S +=,123ABC S S S S S ∴+-=-△,故ABC S S =△,(9分)所以两弯新月的面积1362S =⨯=.(10分)由219)3x -+=⨯2(9)27x -=,解得9x =±所以当9x =±DEFG 的面积等于两弯新月面积的13.(12分)24.(本题满分13分) 解:(1)因为抛物线关于直线1x =对称,4AB =,所以(10)A -,,(30)B ,,(1分) 又点322D ⎛⎫ ⎪⎝⎭,在抛物线上,所以03422a b c a b c -+=⎧⎪⎨++=⎪⎩,所以3332a b +=,即12a b +=, 又12b a -=,即2b a =-,代入上式解得12a =-,1b =,(3分) 从而得32c =,所以21322y x x =-++.(4分) (2)由(1)知21322y x x =-++,令0x =,得302C ⎛⎫ ⎪⎝⎭,, 所以CD AB ∥,(5分) 令322kx -=,得l 与CD 的交点F 7322k ⎛⎫ ⎪⎝⎭,, 令20kx -=得l 与x 轴的交点20E k ⎛⎫ ⎪⎝⎭,,(6分) 根据OEFC EBDF S S =得:OE CF DF BE +=+. 即:27273222k k k k ⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭,解得115k =.(8分)(3)由(1)知22131(1)2222y x x x =-++=--+, 所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为212y x =-.(9分) 假设在y 轴上存在一点(0)P t ,,0t >,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线1MM 、1NN ,垂足分别为1M 、1N ,因为MPO NPO ∠=∠,所以11Rt Rt MPM NPN △∽△, 所以1111MM PM NN PN =,(1)(10分) 不妨设点()M M M x y ,在点()N N N x y ,的左侧,因为P 点在y 轴正半轴上,则(1)式变为M M N Nx t y x t y --=-, 又2M M y kx =-,2N N y kx =-,所以(2)()2M N M N t x x kx x ++=,(2)(11分) 把2(0)y kx k =-≠代入212y x =-整理得2240x kx +-=, 所以2M N x x k +=-,4M N x x =-,代入(2)式解得2t =,符合条件,故在y 轴上存在一点(02)P ,,使直线PM 与PN 总是关于y 轴对称.(13分) 说明:本参考答案给出了一种解题方法,其它正确方法应参考本标准给出相应分数.。
2024-2025学年山东省枣庄市高一上学期期中数学质量检测试题(含解析)

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求2024-2025学年山东省枣庄市高一上学期期中数学质量检测试题.1. 已知集合{}3,2,1,0A =---,12,1,0,2B ⎧⎫=--⎨⎬⎩⎭,则A B ⋂的非空子集个数为( )A. 7B. 8C. 15D. 16【答案】A【解析】【分析】求出交集再根据子集的概念得出结论.【详解】由题意{2,1,0}A B =-- ,因此它有8个子集,其中非空子集有7个.故选:A .2. 命题.“230,1x x x ∃<+>”的否定是( )A. 230,1x x x ∀≥+≤ B. 230,1x x x ∀<+≤ C. 230,1x x x ∃<+≤ D. 230,1x x x ∃≥+≤【答案】B【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3. 对于实数x ,“1x <”是“1x <”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要【答案】A【解析】【分析】根据充分、必要条件的知识确定正确答案.【详解】当1x <时,显然有1x <成立,但是由1x <,未必有1x <,如21x =-<,但1x >,故前者是后者的充分不必要条件.故选:A4. 下列函数中,在定义域上既是奇函数又是减函数的为( )A. 1y x =+ B. 1y x =C. []()31,2y x x =-∈- D. y x x=-【答案】D【解析】【分析】根据奇偶函数的定义及单调性的定义逐项判断即可.【详解】对于A ,对于()1y f x x ==+,()1()f x x f x -=-≠,且()1()f x x f x -=-≠-,故函数1y x =+是非奇非偶函数,不满足题意;对于B ,函数()1y f x x ==,满足()()f x f x -=-是奇函数,但在定义域内不具有单调性,不满足条件;对于C ,函数的定义域为[1,2]-,不具有对称性,故不具有奇偶性,不满足题意;对于D ,对于函数()y f x x x ==-,定义域为R ,满足()()f x f x -=-,是奇函数,当0x >时,()2f x x =-,则()f x 在()0,∞+上单调递减;当0x <时,()2f x x =,则()f x 在(),0-∞上单调递减;又当0x =时,22x x -=,所以()f x 在R 上单调递减,满足题意.故选:D.5. 已知幂函数()()223m m f x xm +-=∈Z 是偶函数,且()f x 在(),0∞-上是增函数,则m =( )A. 2- B. 1- C. 0 D. 3【答案】B【解析】【分析】由函数()f x 是偶函数且在(),0∞-上是增函数,可知函数()f x 在(0,+∞)上单调递减,由幂函数的性质可得2230m m +-<,结合m ∈Z ,即可解出2m =-或1m =-或0m =,分别代入函数()f x ,结合()f x 是偶函数即可得出答案.【详解】因为函数()f x 是偶函数且在(),0∞-上是增函数,所以函数()f x 在(0,+∞)上单调递减,所以2230m m +-<,即(1)(3)0m m -+<,解得31m -<<,又因为m ∈Z ,所以2m =-或1m =-或0m =,当0m =或2m =-时,()3f x x -=,此时()f x 为奇函数,不满足题意;当1m =-时,()4f x x -=,此时()f x 为偶函数,满足题意;所以1m =-.故选:B6. 若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是( )A. {31}mm -<<∣ B. {3mm <-∣或1}m > C. {13}m m -<<∣ D. {1m m <-∣或3}m >【答案】C【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.7. 已知()()()1f x x x b =+-是偶函数,且其定义域为[]21,a a -,则a b +的值是 ( )A. 13- B. 43 C. 23 D. 23-【答案】B【解析】【分析】利用偶函数的定义和性质,即可求得,a b 的值.【详解】()()21f x x b x b =+--,因为函数是偶函数,所以满足()()f x f x -=,得1b =,偶函数的定义域关于原点对称,所以210a a -+=,得13a =,所以43a b +=.故选:B8. 某位同学经常会和爸爸妈妈一起去加油,经过观察他发现了一个有趣的现象:爸爸和妈妈的加油习惯是不同的.爸爸每次加油都说:“师傅,给我加250元的油”,而妈妈则说“师傅帮我把油箱加满”.这位同学若有所思,如果爸爸、妈妈都加油两次,两次的加油价格不同,妈妈每次加满油箱;爸爸每次加250元的油,我们规定谁的平均单价低谁就合算,那么请问爸爸、妈妈谁更合算呢?( )A. 妈妈B. 爸爸C. 一样D. 不确定【答案】B【解析】【分析】由题意,先计算爸爸和妈妈两次加油的平均单价,再作差法比较大小,即可得解.【详解】由题意,设第一次加油单价为x 元,第二次为y 元,油箱加满为a 升,则妈妈两次加油共需付款()a x y +元,爸爸两次能加250250250()x y x y xy++=升油,设爸爸两次加油的平均单价为M 元/升,妈妈两次加油的平均单价为N 元/升,则5002(),250()22xy a x y x y M N x y x y a xy++====++,且x y ≠,,0x y >,所以22()022()x y xy x y N M x y x y +--=-=>++,即N M >,所以爸爸的加油方式更合算.