The Primal-Dual Algorithm(原始对偶优化算法)
(运筹学与控制论专业论文)线性规划的可行点算法

摘要本文研究的是线性规划的可行点算法,一个由线性规划的内点算法衍生而来的算法.线性规划的内点算法是一个在线性规划的可行域内部迭代前进的算法.有各种各样的内点算法,但所有的内点算法都有一个共同点,就是在解的迭代改进过程中,要保持所有迭代点在可行域的内部,不能到达边界.当内点算法中的迭代点到达边界时,现行解至少有一个分量取零值.根据线性规划的灵敏度分析理论,对线性规划问题的现行解的某些分量做轻微的扰动不会改变线性规划问题的最优解.故我们可以用一个很小的正数赋值于现行锯中等于零的分量,继续计算,就可以解出线陛规划问题的最优解.这种对内点算法的迭代点到达边界情况的处理就得到了线性规划的可行点算法.它是一个在可行域的内部迭代前进求得线性规划的最优解的算法.在此算法中,只要迭代点保持为可行点.本文具体以仿射尺度算法和原始一对偶内点算法为研究对象,考虑这两种算法中迭代点到达边界的情况,得到相对应的’仿射尺度可行点算法’和’原始.对偶可行点算法,.在用理论证明线性规划的可行点算法的可行性的同时,我们还用数值实验验正了可行点算法在实际计算中的可行性和计算效果.关键词:线性规划,仿射尺度算法,原始一对偶内点算法,内点,可行点算法,步长可行点.AbstractderivedThisDaperfocusesonafeasiblepointalgorithmforlinearprogramming,analgorithmfromtheinteriorpointalgorithmsforlineza"programming.TheinteriorpointalgorithmsfindtheoptimalsolutionofthelinearprogrammingbysearchingwithinthefeasmleTe譬ionofthelinearprogramming.ThereareaUkindsofinteriorpointalgorithlrmalltheforlinearprogramnfing.Butalltheseinteriorpointalgorithmsshareaspeciality,whichissolution|terativeDointscannotreachtheboundsAccordingtothesensitivitytheory,theoptimalofthelinearprogrammingwillnotbechangedbylittledisturbancesofthepresentsolution·SoWeletthe{xjIzJ=o,J=1,2,-··)n)equalaverysmallpositivenunlber,goonwiththecomputatio“一andthenwegettheoptimalsolutionofthelinearprogramming.Alltheseleadtothedevelopment。
内点法介绍(Interior Point Method)

内点法介绍(Interior Point Method)在面对无约束的优化命题时,我们可以采用牛顿法等方法来求解。
而面对有约束的命题时,我们往往需要更高级的算法。
单纯形法(Simplex Method)可以用来求解带约束的线性规划命题(LP),与之类似的有效集法(Active Set Method)可以用来求解带约束的二次规划(QP),而内点法(Interior Point Method)则是另一种用于求解带约束的优化命题的方法。
而且无论是面对LP还是QP,内点法都显示出了相当的极好的性能,例如多项式的算法复杂度。
本文主要介绍两种内点法,障碍函数法(Barrier Method)和原始对偶法(Primal-Dual Method)。
其中障碍函数法的内容主要来源于Stephen Boyd与Lieven Vandenberghe的Convex Optimization一书,原始对偶法的内容主要来源于Jorge Nocedal和Stephen J. Wright的Numerical Optimization一书(第二版)。
为了便于与原书对照理解,后面的命题与公式分别采用了对应书中的记法,并且两者方法针对的是不同的命题。
两种方法中的同一变量可能在不同的方法中有不同的意义,如μ。
在介绍玩两种方法后会有一些比较。
障碍函数法Barrier MethodCentral Path举例原始对偶内点法Primal Dual Interior Point Method Central Path举例几个问题障碍函数法(Barrier Method)对于障碍函数法,我们考虑一个一般性的优化命题:minsubject tof0(x)fi(x)≤0,i=1,...,mAx=b(1) 这里f0,...,fm:Rn→R 是二阶可导的凸函数。
同时我也要求命题是有解的,即最优解x 存在,且其对应的目标函数为p。
此外,我们还假设原命题是可行的(feasible)。
应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
凸优化对偶问题的最优解_解释说明以及概述

凸优化对偶问题的最优解解释说明以及概述1. 引言1.1 概述在数学和优化领域中,凸优化是一种重要的数学理论和方法,广泛应用于工程、计算机科学、经济学以及其他许多领域。
凸优化问题涉及到寻找一个函数的最小值,这个函数必须满足一定的凸性质。
对偶问题则是凸优化问题的一种推广形式,在解决实际问题时起着关键作用。
1.2 文章结构本文将分为五个部分来详细介绍凸优化对偶问题的最优解的解释说明以及概述。
首先,在引言部分我们将提供一个关于本文主要内容的总体概述,然后给出文章结构以引导读者阅读本文。
接下来,在第二部分中,我们将介绍凸优化问题的定义和基本性质。
我们会从数学角度定义凸集和凸函数,并讨论它们的基本性质。
此外,我们还会探讨如何确定凸优化问题的最优解以及其唯一性。
第三部分将重点介绍对偶问题的理论与概念。
我们将解释对偶性理论和对偶问题求解方法,并讨论对偶问题最优解的性质和应用。
通过对偶问题的研究,我们可以更好地理解凸优化问题的解,并为实际问题的求解提供有效的方法。
在第四部分中,我们将深入探讨凸优化对偶问题的关系与应用。
我们将介绍凸优化和对偶问题之间的关系,并通过实际案例分析展示凸优化对偶问题在工程、计算机科学等领域的实际应用。
这一部分将帮助读者更好地理解遇到的实际问题如何转化为凸优化对偶问题进行求解。
最后,在结论与展望部分,我们将总结凸优化对偶问题的最优解及其重要性。
同时,我们还将展望凸优化对偶问题研究的未来方向,包括可能存在的挑战和改进空间。
1.3 目的本文旨在提供一个全面而清晰地介绍凸优化对偶问题以及其最优解的文章。
通过阐述基本概念和性质,在引言部分给予读者了解文章主要内容,并通过具体例子和案例逐步展开,帮助读者更好地理解和应用凸优化对偶问题。
同时,本文也旨在鼓励更多的研究者从事相关领域的研究,为凸优化对偶问题的求解方法和应用提供新的思路和贡献。
通过本文的阅读,读者将能够全面理解凸优化对偶问题及其最优解,并在实践中灵活应用。
运筹学术语(新版11)

翻译以下英文术语,并深入了解术语的含义。
1.optimal solution:最优解,使目标函数取得最大值的可行解。
P352.objective function:目标函数,指需优化的量,即欲达的目标,用决策变量的表达式表示。
P123.feasible region:可行域,指所有可行解的集合。
P284. simplex method:单纯形法:是一种迭代的算法,其核心思想是不仅将取值范围限制在顶点上,而且保证每换一个顶点,目标函数值都有所改善.P1175. BF solutions:基可行解,满足变量非负约束条件的基解称为基可行解。
P1816. sensitivity analysis:敏感性分析:指对系统或事物因周围条件变化显示出来的敏感程度的分析。
