集成运放的电压传输特性及主要参数
合集下载
集成运算放大器的特性及应用

A T U H=U m— w r 7 2 ( 1 2)
“
l
UT2 H
0
‰
集成运放作为通用性很强 的有源器件 , 可用来
⑤
一
④ 【 , 2⑨ Nhomakorabea图 7 电 压 传 输 特 性
实现信号的运算 、 交换 、 处理、 产生等 , 还可用于产生 正弦或非正弦信号 , 不仅在模拟 电路 中得到广泛 的 应用 , 而且在脉冲数字 电路中也 日益得到广泛 的应 用 , 为组 成 电子 系统 的基 本 功 能 单元 。随着 科 技 成
放大 电路 的频率特性由电阻 R和电容 C决定 , 起 负反馈的作用 。
j
—
| “u i + — 【 n ,
C ’_
Uo M
图 3 电压 传 输 特性
此 时分析 电路 时应遵 循两 个法 则 H : ]
①“ 虚短” 法则 :由于理想运放开 环差模增益
A ∞ , 以有 : 所
摘
要 :集成运算放大器是放 大电路 中非常重要 的元 器件 ,可靠性 高,使用方便 ,随着技 术指
标的不断提 高,它可当作理想器件来处理.不会造成不 可允许的误 差。在 学习时应熟练掌握 它 的线性与非线性特性以及其在信号的运算、处理和电路 的比较分析等方面的相关应用。
关 键词 :集 成运放 ;线性非 线性 特性 ;应 用
图 1 集 成 运 放 组 成 框 图
1 示 。一般 输入 级采 用差 分 放大 电路使 得 输 入 电 所 阻大 、 失调 和零 漂小 ; 中间级采 用 电压放 大倍 数大 的
共射放大电路 , 输出级为使输出电阻小 、 带负载能力 强, 常采用互补推挽乙类放大电路 ; 偏置 电路为各级 提供稳 定 的 静 态 工 作 电 流 , 般 采 用 电 流 源 电路 。 一 理想集成运放 的工作区域分为线性和非线性两部分 , 其参数应满足条件 : J①开环差模电压增益 A 一∞, ②差模输入电阻 一 ∞, ③输出电阻 尺 , 。 ④共模
“
l
UT2 H
0
‰
集成运放作为通用性很强 的有源器件 , 可用来
⑤
一
④ 【 , 2⑨ Nhomakorabea图 7 电 压 传 输 特 性
实现信号的运算 、 交换 、 处理、 产生等 , 还可用于产生 正弦或非正弦信号 , 不仅在模拟 电路 中得到广泛 的 应用 , 而且在脉冲数字 电路中也 日益得到广泛 的应 用 , 为组 成 电子 系统 的基 本 功 能 单元 。随着 科 技 成
放大 电路 的频率特性由电阻 R和电容 C决定 , 起 负反馈的作用 。
j
—
| “u i + — 【 n ,
C ’_
Uo M
图 3 电压 传 输 特性
此 时分析 电路 时应遵 循两 个法 则 H : ]
①“ 虚短” 法则 :由于理想运放开 环差模增益
A ∞ , 以有 : 所
摘
要 :集成运算放大器是放 大电路 中非常重要 的元 器件 ,可靠性 高,使用方便 ,随着技 术指
标的不断提 高,它可当作理想器件来处理.不会造成不 可允许的误 差。在 学习时应熟练掌握 它 的线性与非线性特性以及其在信号的运算、处理和电路 的比较分析等方面的相关应用。
关 键词 :集 成运放 ;线性非 线性 特性 ;应 用
图 1 集 成 运 放 组 成 框 图
1 示 。一般 输入 级采 用差 分 放大 电路使 得 输 入 电 所 阻大 、 失调 和零 漂小 ; 中间级采 用 电压放 大倍 数大 的
共射放大电路 , 输出级为使输出电阻小 、 带负载能力 强, 常采用互补推挽乙类放大电路 ; 偏置 电路为各级 提供稳 定 的 静 态 工 作 电 流 , 般 采 用 电 流 源 电路 。 一 理想集成运放 的工作区域分为线性和非线性两部分 , 其参数应满足条件 : J①开环差模电压增益 A 一∞, ②差模输入电阻 一 ∞, ③输出电阻 尺 , 。 ④共模
电工电子学_集成运算放大器

