影像学专家为您全面解读磁共振
mri原理知识要点概述

mri原理知识要点概述MRI(Magnetic Resonance Imaging)是一种利用核磁共振原理来获取人体内部结构图像的医学诊断技术。
本文将对MRI原理的关键知识点进行概述,包括核磁共振基本原理、磁场配置、信号检测与图像重建等内容。
一、核磁共振基本原理核磁共振是一种基于原子核自旋的物理现象。
在一个外加静态磁场的作用下,人体内的原子核会预cess和回复至稳定状态,产生的能量变化可以被探测到。
核磁共振基本原理主要包括以下几个方面:1. 能级结构:原子核具有自旋,其能级分为基态和激发态。
基态自旋向上(+1/2)的原子核数目略多于自旋向下(-1/2)的原子核数目,达到热平衡状态。
2. Larmor频率:外加静态磁场会影响原子核自旋的能级结构,导致自旋向上和向下的能级出现微细差异,产生Larmor频率。
Larmor频率与静态磁场强度成正比。
3. 共振吸收:通过施加射频脉冲场,可以使部分自旋的原子核发生能级跃迁,并吸收能量。
共振吸收时会出现相位积累,进而产生信号。
4. 脉冲序列:在核磁共振成像过程中,通过调节射频脉冲的频率、幅度和时序,可以实现对特定组织的激发与探测,从而获取图像信息。
二、磁场配置MRI使用强大的磁场来实现对人体组织的成像。
磁场配置是MRI 成像中的重要环节,主要包括以下几个方面:1. 主磁场:主磁场是MRI系统中最重要的磁场,用于产生使原子核进入Larmor预cess状态所需的静态磁场。
主磁场通常由超导磁体创建,其强度以特斯拉(T)为单位,常见的主磁场强度为1.5 T和3 T。
2. 梯度磁场:梯度磁场是MRI中用于定位不同空间位置的磁场。
通过改变梯度磁场的强度和方向,可以为不同的位置产生不同的Larmor频率,从而实现空间编码。
3. 射频线圈:射频线圈用于向特定组织发射射频脉冲,并接收组织发出的信号。
常见的射频线圈包括表面线圈和内腔线圈,根据需求选择不同的线圈。
三、信号检测与图像重建信号检测与图像重建是MRI技术中的核心环节,主要包括以下几个方面:1. 探测信号:通过射频线圈接收到的信号是非稳态的弱信号,需要经过一系列的调控和检测,包括放大、滤波、数字化等过程。
MRI检查知识小科普

MRI检查知识小科普医学影像技术在现代医疗中起着至关重要的作用,其中磁共振成像(Magnetic Resonance Imaging,MRI)是一种非常常见且广泛应用的影像技术。
MRI利用核磁共振现象,通过对人体内部的信号进行扫描和分析,生成高分辨率的影像,可以提供有关人体内部结构和功能的详细信息。
一、MRI查的原理核磁共振(Magnetic Resonance Imaging,MRI)是一种常用的医学影像技术,通过利用核磁共振现象,可以获取人体内部的详细结构和功能信息。
MRI检查的原理主要包括核磁共振现象的解释、MRI扫描的基本步骤以及MRI扫描的主要参数和影像构成。
1.核磁共振现象的简要解释核磁共振现象是指在强磁场中,原子核的自旋会在一定条件下发生共振。
人体组织中的水分子中含有氢原子核,而氢原子核又是唯一具有自旋的核素。
当人体置于强磁场中时,水分子中的氢原子核的自旋会与磁场方向产生相互作用,形成两种能量状态,即低能级和高能级。
这两种能级之间的转变,会释放出一定的能量,这种能量就是核磁共振信号。
2.MRI扫描的基本步骤MRI扫描的基本步骤包括磁场建立、激发和信号检测三个主要过程。
首先,通过产生强大的静态磁场,使得人体内的氢原子核自旋在磁场中定向。
然后,通过向患者体内注入一定频率和方向的无线电波,激发患者体内氢原子核的自旋状态发生共振。