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 十六世纪中叶,英国数学家雷科德在《励智石》一书中首先把“=”作为等号使用,后来英国数学家哈里奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若R a b c ∈,,,则下列说法不成立的是( )A. 若0ab ≠且a b <,则11a b > B. 若01a <<,则3a a <C. 若0a b >>,则11b b a a+<+ D. 若c b a <<且0ac <,则22cb ab <【答案】ACD【解析】【分析】A 项,通过设出a 和b 的值,即可得出结论;B 项,通过作差后与0比较,即可得出结论;C 项,通过作差后与0比较,即可得出结论;D 项,通过分析已知条件得出a 和c 与0的关系,讨论b 的取值,即可得出结论.【详解】由题意,A 项,当2a =-,1b =时,满足a b <,但11a b <,∴A 错误,B 项,∵01a <<,∴()()()321110a a a a a a a -=-=+-<,∴3a a <,∴B 正确,C 项,∵0a b >>,∴()1011b b a b a a a a +--=>++,∴C 错误,D 项,∵c b a <<,0ac <,∴0a >,0c <,b ∈R ,当0b =时,则22cb ab =,∴D 错误,故选:ACD.10. 已知函数21,0()2,0x x f x x x ⎧+≤=⎨>⎩,若()10f x =,则x 的取值可以是( )A. 3B. 20C. 3-D. 5【答案】CD【解析】【分析】讨论0x ≤和0x >两种情况利用解析式即可求出.【详解】当0x ≤时,2()110f x x =+=,解得3x =(舍去)或3x =-,当0x >时,()210f x x ==,解得5x =,符合,综上,3x =-或5.故选:CD.11. 已知函数()y f x =是定义在R 上的偶函数,当0x ≤时,()()1f x x x =+,则下列说法正确的是( )A. 函数()f x 有3个单调区间B. 当0x >时,()()1f x x x =-C. 函数()f x 有最小值14-D. 不等式()0f x <的解集是()1,1-【答案】BC【解析】【分析】利用奇偶性求出()y f x =的表达式,再逐项求出单调区间、最值以及不等式的解集即可判断.【详解】解:当0x >时,0x -<,因为0x ≤时,()()1f x x x =+所以()()1f x x x -=--+,又因为()y f x =是定义在R 上的偶函数所以0x >时,()()21f x x x x x=--+=-即()()()2200x x x f x x x x ⎧->⎪=⎨+≤⎪⎩如图所示:对A ,由图知,函数()f x 有4个单调区间,故A 错误;对B ,由上述分析知,当0x >时,()2=-f x x x ,故B 正确;对C ,由图知,当11212x =-=-⨯或11212x -=-=⨯时,函数()f x 取得最小值()111224min f x f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭-,故C 正确;对D ,由图知,不等式()0f x <的解集是()()1,00,1-U ,故D 错误.故选:BC.三、填空题:本题共3小题,每小题5分,共15分12. 树德中学对高一强基班的学科培优进行了调查.调查结果显示:参加物理培优的有60人,参加数学培优的有80人,参加化学培优的有50人,三科培优都参加的有24人,只选择两科培优参加的有22人,不参加其中任何一科培优的有15人,则接受调查的高一强基班学生共有_____________人.【答案】135【解析】【详解】利用文恩图的辅助求解即可.【分析】由文恩图可得;参加培优的人数为()60+80+5022224120--⨯=,又不参加其中任何一科培优的有15人,所以接受调查的高一强基班学生共有12015135+=.故答案为:135.13. 函数()f x =______.【答案】(]3,00,12⎡⎫-⎪⎢⎣⎭【解析】分析】依题意可得230100x x x +≥⎧⎪-≥⎨⎪≠⎩,求解即可.【详解】依题意可得230100x x x +≥⎧⎪-≥⎨⎪≠⎩,解得312x -≤≤且0x ≠.所以函数()f x 的定义域为(]3,00,12⎡⎫-⎪⎢⎣⎭.故答案为:(]3,00,12⎡⎫-⎪⎢⎣⎭.14. 若02a <<,则122a a a +-的最小值是__________【答案】54【解析】【分析】将122a a a +-变形,得到141122422a a a a a+=-++--,利用基本不等式“1”的妙用,求解最小值.【详解】因为02a <<,所以420a ->,(42)24a a -+=,所以12141112222422a a a a a a a+=-++=-++---41(42)21()4224a a a a -+=-++⨯-14281514115424244a a a a ⎛-⎛⎫=-++++-++= ⎪ -⎝⎭⎝…,当且仅当428242a a a a -=-,即23a =时等号成立.故答案为:54.四.解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15. 设全集R ,集合{}36A x x =≤<,{}29B x x =<<.(1)分别求A B ⋂,R ()B A ð;(2)已知{}1C x a x a =<<+,若C B B = ,求实数a 的取值范围.【答案】(1){|36}A B x x =≤< ,R ()B A = ð{|2x x ≤或36x <≤或9}x ≥; (2)28a ≤≤.【解析】【分析】(1)应用集合交并补运算求集合;(2)根据题设有C B ⊆且集合C 非空,进而列不等式组求参数范围.【小问1详解】由题设{|36}A B x x =≤< ,且R {|2B x x =≤ð或9}x ≥,所以R ()B A = ð{|2x x ≤或36x <≤或9}x ≥.【小问2详解】由题意C B ⊆,显然集合C 非空,所以219a a ≥⎧⎨+≤⎩,可得28a ≤≤.16. (1)已知54x <,求函数14145y x x =-+-的最大值,并求出此时x 的值;(2)已知,0x y >,且191x y+=,求x y +的最小值,并求出此时,x y 的值;(3)已知0,0a b >>,且2212b a +=,求的最大值,并求出此时,a b 的值.【答案】(1)1x =时函数有最大值为2;(2)4,12x y ==时目标式最小值为16;(3)a =b =.【解析】【分析】(1)根据对勾函数最值的求法求函数最大值,并确定取值条件;(2)应用基本不等式“1”的代换求目标式的最小值,并确定取值条件;(3)由222(1)b a -=代入目标式,结合基本不等式求最大值,并确定取值条件.为【详解】(1)由题意540x ->,则11454[(54)]44554y x x x x =-++=--++--42≤-+=,当且仅当1x =时等号成立,所以1x =时函数有最大值为2;(2)199()()101016y x x y x y x y x y +=++=++≥+=,当且仅当3y x =,即4,12x y ==时取等号,所以4,12x y ==时目标式最小值为16;(3)由222(1)b a -=,则01a <<,所以222322a a +-=≤=,a =⇒=b =所以a =b =.17. 已知二次函数()f x 满足()()142f x f x x +=-+,且()01f =.(1)求()f x 的解析式;(2)若两个不相等的正数m ,n 满足()()f m f n =,求41m n +的最小值.【答案】(1)2()241,R f x x x x =-++∈ (2)9.2【解析】【分析】(1)设出二次函数()f x 的解析式,运用待定系数法容易得到答案;(2)根据对称性先求出正数m ,n 的关系,然后运用“1”的妙用求41m n+的最小值.【小问1详解】设二次函数()()20f x ax bx c a =++≠,因为()01f c ==,所以2()1f x ax bx =++..由()()142f x f x x +=-+,得()22(1)11142a x b x ax bx x ++++=++-+,得22(2)1(4)3ax a b x a b ax b x +++++=+-+,所以24,13a b b a b +=-⎧⎨++=⎩得24a b =-⎧⎨=⎩,故2()241,R f x x x x =-++∈.【小问2详解】因为()f x 图象的对称轴为直线()4122x =-=´-,所以由()()f m f n =,得2m n +=,即()112m n +=,又0,0,m n >>所以()411411419552222m n m n m n m n n m ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4m n n m =,即423m n ==时,等号成立.