24
9.3 集成运放在信号运算方面的应用
由于开环电压放大倍数Auo很高,集成运放开环工作时线性区很 窄。因此,为了保证运放处于线性工作区,通常都要引入深度负反馈。 集成运放引入适当的负反馈,可以使输出和输入之间满足某种特定的 函数关系,实现特定的模拟运算。当反馈电路为线性电路时,可以实 现比例、加法、减法、积分、微分等运算。
图9.2.1 反馈放大电路框图
电路中的反馈是指将电路的输出信号(电压或电流)的一部分或全部 通过一定的电路(反馈电路)送回到输入回路,与输入信号一同控制 电路的输出。可用图9.2.1所示的方框图来表示。
16
2. 反馈的分类
(1)正反馈和负反馈 根据反馈极性的不同,可以分为正反馈和负反馈。 (2)直流反馈和交流反馈 根据反馈信号的交直流性质,可以将反馈分为直流反馈和交流反馈。 (3)电压反馈和电流反馈 根据输出端反馈采样信息的不同,可以将反馈分为电压反馈和电流反 馈。 (4)串联反馈和并联反馈 根据反馈信号与输入信号在放大电路输入端联结方式的不同,可以将 反馈分为串联反馈和并联反馈。
9
3. 输入和输出方式
差放电路有双端输入和单端输入两种输入方式。同样也有双端 输出和单端输出两种输出方式。因此,差动放大电路共有四种输入输 出方式。 (1)双端输入双端输出 (2)双端输入单端输出 (3)单端输入双端输出 (4)单端输入单端输出
10
4. 共模抑制比
差动放大电路对差模信号和共模信号都有放大作用,但对差动 放大电路来说,差模信号是有用信号,共模信号则是需要抑制的。因 此要求差放电路的差模放大倍数尽可能大,而共模放大倍数尽可能小。 为了衡量差放电路放大差模信号和抑制共模干扰的能力,引入共模抑 制比作为技术指标,用KCMR表示。其定义为差模电压放大倍数与共 模电压放大倍数之比,即 A (9.1.11) K ud
集成运算放大电路

VCCUBE0 R
(1)
当 1 时,T1管的集电极电流
IC1IE1UBE0ReUBE1
(2)
(2)式中 (UBE0 – UBE1) 大概几十毫伏,因此只要 几千欧的 Re 就可以得到几十微安的IC1,所以称 为微电流源。
由式
IC1
Re0 Re1
IRU ReT1lnIICR1
可得
IC1
UT Re
ln
+VCC
IC0=IC1=IC ,IR为基准电流。
T0
C
T1
A点的电流方程I为E2:IC2IBIC2IC
IC0
2IB
IC
A
1
IC
2
IE2
2
IC2
IB2
IE2
1
B
T2
2
IC2
(1)
IR R
IC2 B点的电流方程为:
IR IB 2 IC IC 2 1 2 IC 22 2 2 2 2 IC 2
பைடு நூலகம்
UBE
UT
ln
IE IS
(2)
B
IC0
T0
A T1
IB0
IB1
Re0 IE0
IE1 Re1
因 将T(30)与式T代1 特入性 (1)完式全得U相:B同E0,U 故B:E1UTlnIIE E10 IE1Re1IE0Re0UTlnIIE E1 0
(3) (4)
当 2时,IC0IE0IR,IC1 IE1,所以
IC2(122 22)IRIR
(2)
2.4 多路电流源电路
基于比例电流源的多路电流源:
+VCC
IR R
C B
IC0
电工学II——集成运放电路(10章)

