电压传输特性测试曲线

合集下载

数电实验2

数电实验2

深圳大学实验报告课程名称:数字电子技术实验项目名称:TTL、HC和HCT器件的参数测试学院:光电工程专业:光电信息指导教师:报告人:刘恩源学号:2012170042 班级:2 实验时间:实验报告提交时间:一、实验目的与要求:1、掌握TTL、HCT和HCT器件的传输特性。

2、熟悉万用表的使用方法。

二、实验仪器:1、六反相器74LS04 1片2、六反相器74HC04 1片3、六反相器74HCT04 1片4、万用表三、实验原理:非门的输出电压V O与输入电压V I的关系V O=f(V I)叫做电压传输特性,也叫做电压转移特性。

它可以用一条曲线表示,叫做电压传输特性曲线。

从传输特性曲线可以求出非门的下列参数:1、输出高电平(V OH)。

2、输出低电平(V OL)。

3、输入高电平(V IH)。

4、输入低电平(V IL)。

5、门槛电平(V T)。

四、实验内容与步骤:1、测试TTL器件74LS04一个非门的传输特性。

2、测试HC器件74HC04一个非门的传输特性。

3、测试HCT器件74HC04一个非门的传输特性。

注意:1、注意被测器件的引脚7和引脚14分别接地和接+5V。

2、将实验箱上直流信号源的输出端作为被测非门的输入电压。

旋转电位器改变非门的输入电压值。

1、3、按步长0.2V调整率改变非门的输入电压。

首先用万用表监视非门输入电压,调好输入电压后,再用万用表测试测量非门的输出电压,并记录下来。

实验接线图由于74LS04、74HC04和74HCT04的逻辑功能相同,因此三个实验的接线图是一样的。

下面以第一个逻辑门为例,画出实验接线图(V I表示非门输入电压,电压表表示电压测试点)如下:图2.1 实验接线图2、输出无负载时74LS04、74HC04、74HCT04电压传输特性测试数据3、输出无负载时74LS04、74HC04和74HCT04电压传输特性曲线。

(请根据实验数据绘制3条曲线)4、比较三条电压传输特性曲线,说明各自的特性。

实验三_集成逻辑门电路的功能及参数测试(精)

实验三_集成逻辑门电路的功能及参数测试(精)
100Ω/1KW 1只
实验四
实验设备
示波器YB4320A 1台
三用表1只
逻辑电路设计实验箱1台
实验材料(在电阻箱上
74LS125 1片
74LS03 1片
电阻
1/8W 1K Ω8只
1/8W 5.1KΩ5只
1/8W 2.7K Ω4只
四、操作方法与实验步骤
实验三
1.验证74LS00“与非”门的逻辑功能
1.将芯片插入实验箱的IC插座中
4.从b端往a端缓慢调节电位器W ,观察Vi ,Vo两电压表的读数,并记录数据填入表格
5.根据表格数据画出曲线图,并求VON和VOFF
图表21开关门电平电路图
实验四
1.验证74LS125三态门的逻辑功能
1.高阻的测试方法:将控制端EN接高电平,输出分别接上拉电阻和下拉电阻,测量输出端Y的电压
图表22测量示意图
4.进一步建立信号传输有时间延时的概念
5.进一步熟悉示波器、函数发生器等仪器的使用
实验四
1.掌握三态门的逻辑功能及工作原理
2.了解三态门在计算机总线中的应用
3.熟悉集电极开路门的电路原理
4.掌握集电路开路门的使用方法
二、实验内容和原理
实验三
实验内容:
1.验证74LS00“与非”门的逻辑功能
2.验证CD4001“或非”门的逻辑功能
实验四1.验证74LS125三态门的逻辑功能图表32 74LS125逻辑功能测量结果EN A L Y上拉电阻Y下拉电阻5.07 5.07 0 0 H H L H实验结果表明接上拉电阻实现了正常的逻辑功能同时提高了驱动负载能力。而接下拉电阻三态门不能实现正常的逻辑功能。2.测量74LS125的四个三态门的输入输出电压图表33 74LS125输入输出电压ENi 0 0 Ai / V 4.99 0 4.97 0 4.97 0 4.98 0 Yi / V 4.04 0 3.99 0 4.02 0 4.03 0 Yi逻辑值1 0 1 0 1 0 1 0 0 0 0 0 0 0数据表明四个三态门都是正常的。2.用74LS125三态门构成1位2选1数据选择器图表34双向数据传送测量结果S0 0 1 D1 139.133HZ 5.10V(示波器139.420HZ 5.06V D0 5.06V Y 139.172HZ 4.19V无频率第16页/共18页