最后,通过接收和处理患者体内产生的核磁共振信号,生成图像。
3.MRI扫描的主要参数和影像构成MRI扫描的主要参数包括磁场强度、脉冲序列和图像对比等。
磁场强度是指MRI设备所产生的静态磁场的强度,通常以特斯拉(Tesla,T)为单位。
不同磁场强度的MRI设备对图像分辨率和信噪比有不同的影响。
脉冲序列是指用于激发和检测核磁共振信号的无线电波脉冲的时间序列。
常见的脉冲序列包括快速自旋回波(Fast Spin Echo,FSE)和梯度回波(Gradient Echo,GRE)等。
肩关节磁共振解读

肩关节磁共振解读肩关节磁共振(MRI)是一种常用的影像学检查方法,用于评估肩关节的各种组织结构。
以下是肩关节磁共振解读的主要内容:骨与软骨在肩关节磁共振图像中,骨与软骨的形态和信号强度可以被观察。
正常的骨皮质表现为均匀的薄线,而软骨在MRI 上通常呈现为低信号。
骨与软骨的异常,如骨折、脱位、炎症等,可以在MRI图像上表现为信号强度的改变和形态的异常。
韧带与肌腱肩关节的韧带与肌腱在MRI图像上表现为连续的线条结构。
正常的韧带与肌腱应显示清晰的轮廓,其信号强度通常比骨与软骨高。
当韧带或肌腱受损时,其信号强度可能会降低或出现不连续。
肩袖损伤是最常见的肩关节韧带损伤,表现为肌腱变薄或断裂。
盂唇与盂肱中韧带盂唇是围绕肩关节盂的软组织,与盂肱中韧带相连。
在MRI图像上,盂唇与盂肱中韧带应显示为连续的低信号结构。
当盂唇或盂肱中韧带损伤时,会出现信号强度的改变或断裂。
这种损伤可能导致盂肱关节不稳定或疼痛。
关节囊与滑囊关节囊是包裹肩关节的软组织,而滑囊是关节周围的小囊袋,可分泌滑液以润滑关节。
在MRI图像上,关节囊与滑囊应显示为连续的低信号结构。
当关节囊或滑囊发炎或损伤时,会出现信号强度的改变和积液。
肌肉与脂肪垫肩关节周围的肌肉和脂肪垫在MRI图像上可显示为不同密度的组织结构。
正常的肌肉应显示为连续的低信号,而脂肪垫则显示为高信号。
当肌肉或脂肪垫受损或发炎时,会出现信号强度的改变。
神经与血管肩关节周围的神经与血管在MRI图像上通常难以区分。
然而,通过特定的序列和成像角度,可以观察到部分神经与血管的结构。
当神经或血管受损时,可能会出现信号强度的改变或形态的异常。
周围软组织和胸壁肩关节周围的软组织和胸壁在MRI图像上可显示为不同密度的组织结构。
正常的组织和胸壁应显示为连续的低信号。
当这些组织受损或发炎时,会出现信号强度的改变和形态的异常。
总结:通过解读肩关节磁共振图像,可以全面评估肩关节的各种组织结构。
通过对图像的仔细观察和分析,可以诊断各种肩关节疾病和损伤,如骨折、脱位、炎症、韧带损伤等。
做磁共振检查的必备小常识,三分钟了解

做磁共振检查的必备小常识,三分钟了解随着医学技术的不断进步,磁共振成为了现代医疗中必不可少的一种检查手段。
磁共振检查可以帮助医生更加准确地诊断疾病,而且无创、无辐射,对人体没有任何伤害,因此备受人们的信赖和青睐。
但是,对于大多数人来说,磁共振仍然是一个陌生而神秘的词汇。
今天,我们就来谈谈做磁共振检查的必备小常识,帮助大家更好地了解磁共振,为自己的健康保驾护航。
一、磁共振检查的原理和基本知识磁共振成像的原理是基于核磁共振现象。
人体内的原子核具有自旋,而磁共振就是利用原子核自旋的性质来获得图像。
当人体置于强大的磁场中时,原子核的自旋会与磁场方向对齐。
医生通过向身体中注入无线电波的方式,使原子核从低能级跃迁到高能级,并在跃迁过程中释放出信号。
这些信号经过处理后,就可以生成高分辨率的图像。
磁共振检查在医学领域有广泛的应用。
它可以用于检查几乎所有部位的人体器官和组织,包括头部、颈部、胸部、腹部、骨骼和关节等。