P1467. algorithm:算法,指系统的求解过程。
p1078. spanning tree:生成树,若有限图的生成子图是一棵树,则称为该图的生成树。
树指不含有圈的连通网。
P3799. states:状态,各阶段开始时的客观条件. P44510.directed arc:有向弧,指通过一条弧的流只有一个方向的弧。
P37611. unbounded:无界,指约束条件不能阻止目标函数值在有利的方向上(正的或者负的)增长。
P3512. CPF solution:顶点(角点)可行解,指位于可行域顶点的解。
P3713. functional constraints:约束条件,指决策变量取值时受到的各种资源条件的限制,通常表达为含决策变量的等式或不等式。
P3414 multiple optimal solutions:多个最优解的问题,指有无穷多解,每一个解都有相同的目标函数值的问题。
P12215. slack variable:松弛变量,添加x i到约束条件的不等式中使其变为等式的变量P10816. augmented solution:增广解,指原始变量(决策变量)取值再加入相应的松弛变量取值后而形成的解。
应用运筹学基础:线性规划(5)-原始对偶方法

应⽤运筹学基础:线性规划(5)-原始对偶⽅法这⼀节课讲解了线性规划中的原始对偶⽅法(primal-dual method),并以最短路问题为例说明该⽅法的应⽤。
原始对偶⽅法原始对偶⽅法利⽤的就是上⼀节课中讲到的。
我们⾸先找到对偶问题的⼀个可⾏解 $y$,并尝试找到⼀个原问题的可⾏解 $x$,使得 $x$ 和$y$ 满⾜互补松弛定理。
如果我们找到了这样的 $x$,那么 $x$ 和 $y$ 就分别是原问题和对偶问题的最优解;否则我们就需要调整 $y$,让它变得更好,继续尝试,直到找到最优解为⽌。
寻找对偶可⾏解考虑以下线性规划问题作为原问题 $$\begin{matrix} \min\limits_x & c^Tx \\ \text{s.t.} & Ax = b \ge 0 \\ & x \ge 0 \end{matrix}$$ 它的对偶问题为 $$\begin{matrix} \max\limits_x & b^Ty \\ \text{s.t.} & A^Ty \le c \end{matrix}$$ 我们⾸先需要获得⼀个对偶问题的可⾏解。
如果 $c \ge 0$,显然 $y = 0$ 就是对偶问题的⼀个可⾏解,否则我们可以使⽤如下⽅法寻找可⾏解。
给原问题增加⼀个变量与⼀条约束 $x_1 + x_2 + \dots + x_n + x_{n+1} = b_{m+1}$,其中 $b_{m+1}$ 需要⾜够⼤,⾄少要⼤等于 $x_1 + x_2 + \dots + x_n$ 可能的最⼤值。
这样的约束就不会改变原问题。
加⼊新约束后,我们写出新的对偶问题 $$\begin{matrix} \max\limits_y & b^Ty + b_{m+1}y_{m+1} \\ \text{s.t.} & A^Ty +y_{m+1}\begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^T \le c \\ & y_{m+1} \le 0 \end{matrix}$$ 我们很容易看出这个新对偶问题的可⾏解为$y_i = 0 \quad \forall i \in \{1, 2, \dots, m\}$ 以及 $y_{m+1} = \min\limits_i \quad c_i$。
不连续介质反演的原对偶牛顿法和全变差正则化

不连续介质反演的原对偶牛顿法和全变差正则化冯立新;李媛;张磊【摘要】研究利用散射场测量数据反演非均匀介质的逆散射问题,特别是平面波在非均匀介质中传播时所产生逆散射问题的数值计算.为克服非均匀介质不连续变化和反演具有不适定性的困难,提出基于全变差正则化的原对偶牛顿方法,避免了一般正则化方法对不连续介质交界处反演的过光滑性作用.数值试验显示,本算法可以在观测数据带有一定噪声的境况下有效地重构不连续介质系数.%An inverse scattering problem of inhomogeneous mediums from the measurements of the scattered field is considered.In particular,it focuses on the numerical computation of the inverse scattering generated by the interaction of a plane wave and an inhomogeneous medium.To solve the ill-posedness as well as the difficulties caused by inhomogeneous media,a primal-dual Newton method based on the total variation regularization is constructed.The overly smooth effect of the usual regularization method for the inversion is overcome.Numerical experiments show that this method can recover discontinuous coefficients under moderate amount of noise in the observation data.【期刊名称】《黑龙江大学自然科学学报》【年(卷),期】2018(035)001【总页数】9页(P1-9)【关键词】全变差正则化;原对偶牛顿法;逆介质散射【作者】冯立新;李媛;张磊【作者单位】黑龙江大学数学科学学院,哈尔滨150080;黑龙江大学数学科学学院,哈尔滨150080;黑龙江大学数学科学学院,哈尔滨150080【正文语种】中文【中图分类】O1750 IntroductionIn this paper, we focus on the inverse medium scattering problem of determining electromagnetic properties of unknown inhomogeneous objects embedded in a homogeneous background from noisy measurements of the scattered field corresponding to one incident wave impinged on the objects. We describe the scattering model mathematically as follows:Δu(x)+k2η(x)u(x)=0, x∈R2,(1)where u is the total field, k is the wavenumber, η(x)>0 for all x, andm(x)=1-η(x) is the scatterer with a compact support. We assume that B containing the compact support of the scatterer m(x) be a bounded domain in R2. Let ui which is assumed to satisfyΔui+k2ui=0, x∈R2,(2)denote the incident on the inhomogeneity. Assume that the incident fieldui is a plane wave, i.e., ui(x)=exp(ikd·x), where d∈R2 is