集成门电路功能测试(三态门)

集成门电路功能测试(三态门)

集成门电路功能测试实验报告一实验内容1 三态门的静态逻辑功能测试。

2 动态测试三台门。

并画出三态门的输出特性曲线。

输入为CP矩形波。

3 测试三态门的传输延迟时间。

4 动态测试三态门的电压传输特性曲线。

输入为三角波。

二实验条件硬件基础实验箱,函数信号发生器,双踪示波器,数字万用表,74LS125。

三实验原理1 首先测试实验箱上提供的频率电源参数是否正确。

打开实验箱电源,把分别把5MHz的脉冲接入红表笔上,黑表笔接地。

观察示波器显示波形的频率是否为5MHz,经过观察计算,波形频率接近5M。

误差很小,从下图可以看出,ch1为输入波形一个周期占四个格子,可计算得到f=5MHz。

2 三态门的静态逻辑功能测试。

(后面四个实验都是通过示波器在同一时刻测试3动态测试三台门。

并画出三态门的输出特性曲线。

输入为CP矩形波。

使能端无效是波形:使能端有效时输出波形4 测试三态门的传输延迟时间。

通过测量同一时刻的输入输出波形,可以观察到三态门的输出延迟。

得到波形图为CH1,CH2分别为输入输出波形,可以看出在上升沿的输出延迟为10ns然而下降沿的时候的截图已经丢失了,依稀记得在实验时候,测得是数据下降沿的输出延迟与上升沿的不一致,并且比上升沿的短。

为9.6ns,其传输延迟为两个延迟的平均值9.8ns。

5 测试三态门的电压传输特性曲线。

输入为三角波。

得到输入输出波形为:CH1为输入,CH2为输出。

得到阀值电压为0.92V。

四总结这次实验基本上和上次实验的方法一样,没遇到什么大的问题。

就是还是粗心。

五评价实验效果挺好。

巩固了对逻辑器件的功能测试的方法和操作。

74LS125功能测试试験

74LS125功能测试试験

一、实验目的:用芯片74LS125:1、测试其逻辑功能和输入、输出电压2、测试其动态的输出波形和电压传输时间3、测试其动态电压传输特性曲线(无负电压的三角波信号)二、实验条件:数字示波器、信号发生器、电路实验箱、万用表、74LS125芯片、导线数根三、实验步骤:(一)测试74LS125芯片的逻辑功能和输入输出电压该芯片封装图:a.将74LS125芯片插进电路试验箱b.将引脚14与5V的电源相接,引脚7接地。

引脚1,2输入,引脚3输出。

用导线连接好电路c.依次按下开关使输入的灯亮输入信号为00,10,01,11,观察输出的灯亮的情况并作好记录d.用万用表测量输入和输出两端的电压,得下表:逻辑值电压值(V)名称输入端A输入端B输出端Z0 0 1 0 0 0.08(黄)0 1 0 1 4.03 3.20(红)1 0 高阻态 4.05 0.01 2.40(无)1 1 高阻态 4.05 4.04 2.40(无)(二)、测试74LS125动态的输出波形和电压传输时间(输入3KHZ的连续脉冲波)检验步骤:(1)如图连好电路。