故41m n +的最小值为9.218. 某乡镇为了打造“网红”城镇发展经济,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约15元/千克,且销售畅通供不应求,记该水果单株利润为()f x (单位:元)(1)写单株利润()f x (元)关于施用肥料x (千克)的关系式;(2)当施用肥料为多少千克时,该水果单株利润最大?最大利润是多少?【答案】(1)27530225,02()75030,251x x x f x x x x x ⎧-+≤≤⎪=⎨-<≤⎪+⎩; (2)当施用肥料为4千克时,单株利润最大,最大利润是480元.【解析】【分析】(1)根据给定的函数关系,直接求出()f x 的解析式.(2)结合二次函数最值、基本不等式求最值,分段求出函数()f x 的最大值,再比较大小即可.【小问1详解】依题意,()15()1020f x W x x x =--,又()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,所以27530225,02()75030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩.【小问2详解】当02x ≤≤时,2()7530225f x x x =-+,其图象开口向上,对称轴为15x =,因此()f x 在1[0,5上单调递减,在1[,2]5上单调递增,()f x 在[0,2]上最大值为()2465f =;当25x <≤时,()()()7501750750307503013011x f x x x x x+-=-=--++++25780301780304801x x ⎛⎫=-++≤-⨯= ⎪+⎝⎭,当且仅当2511x x=++时,即4x =时等号成立,而465480<,则当4x =时,max ()480f x =,所以当施用肥料为4千克时,单株利润最大,最大利润是480元.19. 已知函数()21x f x bx a+=+是奇函数,且()12f -=-,()22g x x x -=+.(1)求函数()f x 的解析式;(2)判断并证明函数()f x 在()0,∞+上的单调性;(3)令()()()()2,0h x g x mf x m =-<,若对任意的121,,22x x ⎡⎤∈⎢⎥⎣⎦都有()()12114h x h x -≤,求实数m 的取值范围.【答案】(1)1()f x x x=+ (2)()f x ()0,1上单调递减,()1,+∞上单调递增,证明见解析(3)1,02⎡⎫-⎪⎢⎣⎭【解析】的在【分析】(1)由()f x 是奇函数,可知()12f -=-,()12f =,进而列出关系式,求出,a b ,即可得到函数()f x 的解析式;(2)根据题意,利用定义法,可判断并证明函数()f x 在()0,∞+上的单调性;(3)由对任意的1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12114h x h x -≤恒成立,可得()()max min 114h x h x -≤,求出()()max min ,h x h x ,进而可求出m 的取值范围.【小问1详解】()12f -=- ,且()f x 是奇函数,()12f ∴=,2222b a b a⎧=-⎪⎪-+∴⎨⎪=⎪+⎩,解得01a b =⎧⎨=⎩,()1xf x x ∴=+.【小问2详解】证明如下:任取1x ,()20,1x ∈,且12x x <,则()()()121212*********x x f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()12,0,1x x ∈ ,且12x x <,120x x ∴-<,1201x x <<,∴1210x x -<,()()120f x f x ∴->,即()()12f x f x >,函数()f x 在()0,1上单调递减.同理可证明函数()f x 在()1,+∞上单调递增.【小问3详解】由题意知()22112h x x m x x x ⎛⎫ ⎪=⎝++⎭-,令1z x x=+,222y z mz =--,由(1)可知函数1z x x =+在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,52,2z ⎡⎤∴∈⎢⎥⎣⎦,函数222y z mz =--的对称轴方程为0z m =<,函数222y z mz =--在52,2⎡⎤⎢⎥⎣⎦上单调递增,当2z =时,222y z mz =--取得最小值,min 42y m =-+;当52z =时,222y z mz =--取得最大值,max 1754y m =-+.所以()min 42h x m =-+,()max 1754h x m =-+,又对任意的1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12114h x h x -≤恒成立,()()max min 114h x h x ∴-≤,即()171154244m m -+--+≤,解得12m ≥-,又0m < ,m ∴的取值范围是102m -≤<.。
2023年山东省枣庄市中考数学模拟试卷(二)(含解析)

2023年山东省枣庄市中考数学模拟试卷(二)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在下列四个实数中,最大的实数是( )A. −5B. 12C. −1D. 22. 下列运算中,正确的是( )A. a+a=2a2B. a2⋅a3=a6C. (−2a)2=4a2D. (a−1)2=a2+13. 一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为( )A. 145°B. 140°C. 135°D. 130°4. 对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2−b2,根据这个定义,代数式(x+y)☆y可以化简为( )A. xy+y2B. xy−y2C. x2+2xyD. x25. 《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为( )A. {5x+6y=15x−y=6y−x B. {6x+5y=1 5x+y=6y+xC. {5x+6y=14x+y=5y+x D. {6x+5y=1 4x−y=5y−x6. 已知关于x的方程2x+mx−2=3的解是正数,那么m的取值范围为( ) A. m>−6且m≠−2 B. m<6C. m>−6且m≠−4D. m<6且m≠−27.如图,点C,D在以AB为直径的⊙O上,且CD平分∠ACB,若CD =43,∠CAB=75°,则AB的长是( )A. 83B. 43C. 8D. 48.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=1,则k的值为( )A. 1B. 22C. 2D. 29.如图,在正方形ABCD中,对角线AC,BD交于点O,折叠正方形A BCD,使AB边落在AC上,点B落在点H处,折痕AE交BC于点E,交BO 于点F,连接FH,下列结论:①AD=DF;②四边形BEHF为菱形;③FHAD=2−1;④S△ABES△ACE =ABAC.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个10. 如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )A. 2个B. 3个C. 4个D. 5个第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 新冠肺炎患者喷嚏、咳嗽、说话的飞沫,直接吸入都会导致感染,所以我们要戴口罩,医用口罩可以过滤小至0.00000004米颗粒,用科学记数法表示0.00000004是______ .12. 已知关于x的不等式组{x−a>05−2x≥−1无解,则a的取值范围是______.13.如图,在平面直角坐标系xOy中,点A在第一象限内,点B在x轴正半轴上,△OCD是以点O为位似中心,且与△OAB的相似比的位似图形.若点A的坐标为(3,2),则点C的坐标为______.为1314.如图,在等腰Rt△ABC中,∠BAC=90°,BC=42.分AB的长为半径画弧分别与△ABC别以点A,B,C为圆心,以12的边相交,则图中阴影部分的面积为______ .(结果保留π)15. 如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为______.16. 直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3 C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2022B2022C2022C2021中的点B2022的坐标为______.三、解答题(本大题共8小题,共72.0分。