二、磁共振检查的准备工作1、告知医生相关病史在进行磁共振检查前,患者需要告知医生相关的病史和用药情况。
有些疾病或药物可能会影响磁共振检查的结果,因此医生需要了解这些信息以便进行正确的诊断。
2、脱掉金属物品磁共振检查需要使用强磁场,因此患者需要脱掉身上所有的金属物品,包括手表、项链、耳环、钥匙、手机等。
3、避免进食大量食物在进行磁共振检查前,患者需要避免进食大量食物。
因为在检查过程中需要躺在仪器里,如果胃部过于饱满会影响检查效果。
4、穿着宽松舒适的衣服在磁共振检查中,患者需要躺在一个比较狭窄的仪器中,因此需要穿着宽松舒适的衣服。
最好不要穿戴紧身衣裤或有金属扣子的衣物,以免影响检查效果。
5、带上重要的医疗文件在进行磁共振检查前,患者需要带上自己的重要医疗文件,如病历、化验单等,以便医生更好地了解自己的身体状况。
三、磁共振检查的过程和注意事项1. 躺平并保持静止:磁共振检查时,你需要躺在一张移动的床上。
医生会将你推入一个类似于管道的设备中,这个设备称为磁共振扫描仪。
mri的基本概念

MRI是磁共振成像(Magnetic Resonance Imaging)的缩写,是一种利用核磁共振现象获取人体组织结构和功能信息的医学影像技术。
本文将从MRI的基本原理、影像生成过程以及临床应用等方面进行介绍,希望能够为您提供全面的了解。
一、MRI的基本原理MRI的基本原理建立在核磁共振现象之上。
核磁共振是指原子核在外加磁场和射频场的作用下发生共振吸收和辐射的现象。
在MRI中,主要利用水素原子核的核磁共振特性来获取人体组织的影像信息。
当被放置在强静态磁场中时,人体组织中的水分子会产生特定的共振信号,通过对这些信号的检测和分析,可以得到高分辨率的影像信息。
二、MRI的影像生成过程1. 磁场建立:首先,患者被置于强静态磁场中,这个磁场可以使体内的水分子的原子核朝向发生变化,使其产生共振信号。
2. 射频激射:在静态磁场的作用下,通过向人体施加射频脉冲,可以激发体内的水分子原子核,使其发出特定的共振信号。
3. 信号检测:接收体内产生的共振信号,并将其转化为电信号进行处理。
4. 影像重建:通过计算机对接收到的信号进行处理和重建,生成图像。
三、MRI的临床应用1. 诊断性应用:MRI在临床上广泛应用于各种疾病的诊断,如脑部肿瘤、脊柱疾病、关节损伤等。
由于其高分辨率和无辐射的优势,MRI成为了很多病症的首选影像学检查方法。
2. 术前评估:在外科手术前,MRI可以提供准确的解剖结构信息,帮助医生进行手术方案的制定和评估,降低手术风险。
3. 研究应用:MRI在医学研究领域也有着广泛的应用,例如在神经科学、心血管疾病等方面发挥着重要作用。
四、MRI的发展趋势1. 高场强技术:随着MRI设备技术的不断进步,高场强MRI 技术的应用越来越广泛,可以提供更高分辨率的影像信息。
2. 功能性MRI:功能性磁共振成像(fMRI)可以观察大脑在特定任务下的代谢活动,对认知科学研究具有重要意义。
3. 分子成像:分子成像技术的发展,使得MRI可以在细胞水平上观察生物分子的活动和分布,对疾病的早期诊断有着重要意义。
【影像科普49】临床医生应该了解的磁共振知识

【影像科普49】临床医生应该了解的磁共振知识比如有的临床医生出于好心,害怕病人接受X线的辐射,开个单子做肺部磁共振;也有很多临床医生,会在病人面前解释:你看这里,亮的白的,密度好高,说明有结石(其实磁共振没有密度的概念,密度的X线的图像参数,描述磁共振图像明暗的术语是信号,亮的代表高信号,暗的代表低信号)。
而且很多时候,片子是拿反了的,左右是拿反了。
当然,这只是部分临床医生,我写这个目的不是为了说明临床医生多菜,不懂磁共振片子给病人乱说,不是这样的。