the propagation direction (a unit vector). The total field u consists of the incident field ui and the scattered field us, that is,u=ui+us.It follows immediately from Eqs. (1) and (2) that the scattered field satisfies Δus+k2us=k2m(x)ui, x∈R2,(3)and the scattered field is required to satisfy the following Sommerfeld radiation condition(4)uniformly in all directions x/|x|.The inverse medium scattering problems arise naturally in many applications such as geophysical exploration, medical imaging, and radar detection [1-5]. For the practical significance of the inverse problem, some inverse scattering methods have been developed in the literature, which may be divided into two categories: the direct methods and the indirect methods. The direct methods aims at detecting the scatterer support and shape, and includes linear sampling method (LSM)[6-8], factorization method (paper [9], Chapter 5, paper [10]), and multiple signal classification (MUSIC)[11-13]. In contrast, the indirect methods provides a distributed estimate of the refractive index by applying regularization techniques. We just mention recursive linearization [14-18] , Gauss-Newton method [19-21], and level set method [22] for an incomplete list. Generally, theestimates by an indirect method can provide more details of inclusions, but at the expense of increased computational efforts. There has been considerable interest in considering efficient and stable inversion techniques. However, due to the strong nonlinearity of the map from the refractive index to the scattered field, severe ill-posedness of the inverse problem and the limited availability of the scattered data, it is still a very challenging problem.In this work, we assume that the scattered data with fixed wavenumber are known in the domain B, i.e., the scattered field is measured forxj∈B,j=1,…,J for a given incident field. We develop an iterated method for accurately detecting the scatterer support. In the case, from the Lippmann-Schwinger integral equation, the inverse problem can be seen as the operator equation of the first kind with unknown m(x). An efficient numerical method is presented for solving the inverse medium scattering problem which is to reconstruct the inhomogeneous medium from inner measurements of the scattered field. We construct the total variation (TV) regularization approximation of the integral equation. The main reason of choosing TV regularization is that TV can penalize highly oscillatory solutions while allowing jumps in the regularized solution. Consequently, a primal-dual Newton method is used to minimize the TV functional [23-25]. This is an iterated method, which need solve direct scattering problem for each step of the process. The scattering data is generated by numerical solution of the direct scattering problem, which is implemented by using the efficient fast algorithm [26]. In this work, we develop a TVregularization and primal-dual method for solving the inverse medium problem with discontinuous coefficients. The remainder of the paper is organized as follows. Section 1 gives the integral formulation of inverse medium problem (1)~(4) and describes the TV regularization approximation. In Section 2, we employ a primal-dual Newton method for solving the corresponding inverse problem. Section 3 presents the numerical results for the inverse medium problem. Finally, we give the relevant conclusions