2023年山东省枣庄市中考数学试卷(含答案)103249

2023年山东省枣庄市中考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 下列四个数中,最大的数是( )A.B.C.D.2. 如图是一个由个相同正方体组合而成的几何体,它的主视图为( ) A. B. C.D.3. 太阳的半径约为,把这个数用科学记数法表示为( )A.B.C.D.4. 中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天整才到达目的地.求此人第六天走的路程为多少里,如果设此人第六天走的路程为里,依题意,可列方程为( )A.=B.=−100+0.01−17696000km 6960006.96×10369.6×1056.96×1056.96×106378x x+2x+4x+8x+16x+32x378x+2x+4x+6x+8x+10x378C.=D.=5. 下列计算中,正确的是( )A.B.C.D. 6. 在一次中学生田径运动会上,参加男子跳高的名运动员的成绩如下表所示:成绩人数则这些运动员成绩的中位数、众数分别为( )A.,B.,C.,D.,7. 如图,是的直径,点,,在上,,则的度数为 A.B.C.D.8. 如图,直线,一个含 角的直角三角板如图所示放置,点在直线上,直角顶点在直线上,已知 ,则的度数为( )A.B.x+x+x+x+x+x 121418116132378x+x+x+x+x+x 12141618110378+=a 2a 2a 4(=a 2)3a 52a −a =2(ab =)2a 2b 215/m1.501.601.651.701.751.802323411.70 1.751.70 1.701.65 1.751.65 1.70AB ⊙O C D E ⊙O ∠AED=20∘∠BCD ()100∘110∘120∘130∘//l 1l 245∘A l 2C l 1∠1=30∘∠245∘60∘D.9. 如图,在中,,,分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和,作直线,交于点,连接,若,则的长为( )A.B.C.D.10. 抛物线图象的开口方向、对称轴和顶点坐标分别为( )A.开口向下,对称轴为直线 ,顶点坐标为B.开口向下,对称轴为直线,顶点坐标为C.开口向下,对称轴为直线,顶点坐标为D.开口向下,对称轴为直线,顶点坐标为二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11. 计算的结果是________.12. 若是关于的方程的根,则的值为________.13. 如图,已知点是反比例函数的图象上的一个动点,连接,若将线段绕点顺时针旋转得到线段,则点所在图象的函数表达式为________.14. 如图,河的两岸,互相平行,点,,是河岸上的三点,点是河岸上的一个建筑物,在处测得,在处测得,若米,则河两岸之间的距离约为________米.(,结果精确到米)(必要可用参考数据:)15. 如图,四边形是正方形,是边上一点,连接,,垂足为,交于点75∘Rt △ABC ∠ACB =90∘AC =2BC A B AB 12M N MN AC E BE CE =3BE 5436y =−2+5(x−3)2x =−3(3,5)x =3(3,5)x =−3(−3,5)x =3(−3,5)+303−2n(n ≠0)x −mx+2n =0x 2m−n A y =−2x OA OA O 90∘OB B a b A B C b P a A ∠PAB =30∘B ∠PBC =75∘AB =80≈1.733–√0.1tan =2+75∘3–√ABCD E BC AE BN ⊥AE M CD,若,,则线段的长为________.16. 已知点,在函数的图像上,则________(填“”或“”或“”).三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )17. 先化简,再求值,然后从的范围内选取一个合适的正整数作为的值代入求值.18. 如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.在第个图中,共有白色瓷砖________块;在第个图中,共有白色瓷砖________块;在第个图中,白色瓷砖总数为块,则与的关系式为________;在第个图中,共有白色瓷砖________块.19. 计算:;. 20. 为弘扬安徽传统文化,某校开展“汉剧进课堂”的活动,该校随机抽取部分学生,按四个类别:表示“很喜欢”,表示“喜欢”,表示“一般”,表示“不喜欢”,调查他们对汉剧的喜欢情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:这次共抽取________名学生进行统计调查,扇形统计图中,类所对应的扇形圆心角的度数为________;将条形统计图补充完整;若调查的类学生中有名男生,其余为女生,现从中抽人进行采访,请画树状图或列表法求选中名学生恰好是男女的概率. 21. 如图,直角坐标系中,直线分别与轴、轴交于,两点,与双曲线交于点,点,关于轴对称,连接,将沿方向平移,使点移动到点,得到.(1)的值是________,点的坐标是________;(2)在 的延长线上取一点 ,过点作轴,交于点,连接,求直线的解析式;直接写出线段扫过的面积.N tan ∠BAE =12MN =3AB A(−1,a)B(1,b)y =−2xa b >=<÷(x−)−4x+4x 2−2x x 24x −<x <5–√5–√x (1)1(2)3(3)n y y n (4)100(1)(−)÷8×12(−2)3(2)+|−6|−(−)−27−−−−√33–√3–√A B C D (1)D (2)(3)A 22211xOy :y =l 1tx−t(t ≠0)x y A B :y =(k ≠0)l 2k x D(2,2)B C x AC Rt △AOC AD A D Rt △DEF k A ED M(4,2)M MN//y l 2N ND ND22. 如图①,是外的一点,直线分别交于点、,则线段是点到上的点的最短距离.(1)如图②,在中,,,以为直径的半圆交于点,是的一个动点,连结,则长度的最小值是________;(2)如图③,在边长为的菱形中,,是边的中点,是边上一动点,将沿所在的直线翻折得到, 连结,求长度的最小值;(3)如图④,在正方形中,点、分别从、两点同时出发,以相同的速度在直线、上运动,连结、,相交于点,由于点、的运动,使得点也随之运动.若,试求出线段的最小值. 23.如图,已知二次函数的图象经过点,,与轴交于点.求抛物线的解析式;(2)二次函数的图象上是否存在点,使得?如果存在,请求出点Р的坐标;若不存在,请说明理由;(3)如图②,点为线段上的一个动点,过点作轴,交二次函数的图象于点,求四边形面积的最大值.. 24. 如图,在正方形中,点,分别在边,上,与相交于点,且=.(1)如图,求证:;(2)如图,与相交于点,交于点,交于点,连接,试探究直线与的位置关系,并说明理由;(3)在(1)(2)的基础上,若平分,且的面积为,求正方形的面积.P ⊙O PO ⊙O A B PA P ⊙O Rt △ABC ∠ACB =90∘AC =BC =2BC AB D P CD AP AP 2ABCD ∠A =60∘M AD N AB △AMN MN △MN A ′C A ′C A ′ABCD E F D C DC CB AE DF P E F P AD =4CP y =−+bx+c x 2A(−1,0)B(3,0)y C (1)P =3S △BOP S △AOC D BC D DE//y E OBEC ABCD E F AB BC AF DE M ∠BAF ∠ADE 1AF ⊥DE 2AC BD O AC DE G BD AF H GH GH AB AF ∠BAC △BDE 4+2ABCD参考答案与试题解析2023年山东省枣庄市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】B【考点】有理数大小比较【解析】此题暂无解析【解答】解:∵任何正数都大于负数,零大于任何负数,零小于任何正数,∴.