很多临床医生心都比较好,毕竟自己管的病人,有什么结果,都想通过自己的解读,在给病人语言解释一下,也能够起到良好的医患沟通目的。
但是,有些临床医生,对磁共振原理、图像特点、方法完全不了解,采用习惯上的X线、CT思维去读片,就会闹出笑话。
当然咯,大部分病人是看不出来的,医生说什么他们听什么。
这个也不能怪临床医生,毕竟隔行如隔山,毕竟他们专业不是影像学,这个我们搞放射的都理解。
所以我们认为,给临床大佬们讲解一些磁共振基本知识很有必要,共同提高,相互促进,是我们的目的。
1、何谓磁共振?核磁共振现象,是指处于静磁场中的原子核系统受到一定频率的电磁波作用时,将在他们的磁能级间产生共振跃迁,是原子核与磁场发生的共振,所以称为核磁共振,因为“核”字涉嫌核辐射,所以业内将其改称为磁共振。
2、磁共振的成像原理有什么特殊?照相机成像的原理是通过反射光接收被照物体图像信息(如下图)。
X线(CT)则是通过穿透光线照射人体后,分析不同组织器官对X线吸收程度的不同来重建出体内组织器官图像信息(如下图)。
磁共振(MRI)原理通俗来说,就是通过改变体内组织器官中的氢质子磁场后,分析不同组织中氢质子对磁场的不同反应来重建出不同组织器官的形态结构,甚至做功能分析(如下图)。
3、磁共振检查有何特点?1)磁共振没有X线、CT检查的辐射,对身体不产生电离辐射危害。
2)磁共振采用空间三维梯度场,在不移动患者和扫描床的情况下实现任何角度扫描和图像重建。
MRI的基本原理和概念精讲

MRI的基本原理和概念精讲MRI(磁共振成像)是一种非侵入性的医学成像技术,可以提供精确的人体内部结构图像。
其原理基于核磁共振现象,通过磁场和无线电波的作用,可以获取组织和器官的详细信息。
基本原理:MRI基于核磁共振(NMR)甚至Zeebman效应。
NMR是指在外加磁场作用下,原子核发生共振现象。
MRI利用核自旋角动量和其相互作用来获取图像。
核自旋角动量是由核自旋引起的旋转运动。
它可以被外磁场引导并预先排列在磁场方向上。
通过放射射频脉冲和梯度场的作用,核磁共振的能级结构发生变化,这些变化可用于形成图像。
过程:1.磁场:MRI使用超导磁体来产生强大的恒定磁场。
这个磁场通常为1.5到3.0特斯拉,是地球磁场的几千倍。
磁场将核磁矢量朝向磁场方向。
2.放射射频脉冲:通过向人体发送无线电波,能够使核磁矢量跳出磁场方向。
这是通过匹配外加无线电波的频率和核自旋的回旋频率来实现的。
这种频率与静态磁场的强度和核种类有关。
3.梯度场:在磁场中施加线性磁场梯度可以在人体的特定区域产生附加磁场。
这种附加磁场与核被成像区域的空间位置相关。
4.信号接收:当核自旋的能量从外加无线电波中恢复出来时,它会在接收线圈中产生微弱的电流。
这些信号被放大、数字化并通过计算机进行处理。
5.图像重建:计算机将通过使用运动梯度,并根据磁场强度和梯度进行排序来定位和重建核信号。
最终,这些信号通过色彩编码的像素来呈现出来,以形成图像。
概念:1.T1和T2弛豫时间:T1弛豫时间表示核磁矢量在放射射频脉冲停止后重新回到平衡状态所需的时间。
T2弛豫时间表示在停止射频传输后,核磁矢量由于相互作用而抵消的时间。
2.脉冲序列:MRI使用不同的脉冲序列获取不同的图像信息。
常见的脉冲序列包括T1加权、T2加权和质子密度(PD)加权序列。
3.磁共振造影剂:磁共振造影剂是一种通过静脉注射的特殊药物,可以提高一些组织或血管的对比度,从而使特定结构更清晰可见。
4.功能性MRI(fMRI):fMRI可以通过测量血液中的含氧量变化从而显示脑活动。
肩关节磁共振解读