in Section 4.1 Formulation of the integral equation and TV approximationThe integral formulation of problem (1)~(4) is the main ingredient in the proposed method. Let be the Hankel function of first kind and order 0, see paper [1] for details. We have the following Lippmann-Schwinger integral equation for u:(5)K(x,y)m(y)dy.So, we have following operator equation(Km)(x)=g.Define the Tikhonov-TV functional(6)where TV(m) is the TV of a function m defined on the B. If m is smooth, one can obtain the representation|m|dx.However, the representation is not suitable for the implementation of the numerical procedure, due to the nondifferentiability of the Euclidean norm at the origin. To overcome this difficulty, one can take an approximation to the Euclidean norm |x| like where β is a small positive parameter. This yields the following approximation to TV(m):Instead of the Tikhonov-TV functional (6), we will consider minimization of the functional(7)Suppose m=mi,j is defined on an equispaced grid in two space dimensions, {(x1i,x2j)|x1i=iΔx1,x2j=jΔx2,i=0,…,n1,j=0,…,n2}. We defi ne the discrete penalty functional Jβ(m):R(n1+1)×(n2+1)→R by(8)where To simplify notation, we drop a factor of Δx1Δx2 from the right-hand side of (8). This factor can be absorbed in the regularization α in (7). In the following section, we consider minimization of the discretized functional:(9)where the matrix K is a discretization of the operator K, the vector g and J denote discrete data, and discretization of TV approximation Jβ,respectively.2 A primal-dual Newton methodTo minimize the functional (9), the primal-dual Newton method is employed. Consider the convex functional defined on C=R2. One can show that the conjugate set C* is the unit ball in R2 and corresponding conjugate functional to φβ is(10)We can obtain the dual representation by (10):(11)The following theorem relates the gradient of a convex functional φβ to the gradient of its conjugate see paper [25], p.138 for a proof.Theorem 1 Suppose that φβ is differentiable in a neighborhood ofx0∈C⊂Rd, and the mapping F=gradφβ:Rd→R d is invertible in that neighborhood. Then is Frechét differentiable in a neighborhood ofy0=φβ(x0) withEmploying the dual representation (11), we obtain(12)We stack the array components mi,j,ui,j and vi,j into column vector m,u, and v, let Dx1 and Dx2 be matrix representation for the grid operators and and let <·,·> denote the Euclidean inner product. Then (12) can be rewritten asMinimization of the least squares functional (10) is equivalent to computing the saddle point(u*,v*,m*(13)where We refer to m as the primal variable, and to u and v as the dual variables.Since (13) is unconstrained with respect to m, a first order necessary condition for a saddle point is(14)An additional necessary condition is that the duality gap in (11) must vanish, i.e., for each grid index i, j,(15)Finally, the dual variables must lie in the conjugate set, i.e.,(ui,j,vi,j)∈C*.(16)Suppose (15) holds for a point (ui,j,vi,j) in the interior of C*. ThenUsing Theorem 1, above equations is equivalent toDx1m=B(m)u, Dx2m=B(m)v,(17)where B(m)=diag(1/ψ′(m)).We can reformulate the first order necessary conditions (14) and (17) as a nonlinear system:(18)The derivative of G can be expressed asHere B′(m)u has matrix representationB′(m)u-Dx1=-E11Dx1-E12Dx2(19)withwhere the products and quotients are computed pointwise. Similarly,B′(m)v-Dx2=-E21Dx1-E22Dx2(20)withNewton’s method for the system (18) requires solutions of systems of the formG′(u,v,m)(Δu,Δv,Δm)=-G(u,v,m).Substituting (19)~(20) and app lying block row reduction to convert G′ to block upper triangular form, consequently we obtainwhereandWe employ backtracking to the boundary to maintain the constraint (16). In other words, we computeall i,j}.We then updateAlgorithm Primal-dual Newton’s method for TV functional.