故选.2.【答案】A【考点】简单组合体的三视图【解析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是中的图形.故选.3.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】将用科学记数法表示为.−100<−1<0<+0.01B A A a ×10n 1≤|a |<10n n a n >1n <1n 696000 6.96×105由实际问题抽象出一元一次方程数学常识【解析】设此人第六天走的路程为里,则前五天走的路程分别为,,,,里,由此人六天一共走了里,即可得出关于的一元一次方程,此题得解.【解答】设此人第六天走的路程为里,则前五天走的路程分别为,,,,里,依题意,得:=.5.【答案】D【考点】合并同类项幂的乘方与积的乘方【解析】试题分析:结合选项分别进行幂的乘方和积的乘方、合并同类项等运算,然后选择正确选项.【解答】解:,,原式错误,故本选项错误;,,原式错误,故本选项错误;,,原式错误,故本选项错误;,,原式正确,故本选项正确.故选.6.【答案】A【考点】众数中位数【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共名学生,中位数落在第名学生处,第名学生的跳高成绩为,故中位数为;跳高成绩为的人数最多,故跳高成绩的众数为.故选.x 2x 4x 8x 16x 32x 378x x 2x 4x 8x 16x 32x x+2x+4x+8x+16x+32x 378A +=2a 2a 2a 2B =()a 23a 6C 2a −a =a D =(ab)2a 2b 2D 1588 1.70m 1.701.75m 1.75A圆周角定理【解析】连接,根据圆周角定理,可分别求出=,=,即可求的度数.【解答】解:连接,∵为的直径,∴.∵,∴,∴.故选.8.【答案】D【考点】平行线的性质【解析】首先由题意知,然后根据两直线平行,同位角相等可得,计算即可.【解答】解:由题意知,,.故选.9.【答案】A【考点】勾股定理作图—基本作图线段垂直平分线的性质【解析】AC ∠ACB 90∘∠ACD 20∘∠BCD AC AB ⊙O ∠ACB=90∘∠AED=20∘∠ACD=20∘∠BCD=∠ACB+∠ACD =110∘B ∠CAB =45∘∠2=∠1+∠CAB ∠CAB =45∘∵//l 1l 2∴∠2=∠1+∠CAB =+=30∘45∘75∘D解:由作图可知,垂直平分线段,,设,,,,在中,,,解得或(舍去),.故选.10.【答案】B【考点】二次函数的性质二次函数的图象【解析】此题暂无解析【解答】此题暂无解答二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11.【答案】【考点】实数的运算零指数幂负整数指数幂【解析】先计算零指数幂和负整数指数幂,再计算加法即可得.【解答】=,12.【答案】MN AB ∴AE =EB AE =EB =x ∵EC =3AC =2BC ∴BC =(x+3)12Rt △BCE ∵B =B +E E 2C 2C 2∴=+x 232[(x+3)]122x =5−3∴BE =5A 109+303−21+=191092一元二次方程的解【解析】把代入方程得由即可得出的值.【解答】解:是关于的方程的根,把代入方程得,整理得,由,得,故.故答案为:.13.【答案】【考点】反比例函数图象上点的坐标特征待定系数法求反比例函数解析式坐标与图形变化-旋转【解析】设,过作轴于,过作轴于,得到,,根据全等三角形的性质得到,,于是得到结论.【解答】∵点是反比例函数的图象上的一个动点,设,过作轴于,过作轴于,∴,,∴,∵,∴,∴,在与中,∴,∴,,∴,∵,∴,∴点所在图象的函数表达式为,14.【答案】【考点】解直角三角形的应用n n(n−m+2)=0.n ≠0m−n n(n ≠0)x −mx+2n =0x 2x =n −mn+2n =0n 2n(n−m+2)=0n ≠0n−m+2=0m−n =22y =2xA(m,n)A AC ⊥x C B BD ⊥x D AC =n OC =−m AC =OD =n CO =BD =−m A y =−2x A(m,n)A AC ⊥x C B BD ⊥x D AC =n OC =−m ∠ACO =∠BDO =90∘∠AOB =90∘∠CAO +∠AOC =∠AOC +∠BOD =90∘∠CAO =∠BOD △ACO △ODB∠ACO =∠ODB∠CAO =∠BOD AO =BO △ACO ≅△ODB AC =OD =n CO =BD =−mB(n,−m)mn =−2n(−m)=2B y =2x54.6过点作于点,过点作于点,然后锐角三角函数的定义分别求出、后即可求出两岸之间的距离.【解答】解:过点作于点,过点作于点,∵,,∴.∵,∴,,∴,∴(米).∵,∴,∴(米).故答案为:.15.【答案】【考点】锐角三角函数的定义正方形的性质勾股定理【解析】设=,则=,就有的面积为,正方形的面积=,根据正方形与四边形的面积相等建立方程求出其解即可.【解答】解:∵四边形是正方形,∴,,∴.∵,∴,∴,∴.∵,∴,∴是的中点.同理可证,是的中点.设,则,,∴,∴.又,∴.在中,,,∴,即,整理,得,解得,,A AE ⊥a E B BD ⊥PA D AD PD A AE ⊥a E B BD ⊥PA D ∠PBC =75∘∠PAB =30∘∠DPB =45∘AB =80BD =40AD =403–√PD =DB =40AP =AD+PD =40+403–√a//b ∠EPA =∠PAB =30∘AE =AP =20+20≈54.6123–√54.625–√AE x BE 2−x EFDB 2(2−x)AENM x 2AENM EFDB ABCD ∠ABC =∠C =90∘AB =BC =CD∠MBE+∠ABM =90∘BN ⊥AE ∠AMB =90∘∠BAE+∠ABM =90∘∠BAE =∠MBE tan ∠BAE ==BE AB 12BC =AB =2BE E BC N CD BE =a CN =a AB =2a AE =BN ==a A +B B 2E 2−−−−−−−−−−√5–√BM =BN −MN =a −35–√tan ∠BAE =tan ∠BAM ==BM AM 12AM =2a −65–√Rt △ABM ∠AMB =90∘AB =2a A =A +B B 2M 2M 24=+a 2(2a −6)5–√2(a −3)5–√27−10a +15=0a 25–√=a 15–√=a 235–√7=3–√M =a −3=×−3<03–√当时,,∴,不符合题意,舍去,∴,∴.故答案为:.16.【答案】【考点】反比例函数图象上点的坐标特征【解析】分别代入两个点的横坐标,求出纵坐标的值,比较大小即可.【解答】解:∵点,在函数的图像上,将,代入,可得,,则.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )17.【答案】解:原式,∵,且为正整数,∴可以取或,∴要使分式有意义,只能取,当时,原式.【考点】分式的化简求值估算无理数的大小【解析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.【解答】解:原式a =35–√7BM =a −3=×−3<05–√35–√75–√a =35–√7a =5–√AB =2a =25–√25–√>A(−1,a)B(1,b)y =−2xA(−1,a)B(1,b)y =−2x a =−=22−1b =−=−221a>b >=÷(x−2)2x(x−2)−4x 2x =⋅(x−2)2x(x−2)x (x+2)(x−2)=1x+2−<x <5–√5–√x x 12x 1x =1=13=÷(x−2)2x(x−2)−4x 2x =⋅(x−2)2x(x−2)x (x+2)(x−2)1,∵,且为正整数,∴可以取或,∴要使分式有意义,只能取,当时,原式.18.【答案】【考点】规律型:图形的变化类【解析】计算白色瓷砖的块数可以看作是计算长方形(白色瓷砖)的面积,面积数就是白色瓷砖的块数.【解答】解:在第个图中,共有白色瓷砖(块).在第个图中,共有白色瓷砖(块).在第个图中,白色瓷砖总数.在第个图中,共有白色瓷砖(块).19.【答案】解:原式;原式.【考点】有理数的乘除混合运算立方根的应用实数的运算绝对值【解析】先算乘方,再把除法转化为乘法,最后用有理数乘法法则计算,即可解答.先算立方根和绝对值,再合并同类二次根式,最后算加减,即可解答.【解答】解:原式;原式.20.