结论:
(1) Auf为负值,即 uo与 ui 极性相反。因为 ui 加在反相输入 端。
(2) Auf 只与外部电阻 R1、RF 有关, 与运算放大器本身参数 无关。 (3) | Auf | 可大于 1,也可等于 1 或小于 1 。
(4) 因u–= u+= 0 , 所以反相输入端“虚地”。 (5) 输入电阻 ri = R1;输出电阻ro=0.
例:电路如下图所示,已知 R1= 10 k ,RF = 50 k 。
求:1. Auf 、R2 ;
2. 若 R1不变,要求Auf为 – 10,则RF 、 R2 应为 多少?
RF
+ ui – R1 R2 – +
D
解:1. Auf = – RF R1
+
+ uo –
= –50 10 = –5 R2 = R1 RF
uo=(VC1+DVC1)-(VC2+DVC2)=0 注意:单端输出,无法抑制零点漂移
动态分析 1.共模信号 u11=u12 大小相等、极性相同 输出电压恒为零(不具备放 大能力)
u11 + 差分放大原理电路 R2
+UCC
R1 RC + T1 RC uo T2 R1 + R2 u 12 -
2.差模信号
输出端与运放电路 反相输入端的关系
平衡电阻 R2 = R1 // RF
输入电压加在了同相输入端,输出 电压对地为正
输出电压作用到该连接地的电路上, 在R1右端产生电压u-, 构成电压串联负反馈
uo RF Auf =1+ ui R1
uo RF 同相比例运算放大系数 Auf =1+ ui R1
什么是集成运放?

什么是集成运放?
集成运放作为通用性很强的有源器件,它不仅可以用于信号的运算、处理、变换和测量还可以用来产生正弦或非正弦信号,不仅在模拟电路中得到广泛应用,而且在脉冲数字电路中也得到日益广泛的应用,因此,它的应用电路品种繁多,为了分析这些电路的原理,必须了解运放的基本特性。
一、集成运放的开环差模电压传输特性
集成运放在开环状态下,输出电压UO与差模输入电压Uid = U- - U+ 之间的关系称为开环差模传输特性。
理论分析与实验得出的开环差模传输特性曲线如图Z0609所示。
曲线表明运放有两个工作区域:线性区(阴影部分)和非线性区(阴影两侧区域)。
在线性区内:
UO = Aod(U- - U+),即输出电压与输入电压成线性关系。
由于Uomax有限,而一般运放的开环电压放大倍数Aod又很大,所以,线性区域很小。
应用时,应引入深度负反馈网络,以保证运放稳定地工作在线性区内。
在非线性区内,UO 与Uid无关,它只有两种可能取值,即正向饱和电压+Usat(U+ >U- )和负向饱和电压- Usat(U->U+)。
集成运算放大器

A/D转换方法
– 计数法 速度慢 – 双积分式A/D转换器 精度高、干扰小 速度慢 – 逐次逼近式A/D转换器 原理同计数式相似,只是从最高位开始,通过试探值来计数。
例1:ADC0804 (8位,100us,转换精度 ±1LSB,内带可控三态门)。
例2:ADC570 (输入电压:0~10V 或 -5V~+5V)
例3. 8位以上A/D转换器和系统连接。 ADC1210:12位,100us,启动端SC,结束转换CC。
例4. ADC0809: 逐次逼近式8通道8位ADC。
同时有模拟电路和数字电路的系统中地 线的连接
模拟电路 ADC DAC 数字电路
模拟电路 AGND
数字电路 DGND
模拟地
公共接地点
if RF
R1 R2
R3 RP
- +
u0
ui 1 ui 2 ui 3 uo R1 R2 R3 Rf 可得: uo R f ( ui 1 ui 2 ui 3 ) R1 R2 R3 若R1=R2=R3=R,则 u R f ( u u u ) o i1 i2 i3 R
集成运算放大器
1.集成运算放大器概述
集成运算放大器是一种高电压增益、高输入电阻和低输出 电阻的多级直接耦合放大电路,一般由四部分组成:
输入级:一般是差动放大 器,利用其对称特性可以 提高整个电路的共模抑制 比和电路性能,输入级有 反相输入端“-”、同相 输入端“+”两个输入端; 中间级:的主要作用是
3、差动比例运算电路
R1=R2,R’=RF Uo=-RF/R1(Ui1-Ui2)
差动比例运算电路 又称减法运算电路
汽车电工电子技术第6章 集成运放