ν:=0;m0:=initial guess for primal variable;u0,v0:=initial guess for dual variables;begin primal-dual Newton iterations;Δm:=[KTK+αLν]-1rν;mν+1:=mν+Δm;τν:=max{0≤τ≤1|(uν+τΔu,vν+τΔv)∈C*};uν+1:=uν+τνΔu;vν+1:=vν+τνΔv;ν:=ν+1;end primal-dual Newton iteration.3 Numerical experimentsSome numerical examples are presented to illustrate the performance of the proposed method. Here, the scattering data are generated by numerical solution of the direct scattering problem, which is implemented by using the efficient fast algorithm (see Appendix).In experiments we consider the following inhomogeneities,★ the scattered fields are measured on the domain B=[-2,2]×[-2,2];★ the incident direction d=(cos(π/3),sin(π/3)), and wa ve number k=1;★ {Qi,j⊂R2,i=1,2,…,n1,j=1,2,…,n2} is a partition of B;★ the parameters n1=20(40),n2=20(40), α=0.001, β=0.05.Fig.1 True scatterer (n1)Fig.2 Reconstruction n1 using primal-dual Newton’s methodFig.3 True scatterer (n2)Fig.4 Reconstruction n2 using primal-dual Newton’s methodTo test the stability, some relative random noise is added to the data, i.e., the measurement data takes the formu|B:=(1+δrand)u|B,where ‘rand’ gives the Gaussian white noise and δ is a noise level parameter taken to be 5% in our numerical experiments.We have set the parameter α in the TV formulation. Then, we use the above primal-dual Newton’s algorithm to solve the inverse problem. The stopping criterion for the iteration is a relative decrease of the nonlinear residual by a factor of 10-4 or through 50 times iterations. Here, the initial guess for m can be chosen for different constant. The reconstruction got faster when the the initial guess for m is better. Fig.2 and Fig.4 present reconstruction results of the refractive index from the measurement data. We can see that the method has the ability to resolve the inverse medium problem with discontinuous coefficients efficiently.4 ConclusionsWe have proposed and discussed a reconstruction technique of the inverse medium problem with discontinuous coefficients based on the measurements of the scattering field. Our aim to overcome the difficulties caused by the the ill-posedness as well as the difficulties caused by inhomogeneous media has been realized. To make the discontinuous coefficients of the medium can be reliably reconstructed, we convert the problem to an equivalent optimization problem, and then introduce the regularization term. At the same time, we use primal dual Newton method to solve the above problem. Finally, an inversion algorithm, based on TV regularization, for the inverse medium problem from the measurement data of the scattered field is shown. Numerical experiments show that the method is effective.AppendixHere, we give a fast algorithm to solve forward scattering problem (1)~(4).The method was proposed by Nadaniela Egidi etc, see paper [26] for details. The problem (1)~(4) can be reformulated as a Fredholm integral equation (5) of the second kind:Let {Ql,j⊂R2,l=1,2,…,n1,j=1,2,…,n2} be a p artition of B, the integral equation (5) is discretized as follows:(21)where ξl,j∈R2 is the center of ml,j=m(ξl,j), and ul,j is an approximation of u(ξl,j). Linear system (21) can be rewritten as following formAu=b,where b∈Cn1n2 contains u∈Cn1n2 contains ul, j, and the entry of matrix A, at row corresponding to indices l,j, and at column corresponding to i1, j1, containswhere δ is the Kronecker function.In following we give an approximation of the coefficient matrix A by using the properties of Hankel functions We havewhere J0 is the Bessel function of order 0, and Y0 is the Newmann function of order 0. From the power series expansions of these functions we have tlρ2l, ρ>0,where γ≈0.577 215 7 is the Euler constant, andhere B>0 is a suitable constant that depends on the size of D, and L is a truncation parameter.Substituting above express into (21), we obtain the following linear system:(22)where is the approximation of ul,j .We restrict our attention to coordinate partitions of B, whereQl,j,l=1,…,n1,j=1,…,n2 are given by rectangles having edges parallel to the coordinate axes. Moreover, we use the following notations :Ql,j=[al,bl]×[aj,bj],ξl,j=(ξ1l,ξ2j)∈R2,l=1,…,n1,j=1,…,n2. So, calculating the integral in (22), and rearranging the resulting terms, we obtain-×(-ξ1l)2q+1-l(-ξ2j)2p-2q+1-s)-,l=1,…,n1,j=1,…,n2.(23)Linear system (23) can be solved efficiently due to the special structure of its coefficient matrix, which is given by the identity matrix plus 2(L+1)2 rank-one matrices. We conclude that (23) can be rewritten as follows :(I+UVT)u=b,where U,V are following complex matrices having n1n2 rows and 2(L+1)2 columns.here×(-ξ1,i1)2q+1-l(-ξ2,i2)2p-2q+1-s,i1=1,2,...,n1,i2=1,2,...,n2,M=2L+1,N(l)=2L-2⎣l/2」+1.References[1] COLTON D, KRESS R. Inverse acoustic and electromagnetic scattering theory [M]. Berlin: Springer-Verlag, 1998.[2] CUI T J, CHEW W C, AYDINER A. Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 339-346.[3] BAO G, LI P. Numerical solution of an inverse medium scattering problem for Maxwell’s equations at fixed frequency [J]. Journal of Computational Physics, 2009, 228(12): 4638-4648.[4] BAO G, CHOW S N, LI P, et al. Numerical solution of an inverse medium scattering problem with a stochastic source [J]. Inverse Problems, 2010, 26 (7): 74014.[5] BAO G, LIN J, MEFIRE S M. Numerical reconstruction of electromagnetic inclusions in three dimensions [J]. SIAM Journal on Imaging Sciences, 2014, 7(1): 558-577.[6] CAKONI F, COLTON D, MONK P. The linear sampling method in inverse electromagnetic scattering [M]. Philadelphia: SIAM, 2010.[7] ITO K, JIN B, ZOU J. A direct sampling method to an inverse medium scattering problem [J]. Inverse Problems, 2012, 28(2): 25003.[8] ITO K, JIN B, ZOU J. A direct sampling method for inverse electromagnetic medium scattering [J]. Inverse Problems, 2013, 29(9): 95018.[9] KIRSCH A, GRINBERG N. The factorization method for inverse problems [M]. Oxford: Oxford University Press, 2008.[10] KIRSCH A. The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media [J]. Inverse Problems, 2002, 18(4): 1025-1040.[11] AMMARI H, IAKOVLEVA E, LESSELIER D, et al. MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions [J]. SIAM Journal on Scientific Computing, 2007, 29(2): 674-709.[12] CHEN X D, ZHONG Y. MUSIC electromagnetic imaging with enhanced resolution for small inclusions [J]. Inverse Problems, 2009, 25(1): 15008. [13] BAO G, HOU S, LI P. Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm [J]. Journal of Computational Physics, 2007, 227(1): 755-762.[14] BAO G, LI P. Inverse medium scattering for the Helmholtz equation at fixed frequency [J]. Inverse Problems, 2005, 21(5): 1621-1641.[15] BAO G, LI P. Numerical solution of inverse scattering for near-field optics [J]. Optics Letters, 2007, 32(11): 1465-1467.[16] BAO G, LIU J. Numerical solution of inverse scattering problems with multi-experimental limited aperture data [J]. SIAM Journal on ScientificComputing, 2003, 25(3): 1102-1117.[17] BAO G, TRIKI F. Error estimates for the recursive linearization of inverse medium problems [J]. Journal of Computational Mathematics, 2010, 28(6): 725-744.[18] BAO G, LI P, LIN J, et al. Inverse scattering problems with multi-frequencies [J]. Inverse Problems, 2015, 31 (9): 93001.[19] ZAEYTIJD D J, FRANCHOIS A, EYRAUD C, et al. Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method-theory and experiment [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 3279-3292.[20] HOHAGE T, LANGER S. Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems [J]. Inverse Problems, 2010, 26(7): 74011.[21] KRESS R, RUNDELL W. Inverse scattering for shape and impedance [J]. Inverse Problems, 2001, 17(4): 1075-1085.[22] DORN O, LESSELIER D. Level set methods for inverse scattering: some recent developments [J]. Inverse Problems, 2009, 25(12): 125001.[23] BAO G, HUANG K, LI P, et al. A direct imaging method for inverse scattering using the generalized Foldy-Lax formulation [J]. Contemporary Mathematics, 2014, 615: 49-70.[24] CHAN T F, GOLUB G H, MULET P. A nonlinear primal-dual method for total varlation-based 冯立新image restoration [J]. SIAM Journal on Scientific Computing, 1999, 20(6): 1964-1977.[25] VOGEL C R. Computational methods for inverse problems [J].Philadelphia: SIAM, 2002.[26] EGIDI N, GOBBI R, MAPONI P. The efficient solution of electromagnetic scattering for inhomogeneous media [J]. Journal of Computational and Applied Mathematics, 2007, 210(1-2): 175-182.。
langrange对偶算法

langrange对偶算法
拉格朗日对偶算法(Langrange Duality Algorithm)是一种用于求解约束优化问题的算法,通过引入拉格朗日乘子,将原始问题转化为对偶问题,从而求得原始问题的最优解。
该算法的基本思想是在原问题的基础上构建拉格朗日函数,然后通过加入拉格朗日乘子来实现对约束条件的考虑。
具体步骤如下:
1. 构建拉格朗日函数,形式为原始问题目标函数与约束条件乘积的和,用λ表示拉格朗日乘子,即L(x, λ) = f(x) + λg(x),其
中 f(x)为原始问题的目标函数,g(x)为约束条件。
2. 求解拉格朗日函数的极小化问题,即对L(x, λ) 求关于 x 的
最小值。
这相当于将原始问题转化为无约束的极小化问题。
3. 构建对偶函数,将求解极小化问题的过程转化为求对偶函数的极大化问题。
对偶函数的形式为d(λ) = inf L(x, λ),即对于
给定的λ,求L(x, λ) 相对于 x 的最小值。
4. 求解对偶函数的最大化问题,即求对偶函数d(λ) 的最大值。
这里的对偶问题的最优解提供了原问题的下界估计。
5. 检验最大化对偶函数的最优解是否满足对偶约束,即最优解是否为原问题的最优解。
如果满足约束条件,则对偶解也是原问题的最优解,否则需要进一步调整拉格朗日乘子的值,重新进行迭代。
通过迭代求解对偶函数的最大化问题,不断调整拉格朗日乘子的值,最终可以得到原始问题的最优解。
拉格朗日对偶算法的优点是能够通过求解对偶问题来提供原始问题的下界估计,从而更好地理解和解决约束优化问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dual max w = π′b
π′A ≤ c′ π′ ≷ 0
Assume b ≥ 0 and we know dual feasible π.
Recall that x, π are jointly optimal iff they satisfy
∀i, πi(a′ix − bi) = 0 and ∀j, (cj − π′Aj)xj = 0.
cj − π′Aj π¯′Aj
The new cost is
w∗ = π′b + θ1π¯′b = w + θ1π¯′b > w.
11
procedure primal-dual begin
infeasible := ‘no’, opt := ‘no’; let π be feasible in D while infeasible =‘no’ and opt =‘no’ do begin set J = {j : π′Aj = cj};
8
Dual max w = π′b
π′A ≤ c′ π′ ≷ 0
J = {j : π′Aj = cj} π is feasible
DRP max w = π′b
π′Aj ≤ 0 j ∈ J πi ≤ 1 i ≤ m πi ≷ 0
π¯ is optimal
We “improve” cost of π by setting π∗ = π + θπ¯, θ > 0.