【答案】=1x+2−<x <5–√5–√x x 12x 1x =1=13212y =+n n 210100(1)11×(1+1)=2(2)33×(3+1)=12(3)n y =n(n+1)=+n n 2(4)100100×(100+1)=10100(1)=−××(−8)1218=12(2)=−3+6−+3–√3–√=3(1)=−××(−8)1218=12(2)=−3+6−+3–√3–√=3,类学生:(名),条形统计图补充如下:类学生中有名男生,则女生为名,画树状图如图:共有种等可能的结果,选中名学生恰好是男女的结果有种,∴选中名学生恰好是男女的概率为.【考点】扇形统计图条形统计图列表法与树状图法【解析】暂无暂无暂无【解答】解:这次共抽取学生:(名),类所对应的扇形圆心角的度数为,故答案为:;.类学生:(名),条形统计图补充如下:类学生中有名男生,则女生为名,画树状图如图:共有种等可能的结果,选中名学生恰好是男女的结果有种,∴选中名学生恰好是男女的概率为.21.【答案】(1), 解:(2)∵,轴,交 于点,∴点的横坐标等于,且点在上,,5072∘(2)A 50−23−12−10=5(3)A 232021112211=122035(1)12÷24%=50D ×=360∘105072∘5072∘(2)A 50−23−12−10=5(3)A 232021112211=1220354(1,0)M(4,2)MN//y l 2N N 4N y =4x∴N (4,1)a ,b又∵,设直线的解析式为(其中为常数,且 ,则,解得,∴直线 的解析式为 .【考点】反比例函数综合题【解析】略略略【解答】解:(1)(2)∵,轴,交 于点,∴点的横坐标等于,且点在上,,又∵,设直线的解析式为(其中为常数,且 ,则,解得,∴直线 的解析式为 .(3)22.【答案】(1)(2)点是的中点,∴,∵沿所在的直线翻折得到,∴是定值,当点在上时,长度最小,如解图①,过点作交的延长线于点,∵在边长为的菱形中,,,,则,∴,∴,∴,,∴,∴,∴的最小值为.(3)∵四边形是正方形,∴,,在和中,D(2,2)ND y =ax+b a ,b a ≠0){1=4a +b 2=2a +ba =−12b =3ND y =−x+31244,(1,0)M(4,2)MN//y l 2N N 4N y =4x∴N (4,1)D(2,2)ND y =ax+b a ,b a ≠0){1=4a +b 2=2a +ba =−12b =3ND y =−x+3124−15–√M AD M =AM =DM =AD =1A ′12△AMN MN △MN A ′M =AH =1A ′A ′MC C A ′M HE ⊥CD CD E 2ABCD ∠A =60∘CD =2MD =1∠EDH =60∘∠EMD =30∘ED =DM =1212EM =DM ⋅cos =30∘3–√2EC =ED+CD =+2=1252MC ==E +E M 2C 2−−−−−−−−−−√7–√C =MC −M =−1A ′A ′7–√C A ′−17–√ABCD AD =DC =4∠ADC =∠C =90∘△ADE △DCF AD =DC,∴,∴,,∴,∴,∴,则在点的运动过程中,∴如解图②,连结,,与相交于点,点的运动轨迹是一段以为直径的弧,即,设的中点为,连结交于点 ,此时的长即为的最小长度,在中,,∴.线段的最小值为.【考点】圆的综合题【解析】此题暂无解析【解答】(2)点是的中点,∴,∵沿所在的直线翻折得到,∴是定值,当点在上时,长度最小,如解图①,过点作交的延长线于点,∵在边长为的菱形中,,,,则,∴,∴,∴,,∴,∴,∴的最小值为.(3)∵四边形是正方形,∴,,在和中,,∴,∴,,∴,∴,∴,则在点的运动过程中,∴如解图②,连结,,与相交于点,点的运动轨迹是一段以为直径的弧,即,设的中点为,连结交于点 ,此时的长即为的最小长度,AD =DC∠ADE =∠DCFDE =CF△ADE ≅△DCF(SAS)AE =DF ∠DAE =∠CDF ∠CDF +∠ADF =90∘∠DAE+∠ADF =90∘AE ⊥DF P ∠APD =90∘AC BD AC BD O P AD OD AD Q QC OD P ′CP ′CP Rt △QDC QC ===2C +Q D 2D 2−−−−−−−−−−√+4222−−−−−−√5–√C =QC −Q =2−2P ′P ′5–√CP 2−25–√M AD M =AM =DM =AD =1A ′12△AMN MN △MN A ′M =AH =1A ′A ′MC C A ′M HE ⊥CD CD E 2ABCD ∠A =60∘CD =2MD =1∠EDH =60∘∠EMD =30∘ED =DM =1212EM =DM ⋅cos =30∘3–√2EC =ED+CD =+2=1252MC ==E +E M 2C 2−−−−−−−−−−√7–√C =MC −M =−1A ′A ′7–√C A ′−17–√ABCD AD =DC =4∠ADC =∠C =90∘△ADE △DCF AD =DC∠ADE =∠DCFDE =CF△ADE ≅△DCF(SAS)AE =DF ∠DAE =∠CDF ∠CDF +∠ADF =90∘∠DAE+∠ADF =90∘AE ⊥DF P ∠APD =90∘AC BD AC BD O P AD OD AD Q QC OD P ′CP ′CP QC ===2√+22−−−−−−√在中,,∴.线段的最小值为.23.【答案】.,.,.(3)【考点】二次函数综合题【解析】(1)运用待定系数法即可求解;(2)先求出点的坐标,根据抛物线与轴的两个交点,可求对称轴,找到点关于对称轴的对应点;先运用待定系数法求出直线的解析式,再根据互相平行的两直线的关系求出与平行的直线的解析式,联立抛物线解析式即可求解.【解答】解:根据题意得解得故抛物线的解析式为.∵存在,,,∴OA=1,OB=3,OC=3∴∵∴得出|当时,∴,.当时,∴,.(3)设点D 的横坐标为a ,连接OC,CE,EB,E 垂直轴于F 点从解析式可得y +3∴当∵轴,∴∴E(a,)∴DE=∴S =+==++=+24.【答案】证明:如图中,Rt △QDC QC ===2C +Q D 2D 2−−−−−−−−−−√+4222−−−−−−√5–√C =QC −Q =2−2P ′P ′5–√CP 2−25–√(1)y =−+2x+3x 2(2)(03)P 1(2,3)P 2(+1−3)P 37–√(−+1,−3)P 47–√638C x C BC BC AP 2(1){−1−b +c =0,−9+3b +c =0,{b =2,c =3.y =−+2x+3x 2(2)A(−1,0)B(3,0)C(0,3)=⋅1⋅3=S △AOC 1232=⋅OB ⋅||=|S △BOP 12y p 32y p =3S △BOP S △AOC |=⋅332y p 32|=3y p =3y p −+2x+3=3得出=0,=2x 2x 1x 2(03)P 1(2,3)P 2=−3y p −+2x+3=−3得出=+1,=−+1x 2x 17–√x 27–√(+1−3)P 37–√(−+1,−3)P 47–√x C =−x B =a ,=−a +3x 0y 0DE//y ==ax D x E −+2a +3a 2−+2a +3+a −3=−+3a a 2a 2BEC O +=⋅3⋅3S △BOC S △BCE 12⋅DE ⋅312+⋅(−+3a)9232a 2−32a 2a 9292−(a −3232)26381∵四边形是正方形,∴==,∵=,∴==,∴=,∴.如图中.结论:.理由:连接.∵=,==,=,∴,∴=,∵,∴=,∵,∴=,∵=,=,∴=,∴.解法二:证明推出为等腰直角三角形,从而得到平行.如图中,在上取一点,使得=,连接.设==.∵平分,=,∴==,∵==,=,∴=,∵=,∴==,∴==,∵==,=,∴==,∵=,∴=,解得=,∴=或(舍弃),∴=,∴正方形的面积=.【考点】ABCD ∠DAE ∠ABF 90∘∠ADE ∠BAF ∠ADE+∠AED ∠BAF +∠AED 90∘∠AME 90∘AF ⊥DE 2GH//AB GH AD AB ∠DAE ∠ABF 90∘∠ADE ∠BAF △ADE ≅△BAF(ASA)AE BF AE//CD BF //AD AE BF CD AD GH//AB △AOH ≅△DOG(ASA)△HOG 2−1AD J AJ AE EJ AE AJ a AF ∠BAC ∠BAC 45∘∠BAF ∠ADE 22.5∘AE AJ a ∠EAJ 90∘∠AJE 45∘∠AJE ∠JED+∠JDE ∠JED ∠JDE 22.5∘EJ DJ a AB AD a+a AE AJ BE DJ a S △BDE 4+2×a ×(a+a)4+2a 24a 2−2AD 2+2ABCD 12+8四边形综合题【解析】(1)证明=即可解决问题.