将输入端A与5V电压相连,B输入端连接频率为3KHZ的连续脉冲。

(2)将示波器的X通道与输入端相连,Y通道与输出端相连,示波器显示即为动态输入输出波形。

(3)将输入的频率改为50MHZ,调整示波器即得到下图。

图中电压传输时间为8.80ns.3.测试74LS125动态电压传输特性曲线调节示波器,连接电路。

无负电压的三角波信号:74LS125的电压传输特性曲线四、实验总结实验渐渐的开始越来越难,复杂度也增高了。

近几次实验均用到示波器,所以对示波器的运用也相对熟练一些。

示波器保存图形失误了,保存成了文字,因此有副图只能借鉴同学的了。

对芯片还是不够熟练,在接线方面老出错,导致出现很难出现正确结果。

总觉得哪里没有弄懂似的。

五、感想目前实验做了这么久了但还是完全无法领悟其诀窍,也不熟练,没有他人或多或少的帮忙很难把实验进行完成。

实验二MOS反相器电压传输特性

实验二MOS反相器电压传输特性

实验二MOS反相器电压传输特性姓名学号电阻型MOS反相器1.参照讲义,请将电阻型MOS反相器的电路连接图(chematic)截屏并粘贴到以下空白处(包含I/OPin以及电压源):2.将其中NMOS管参数设为L=0.18um,W=1um,电阻R为5kΩ,试运行仿真得到其对应的电压传输特性曲线Vout-Vin,观察并记录VM以及VOH,并截屏粘贴到以下空白处(包含Vout=Vin的参考线)3.在模拟环境(AnalogEnvironment)中设置“plottingmode”为“Append”,然后将电阻值改为10kΩ和20kΩ,将三组电压传输特性曲线plot 在同一个窗口中,观察并记录VM以及VOL随电阻R的变换,并将窗口截屏粘贴到以下空白处:4.通过修改电阻R的值,将VOL调整到20mV以下,记录对应的电阻值并将其电压传输特性曲线窗口截屏粘贴到以下空白处:2增强/增强型MOS反相器(EEMOS)贴到以下空白处(包含I/OPin以及电压源,注意负载管衬底的接法):2.将其中驱动管参数设为L=0.18um,W=1um,并将负载管也设成同样参数,试运行仿真得到其对应的电压传输特性曲线Vout-Vin,观察并记录VM以及VOH,注意其阈值损失(Vdd-VOH),最后将曲线窗口截屏粘贴到以下空白处(包含Vout=Vin的参考线)33.在模拟环境(AnalogEnvironment)中设置“plottingmode”为“Append”,然后将负载管参数改成2倍(即L=0.18um,W=2um)和0.5倍(即L=0.18um,W=0.5um),将三组电压传输特性曲线plot在同一个窗口中,观察并记录VM以及VOL随负载管参数的变换,并将窗口截屏粘贴到以下空白处:4.通过修改驱动管和负载管的宽长比,将VOL调整到50mV以下,记录对应的两个管的宽长尺寸,并将其电压传输特性曲线窗口截屏粘贴到以下空白处:4CMOS反相器贴到以下空白处(包含I/OPin以及电压源,注意PMOS管衬底的接法):2.将其中NMOS管参数设为L=0.18um,W=1um,并将PMOS管也设成同样参数,试运行仿真得到其对应的电压传输特性曲线Vout-Vin,观察并记录VM,VOH,以及VOL,最后将曲线窗口截屏粘贴到以下空白处(包含Vout=Vin的参考线)53.在模拟环境(AnalogEnvironment)中设置“plottingmode”为“Append”,然后将PMOS管参数改成2倍(即L=0.18um,W=2um)和4倍(即L=0.18um,W=4um),将三组电压传输特性曲线plot在同一个窗口中,观察并记录VM随PMOS管参数的变换,并将窗口截屏粘贴到以下空白处:4.通过修改PMOS管和NMOS管的宽长比,将VM调整到0.9V,记录对应的两个管的宽长尺寸,并将其电压传输特性曲线窗口截屏粘贴到以下空白处:65.估算VM=0.9V时的VIH与VIL,并计算对应的高低噪声容限VNMH 与VNML。

集成运放的电压传输特性

集成运放的电压传输特性

集成运放的电压传输特性
集成运放的两个输入端分别为同相输入端up和反相输入端un,这里的“同相”和“反相”是指运放的输入电压与输出电压之间的相位关系,集成运放的符号如图1(a)所示。

从外部看,可以认为集成运放是一个双端输入、单端输出、具有高差模放大倍数、高输入电阻、低输出电阻、能较好地抑制温漂的差动放大电路。

图 1 集成运放的符号和电压传输特性集成运放的输出电压uo与输入电压(即同相输入端与反相输入端之间的差值电压)之间的关系曲线称为电压传输特性,即
(3-1-1)对于正、负两路电源供电的集成运放,器电压传输特性如图1(b)所示。