10
Dual max w = π′b
π′A ≤ c′ π′ ≷ 0
J = {j : π′Aj = cj} π is feasible
DRP max w = π′b
π′Aj ≤ 0 j ∈ J πi ≤ 1 i ≤ m πi ≷ 0
π¯ is optimal
In order to maintain feasibilty of π we need ∀j, π∗′Aj = π′Aj + θπ¯′Aj ≤ cj.
j∈J j ∈/ J
We therefore introduce m new variables xai , i = 1, . . . , m, and the Restricted Primal (RP)
m
min ξ =
xai
i=1
aijxj + xai = bi i = 1, . . . , m
From previous slide, when maintaining feasibility, we only worry about π¯′Aj > 0 for some j ∈ J. i.e., π∗′Aj = π′Aj + θπ¯′Aj ≤ cj j ∈/ J and π¯′Aj > 0
1. Search for an x that jointly satisfies CSC with π.
2. If such an x exists, optimality has been achieved. Stop.
3. Otherwise improve π and go to 1.
2
Primal min z = c′x
j∈J
xj ≥ 0
xj = 0
i = 1, . . . , m
j∈J j ∈/ J
5
If we can find x that satisfies equalities below then x is optimal:
aijxj = bi
j∈J
xj ≥ 0 xj = 0
i = 1, . . . , m
π′Aj ≤ 0 j ∈ J πi ≤ 1 i ≤ m πi ≷ 0 i ≤ m
Let π¯ be optimal solution to DRP derived from optimal solution to RP; π¯ = ˆc′BB−1 where B is basis columns of optimal BFS of RP.
We know that ∀j ∈ J, π¯′Aj ≤ 0 since π¯ is optimal and thus feasible. Then
Theorem If ξopt > 0 in RP and the optimal dual (in DRP) satisfies
π¯′Aj ≤ 0 for j ∈/ J then P is infeasible.
π∗ = π + θπ¯. Cost of π∗ is
π∗′b = π′b + θπ¯′b.
Since RP and DRP are a primal-dual pair we have π¯′b = ξopt > 0. Therefore, to improve π to π∗, we must have θ > 0.
Started with feasible π. Using RP, tried to find x that jointly satisfied CSC with π.
Optimum ξ0 > 0, so this didn’t exist, but we can find π¯, optimum of DRP. Idea is to try and improve π to π∗ by finding “good” θ to set
Ax = b ≥ 0 x≥0
Dual max w = π′b
π′A ≤ c′ π′ ≷ 0
We may always assume that b ≥ 0 since, if not, we can multiply appropriate equalities by −1.
We always assume that we know feasible π of dual. If c ≥ 0 we may take π = 0.
The Primal-Dual algorithm maintains a feasible π. At each step it solves a Restricted Primal (RP) trying to find a jointly optimal primal solution x. If it doesn’t succeed, that gives the Dual of RP (DRP) enough information to “improve” π, while keeping it feasible. This procedure iterates and converges to optimum in a finite number of steps.
Theorem: When ξopt > 0 in RP and there is a j ∈/ J with π¯′Aj > 0, the largest θ that maintains the feasibility of π∗ = π + θπ¯ is
θ1 = min
j∈/J
s.t. π¯′Aj>0
New dual is
max w = π′b + πm+1bm+1 π′Aj + πm+1≤ cj j = 1, . . . , n
πm+1≤ 0
which has feasible solution
πi = 0 i = 1, . . . , m πm+1 = 1m≤ji≤nn{cj} < 0
3
Primal min z = c′x
Primal P
x
Dual D
π
Restricted primal RP
Adjustment to π
Dual of restricted
primal DRP
π
4
Primal min z = c′x
Ax = b ≥ 0 x≥0
Dual max w = π′b
π′A ≤ c′ π′ ≷ 0
Complementary slackness conditions are ∀i, πi(a′ix − bi) = 0 and ∀j, (cj − π′Aj)xj = 0.
Recall that x, π are jointly optimal solutions to primal and dual iff they jointly satisfy the complementary slackness conditions (CSC).
The Primal Dual Algorithm start with a feasible π and then iterates the following operations
6
RP
m
min ξ =
xai
i=1
aijxj + xai = bi i ≤ m
j∈J
xj ≥ 0 j ∈ J
(xj = 0 j ∈/ J) xai ≥ 0 i ≤ m
Assume that RP has ξ > 0. Consider DRP, the dual of RP:
DRP max w = π′b
The Primal-Dual Algorithm P&S Chapter 5
Last Revised – Nov 23, 2004
1
Simplex solves LP by starting at a Basic Feasible Solution (BFS) and moving from BFS to BFS, always improving the objective function, until no more improvement is possible.