(2)证明,推出=,由,推出=,由,推出=,由=,=,推出=可得结论.(3)如图中,在上取一点,使得=,连接.设==.利用三角形的面积公式构建方程求出即可解决问题.【解答】证明:如图中,∵四边形是正方形,∴==,∵=,∴==,∴=,∴.如图中.结论:.理由:连接.∵=,==,=,∴,∴=,∵,∴=,∵,∴=,∵=,=,∴=,∴.解法二:证明推出为等腰直角三角形,从而得到平行.如图中,在上取一点,使得=,连接.设==.∵平分,=,∴==,∵==,=,∴=,∠BAF +∠AED 90∘△ADF ≅△BAF(ASA)AE BF AE//CD BF //AD AE BF CD AD 2−1AD J AJ AE EJ AE AJ a a 1ABCD ∠DAE ∠ABF 90∘∠ADE ∠BAF ∠ADE+∠AED ∠BAF +∠AED 90∘∠AME 90∘AF ⊥DE 2GH//AB GH AD AB ∠DAE ∠ABF 90∘∠ADE ∠BAF △ADE ≅△BAF(ASA)AE BF AE//CD BF //AD AE BF CD AD GH//AB △AOH ≅△DOG(ASA)△HOG 2−1AD J AJ AE EJ AE AJ a AF ∠BAC ∠BAC 45∘∠BAF ∠ADE 22.5∘AE AJ a ∠EAJ 90∘∠AJE 45∘∵=,∴==,∴==,∵==,=,∴==,∵=,∴=,解得=,∴=或(舍弃),∴=,∴正方形的面积=.∠AJE ∠JED+∠JDE ∠JED ∠JDE 22.5∘EJ DJ a AB AD a+a AE AJ BE DJ a S △BDE 4+2×a ×(a+a)4+2a 24a 2−2AD 2+2ABCD 12+8。
2023年山东省枣庄市中考数学试卷(含答案)

2023年枣庄市初中学业水平考试数学一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是正确的。
1.下列各数中比1大的数是()A.2B.0C.-1D.-32.榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A. B. C. D.3.随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长26.2%,其中159万用科学记数法表示为()A.1.59×106B.15.9×105C.159×104D.1.59×1024.我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.240x+150x=150×12B.240x-150x=240×12C.240x+150x=240×12D.240x-150x=150×125.下列运算结果正确的是()A.x4+x4=2x8B.-2x23=-6x6 C.x6÷x3=x3 D.x2⋅x3=x66.4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动。
小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示:人数67107课外书数量(本)67912则阅读课外书数量的中位数和众数分别是()A.8,9B.10,9C.7,12D.9,97.如图,在⊙O中,弦AB,CD相交于点P,若∠A=48°,∠APD=80°,则∠B的度数为()A.32°B.42°C.48°D.52°8.如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=44°,则∠2的度数为()A.14°B.16°C.24°D.26°9.如图,在△ABC 中,∠ABC =90°,∠C =30°,以点A 为圆心,以AB 的长为半径作弧交AC于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是()A.BE =DEB.AE =CEC.CE =2BED.S △EDC S △ABC=3310.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是直线x =1,下列结论:①abc <0;②方程ax 2+bx +c =0(a ≠0)必有一个根大于2且小于3;③若0,y 1 ,32,y 2 是抛物线上的两点,那么y 1<y 2;④11a +2c >0;⑤对于任意实数m ,都有m (am +b )≥a +b ,其中正确结论的个数是()A.5B.4C.3D.2二、填空题,大题共6小题,每小题填对得3分,共18分,只填写最后结果。
2015年山东省枣庄市初三真题数学试卷(有答案)

精品文档使用文档易题炸第一时目提供Word版中考其找答不及飾析ww/精品文档使用文档精品文档使用文档4^易题库WWW.rmKUCH易11库第一时目提供Word 版中考苴JI 答交及倩析精品文档使用文档易烽第一时目提供Word版中考百找答底及飾析使用文档使用文档使用文档五■更庄市初中,堂■试数学發考答案及评分标准, y与•码I .aitm—D...■璧* ■ ■".•■•♦.Il正謳出.”心■-二■-丄,♦(♦•・,!!坦〉if ■ 1 >G【2.一I)・《7〉G • .0)* mid KSiPjfl F (IHKteT 2 H1 i^A3>2 ft>,•—ex5s・.,一—mfn K M xr戚‘心n.< i.z> 值,.;卄: 三、■書■"**■共7 s分)m Wg相.旦..•l,诚■. ..•El精品文档使用文档易il 犀第一时目提供Word 版中考HHI 答交及飾析 ww/yrtikuxn■ ■•X .-■•鉗♦♦,♦的■“■人- 2"札・$0分,,.职.■■A •瓦比,■■ ■■£・—•>■■ E ..•.■■1.,・队■— ................................ ..... X7A<KS>.Ba.n (l ■^■■■■■.,■■上.■,向,■离以,u<^Vk..>l. ••…一•■……. AsB ♦ “丄】,■” N■, :.史*寸一石,・,.瑞PCS.MU.2) ..••AE ・,,BC ・Z:弓—.$5:・'■)<■一;•■■■:!■....XX :本«!#♦,$ 分)⑴,■■.•睥立,.4吨。
■♦行■■矿 ADC-AZI.DC^/IBr 上匕OBE —宀… ..ODFyiM :. «A(JDF JlAOfiE t J ftQK.OF-BEA △,心X △Ut t ( AAS). •••fiO -PU --- ------------ - --- ----------- , ,一•---------------- ---------- - -- ,•面¥M LAD ..・・ZAPA 邮JKv EF 丄 AB. A AODG A W1" I;AB.CP •団二 2JF 丄 8・:,:辭,O2I30X 岩・颇人> 易题库www.rmicuMiCDV•公JK|■OF-FGWK;,•■■瞽,,■,•um 使用文档易叫第一时冋提供Word版中考析wwALyitikLLcn .•. △OD^gg...•• QE-OF二GF-..・r>raiM<i・KF. .…:• x _,^卢, … —■卩*vT.W〃3..・・栽•艾0岩42, ■事—2硏CD•■吨描,-----------■由ff»<» MWZflOD-TZ^AD.・・・Q曇A,的♦■.irjfc故r ■中■,^OT#AG .^Skj/.ZADD-2ZBOT-:・.XXX.£BOl>・Z9O€VOfi-OD,OE^4>AA>.•.心5 爲二NOW£«#Kf •二4>£耳爆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密☆启用前试卷类型:A二○一三年枣庄市2010级初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案. 4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的, 请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.下列计算正确的是( ) A .-|-3|=-3 B .30=0 C .3-1=-3D±32.如图,AB ∥CD ,∠CDE =140°,则∠A 的度数为()A .140°B .60°C .50°D .40°31的值在( )A .2到3之间B . 3到4之间C .4到5之间D .5到6之间4.化简211x xx x+--的结果是( ) 第2题图BEA .x +1 B. x -1 C.—x D. x5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为 A .240元 B .250元 C .280元 D .300元 6.