1.集成运算放大器特性与参数
2)主要特性
(2) 饱和区的特点 理想运放工作在饱和区时,“虚断”的概念依然成立,但
“虚短”的概念不再成立。这时
当u+>u-时,uO=+UOM 当u+<u-时,uO=-UOM
分析运放的应用电路时,首先将集成运放当作理想运 算放大器;然后判断其中的集成运放工作在线性区还是非 线性区。在此基础上分析具体电路的工作原理。
1)基本结构
集成运放的输入级有两 个输入端,其中一个输 入端的信号与输出信号 之间为反相关系,称为
反相输入端
u-
u+
同相输入端
_ ∞Ao 输出端
+
uO
+
反相输入端,另一个输入端的信号与输出信号之间为同相
关系,称为同相输入端,在图中用符号“+”标注。运放有 一个输出端。
1.集成运算放大器结构 2)封装形式
和“虚断”。即
u+≈u- i+= i-≈0 “虚短”表示集成运放的同相输入端与反相输入端的电 压近似相等,如同将该两点虚假短路一样。若运放其中一个 输入端接“地”,则有u+≈u-=0,这时称“虚地”。 “虚断”表示没有电流流入运放(因为理想运放的差模 输入电阻Rid→∞),如同运放的两个输入端被断开一样。
(7)电源电压UCC 一般都用对称的正、负电源同时供电
1.集成运算放大器特性与参数
2)主要特性
电压传输特性是指表示集成运放输出电压u0与输入电压ui之间关 系的特性曲线
线性区
饱和区
饱和区
1.集成运算放大器特性与参数
2)主线要特性性区
u0= A0 (u+-u-)= A0ui
《模拟电子技术基础》教学课件 5.4集成运放的主要参数和电压传输特性

μA741输入失调电流IIO是20nA,LM324的输入失调电流IIO是2 nA 。
5.4 集成运放的主要参数和电压传输特性
5.4.1 集成运放的主要参数
1.集成运放的直流参数
③输入偏置电流IIB 运放两个输入端偏置电流的平均值,用于衡量差分放大对管输入电流的大小。
μA741输入偏置电流IIB是80nA,LM324的输入偏置电流是20nA。 ④温度漂移 输入失调电压温漂 dUIo /dt 在规定工作温度范围内,输入失调电压随温度的变化量与温度变化量之比值。 其值一般约为±(10~20)μV/℃。
A
uP
+
uo
①虚短
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,
这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。
②虚断 “虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,
这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。
(2)运放在正反馈或开环时,工作在非线性区。
输入失调电流的温漂dIIO/dT指输入失调电流随温度的变化率。 高质量的运放,其值一般约为每度几个pA。
5.4 集成运放的主要参数和电压传输特性
2.集成运放的交流参数 ①开环差模电压放大倍数Aod 运放在无外加反馈条件下,输出电压的变化量与输入电压的变化量之比。
通用型集成数和电压传输特性
2.集成运放的交流参数
③共模抑制比 KCMR 和共模输入电阻Ric 与差分放大电路中的定义相同,是差模电压增益 Aud 与共模电压增益 Auc 之比, 常用分贝数来表示。
KCMR=20lg(Aud / Auc ) (dB)
一般通用型运放的KCMR为80~120dB,高精度运放可达140dB。 μA741的KCMR大于90dB,LM324的KCMR大于80dB。
5.4 集成运放的主要参数和电压传输特性
5.4.1 集成运放的主要参数
1.集成运放的直流参数
③输入偏置电流IIB 运放两个输入端偏置电流的平均值,用于衡量差分放大对管输入电流的大小。
μA741输入偏置电流IIB是80nA,LM324的输入偏置电流是20nA。 ④温度漂移 输入失调电压温漂 dUIo /dt 在规定工作温度范围内,输入失调电压随温度的变化量与温度变化量之比值。 其值一般约为±(10~20)μV/℃。
A
uP
+
uo
①虚短
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,
这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。
②虚断 “虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,
这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。
(2)运放在正反馈或开环时,工作在非线性区。
输入失调电流的温漂dIIO/dT指输入失调电流随温度的变化率。 高质量的运放,其值一般约为每度几个pA。
5.4 集成运放的主要参数和电压传输特性
2.集成运放的交流参数 ①开环差模电压放大倍数Aod 运放在无外加反馈条件下,输出电压的变化量与输入电压的变化量之比。
通用型集成数和电压传输特性
2.集成运放的交流参数
③共模抑制比 KCMR 和共模输入电阻Ric 与差分放大电路中的定义相同,是差模电压增益 Aud 与共模电压增益 Auc 之比, 常用分贝数来表示。
KCMR=20lg(Aud / Auc ) (dB)
一般通用型运放的KCMR为80~120dB,高精度运放可达140dB。 μA741的KCMR大于90dB,LM324的KCMR大于80dB。