从图示曲线可以看出,集成运放有线性放区域(称为线性区)和饱和区域(称为非线性区)两部分。

在线性区,曲线的斜率为电压放大倍数;在非线性区,输出电压只有两种可能的情况,即+UOM和-UOM。

由于集成运放放大的对象是差模信号,而且没有通过外电路引入反
馈,因而集成运放工作在线性区时。

通常Aod在105左右,因此集成运放的非线性区非常狭窄。

实验1 与非门测试

实验1 与非门测试
的变化,示数都会发生较大的偏差。为了减少误差,我们在实验(一)中采取的主要方式是从四端口分别测出一组数据后求平均值。
c电位器的阻值变化不均匀,使得ui无法精确的停在的特定电压上。
三、实验思考题
1.TTL与非门和CMOS与非门有何异同点?
答:TTL与CMOS的相同点有:输出端可以悬空,都有与非逻辑功能,电压特性曲线相似,都有UOH,UOL,UOFF,UON参数。
图8测量平均传输延迟时间tpd
2.由实验(二)所得参数,运用matlab画出电压传输特性曲线。
3.实验数据分析
a低电平输出电源电流ICCL为2.029mA,高电平输出电源电流ICCH为0.674mA,且低电平输出电源电流ICCL比高电平输出电源电流高,符合理论值。
b输入短路电流IIS为0.168mA,而输入漏电流IIH为微安级,由于仪器精度不够无法测出有效数据,示数为0mA,说明其前级门电路带负载的个数较多。
(三)
平均传输延迟时间tpd
由示波器测得T=96.00ns,于是 .
波形如下:
二、实验分析
1.实验原理图
图1测量低电平输出电源电流ICCL图2测量高电平输出电源电流ICCH
图3测量输入短路电流IIS图4输入漏电流IIH
图5输出高电平UOH及关门电平UOFF图6测量输出低电平UOL及开门电平UON
图7测试TTL与非门的电压传输特性
实验一TTL与非门的静态参数测试实验报告
一、实验数据
(一)
1.低电平输出电源电流ICCL和高电平输出电源电流ICCH及静态平均功率
ICCL
ICCH
测量值
2.029mA
0.674mA
6.7575mW
2.输入短路电流IIS和输入漏电流IIH

实验一-基本逻辑门电路实验

实验一-基本逻辑门电路实验

二 、 TTL、HC器件的电压传输特性
2.输出无负载时74LS00、74HC00电压传输特性测试数据
输入Vi(V)
0.0 0.2 … 1.2 1.4 … 4.8 5.0
74LS00
输出Vo
74HC00
二 、 TTL、HC和HCT器件的电压传输特性
3.输出无负载时74LS00、74HC00和 74HCT00电压传
互连规则与约束
TTL、CMOS器件的互连: 器件的互连总则
在电子产品的某些单板上,有时需要在某些逻辑电平的器件之间进行互连。 在不同逻辑电平器件之间进行互连时主要考虑以下几点: 1:电平关系,必须保证在各自的电平范围内工作,否则,不能满足正常逻辑 功能,严重时会烧毁芯片。 2:驱动能力,必须根据器件的特性参数仔细考虑,计算和试验,否则很可能 造成隐患,在电源波动,受到干扰时系统就会崩溃。 3:时延特性,在高速信号进行逻辑电平转换时,会带来较大的延时,设计时 一定要充分考虑其容限。 4:选用电平转换逻辑芯片时应慎重考虑,反复对比。通常逻辑电平转换芯片 为通用转换芯片,可靠性高,设计方便,简化了电路,但对于具体的设计电 路一定要考虑以上三种情况,合理选用。 对于数字电路来说,各种器件所需的输入电流、输出驱动电流不同,为了驱 动大电流器件、远距离传输、同时驱动多个器件,都需要审查电流驱动能力: 输出电流应大于负载所需输入电流;另一方面,TTL、CMOS、ECL等输入、输 出电平标准不一致,同时采用上述多种器件时应考虑电平之间的转换问题。
五、 不同逻辑电平接口转换及其应用
1.TTL与CMOS 2.CMOS与TTL 2.TTL与LVTTL 3.TTL与LVCMOS 4.LVTTL与TTL 5LVTTL与CMOS 5.LVCMOS与TTL 6.LVCMOS与CMOS 7.TTL/CMOS与ECL 8. LVTTL/LVCMOS与LVECL 9.其它
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档