如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( ) A .20 B . 12 C .14 D . 137. 若一元二次方程x 2+2x +m =0有实数根,则m 的取值范围是( )A .m ≤-1B .m ≤1C .m ≤4D .m ≤21 8. 对于非零的两个实数a 、b ,规定ab b a 11-=⊕,若1)12(2=-⊕x ,则x 的值为( )A .56 B .54 C .32 D .16- 9. 图(1)是一个长为2a ,宽为2b (a>b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2ab B.(a+b)2 C .(a-b)2 D .a 2-b 2 10.如图,已知线段OA 交⊙O 于点B ,且OB=AB ,点P 是⊙O 上的一个动点,那么∠OAP 的最大值是( )第9题图第6题图A .30°B .45°C .60°D .90°11.将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .y=3(x+2)2+3B .y=3(x-2)2+3C .y=3(x+2)2-3D .y=3(x-2)2-312. 如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME =MC ,以DE 为边作正方形DEFG ,点G 在边CD 上,则DG 的长为( ) A1 B .3 C1 D1第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13. 若a 2-b 2=16,a-b =13,则a+b 的值为14. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是 .第14题图第12题图第10题图15. 从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是 .16. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是 .答案:24 17.若正比例函数y =-2x 与反比例函数y =xk图象的一个交点坐标为(-1,2),则另一个交点的坐标为 .18.如图,已知矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD = .三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19. (本题满分8分)先化简,再求值:235(2)362m m m m m -÷+--- ,其中m 是方程x 2+3x -1=0的根.20. (本题满分8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 、B 在小正方形的顶点上.(1)在图1中画出△ABC (点C 在小正方形的顶点上),使△ABC 为直角三角形(画一个即可).(2)在图2中画出△ABD (点D 在小正方形的顶点上),使△ABD 为等腰三角形(画一个即可).FE DCBA第18题图21. (本题满分8分)―六·一‖前夕,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品﹒以下是根据抽查结果绘制的不完整的统计表和扇形图:请你根据上述统计表和扇形图提供的信息,完成下列问题: ⑴分别补全上述统计表和扇形图; ⑵已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%﹒若从该超市的这三类儿童用品中随机购买一件,请估计能买到合格品的概率是多少?22. (本题满分8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先童车 25%儿童玩具% 童装 %第21题图第20题图在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD =30°,∠CBD =60°. (1)求AB 的长(精确到0.1);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.23. (本题满分8分)如图,在平面直角坐标系中,直角梯形OABC 的边OC 、OA 分别与x 轴、y 轴重合,AB ∥OC ,∠AOC=90°,∠BCO=45°,C 的坐标为(-18,0). (1)求点B 的坐标;(2)若直线DE 交梯形对角线BO 于点D ,交y 轴于点E ,且OE=4,OD=2BD ,求直线DE 的解析式;lDCB A 第22题图第23题图24.(本题满分10分)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF 于点D,∠DAC=∠BAC.第24题图⑴求证EF是⊙O的切线;⑵求证AC2=AD·AB⑶若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.25. (本题满分10分)如图,在平面直角坐标系中,二次函数2=++y x bx c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于C (0,-3),点P 是直线BC 下方抛物线上的动点.(1)求这个二次函数的解析式;(2)连接PO 、PC ,并将△POC 沿y 轴对折,得到四边形POP’C ,那么是否存在点P ,使得四边形POP’C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.绝密☆启用前试卷类型:A 二○一三年枣庄市2010级初中学业考试数学参考答案注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.A2.D3.B4.D5.A6.C7. B8. A9. C10.A11. A12. D二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.1 214.②15.1 316.2417. (1,-2)18.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解:原式=3(2)(2)53(2)2m m mm m m-+--÷--=323(2)(3)(3)m mm m m m--⨯-+-=13(3) m m+∵m是方程x2+3x-1=0的根,∴m2+3m-1=0,即m2+3m=1.∴原式=213(3) m m+=13.20.解:(1)正确画图(参考图1-图4,画出一个即可).(2)正确画图(参考图5-图8,画出一个即可).21.解:⑴童车25%儿童玩具30%童装45%(2)85.0300%80135%8875%9090=⨯+⨯+⨯22.解:(1)由题意得,在Rt △ADC 中,AD =tan30CD ︒, 在Rt △BDC 中,BD =tan 60CD ︒=12.11, 所以AB =AD - BD =36.33 – 12.11=24.22≈24.2(米).(2)校车从A 到B 用时2秒,所以速度为24.2÷2=12.1(米/秒),因为12.1×3600=43560,所以该车速度为43,56千米/小时,大于40千米/小时,所以此校车在AB 路段超速.23.解:(1)过点B 作BF ⊥x 轴于F ,如图.在Rt △BCF 中,∵ ∠BCO=45°,∴ CF=BF=12.∵C 的坐标为(-18,0),∴AB=OF=6,∴ 点B 的坐标为(-6,12);(2)过点D 作DG ⊥y 轴于点G ,如图.∵AB ∥DG ,∴△ODG ∽△OBA .∵DG AB =OD OB =OG OA =23,AB=6,OA=12, ∴DG=4,OG=8,∴D(-4,8),E(0,4).设直线DE 解析式为y=kx +b(k≠0),得484k b b -+=⎧⎨=⎩,14k b =-⎧⎨=⎩, ∴直线DE 解析式为y=-x +4.24.⑴证明:连接OC ,∵OC =OA ,∴∠ACO =∠CAO ,∵∠DAC =∠BAC ∴∠CAD =∠ACO ,∴//OC AD .又∵AD EF ⊥,∴OC EF ⊥∴EF 是⊙O 的切线⑵证明:连接BC .∵AB 是直径,∴∠ACB =90°.∴∠ACB =∠ADC =90°.又∵∠BAC =∠DAC ,∴△ACD ∽△ABC , ∴AC AD AB AC=,即AC 2=AB ·AD .⑶∵∠ACD =30°,∴∠OCA =∠OAC =60°,∴△OAC 是等边三角形。