肩关节磁共振解读肩关节磁共振成像(Magnetic Resonance Imaging,MRI)是一种非侵入性的影像学检查方法,通过利用磁共振现象和计算机技术,对肩关节内部结构进行精细观察和分析。
它能够提供高分辨率的图像,帮助医生明确诊断和制定治疗方案。
肩关节是人体上肢最复杂的关节之一,由锁骨、肩胛骨和上臂骨组成。
在运动中,肩关节承受重力和肌肉力量的作用,容易受到损伤和疾病的影响。
常见的肩关节疾病包括肩袖损伤、肩关节脱位、肩关节炎、肩关节囊肿等。
肩关节磁共振成像可以为医生提供关节内部结构的详细信息,包括软骨、肌腱、韧带、滑囊等。
首先,患者需躺平进入磁共振仪,然后,仪器通过产生强磁场和无线电波,激发和接收人体组织的信号。
这些信号经过处理和分析后,生成高分辨率的图像,显示肩关节的各个部分。
在肩关节磁共振成像中,常见的图像序列包括T1加权图像、T2加权图像、脂肪抑制序列和3D图像。
T1加权图像显示组织的明显对比度,对于评估骨骼结构和软骨病变较为有用。
T2加权图像对于检测炎症、肌腱损伤和关节脱位等有较高的敏感性。
脂肪抑制序列可以减少脂肪的影响,突出韧带和滑囊等软组织结构。
3D图像可以提供肩关节在3维空间内的全貌信息。
在进行肩关节磁共振成像时,医生需要对图像进行细致的解读和分析。
首先,医生会观察关节的整体形态和结构。
正常情况下,肩关节应呈现良好的对称性,关节面光滑充盈,骨骼结构无异常。
然后,医生会重点观察软组织结构,如肌肉、肌腱和韧带等。
肌肉和肌腱的形态、信号强度和连续性可以反映其正常功能和异常变化。
韧带的完整性和张力也是医生关注的重点。
肩袖损伤是肩关节最常见的疾病之一,磁共振成像在诊断肩袖损伤方面具有高准确度。
肩袖损伤通常包括肌腱部分或完全的撕裂、肌肉萎缩和肩袖囊肿等。
磁共振成像可以清晰显示肩袖肌腱的异常信号和断裂。
肩关节炎是肩关节疾病中的另一个常见病症,主要表现为关节软骨的退变。
磁共振成像可以直接观察关节软骨的变化,包括软骨下骨硬化、骨赘和关节腔的狭窄等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影像学专家为您全面解读磁共振1、何谓磁共振?核磁共振现象,是指处于静磁场中的原子核系统受到一定频率的电磁波作用时,将在他们的磁能级间产生共振跃迁,是原子核与磁场发生的共振,所以称为核磁共振,因为“核”字涉嫌核辐射,所以业内将其改称为磁共振。
2、磁共振(MR)图像是怎样形成的?如果给人体施加一个外来的静磁场,再给予一个短暂的、与质子共振相同频率的旋转磁场(即射频脉冲),之后采集电磁波信号,就可以获得人体的磁共振信号。
对磁共振信号的采集过程给予一个形象的比喻,可以把质子比喻成卫星,我们从发射电台发送信号,卫星获得信号,再重新发射出来,地面的收音机就可以收听到节目了。
通过对接受到的磁共振信号进行空间编码和图像重建等处理,即产生MR图像。
3、磁共振检查有何特点?1)磁共振没有X线、CT检查的辐射,对身体不产生辐射危害。
2)磁共振采用空间三维梯度场,在不移动患者和扫描床的情况下实现任何角度扫描和图像重建。
3)无骨质伪影。
4)软组织对比度良好。
5)对病变显示更加敏感,可使病灶显示更早更清楚。
6)磁共振的DWI(扩散加权成像)序列,是唯一能够无创检测活体组织内水分子扩散运动的成像方法。
7)磁共振的PWI(灌注加权成像)序列,能够显示脑组织血流动力学信息。
8)磁共振的MRS(波谱分析)序列,是唯一能够无创检测活体组织内化学物质、反应组织代谢的方法。
& m3 f- O' v/~$ V' r4、磁共振能够显示身体哪些部位的病变?磁共振是一种功能强大的医学影像技术,特别是在软组织检查上具有优良的组织对比度和空间分辨力,它可以多角度多序列多参数成像,除肺、胃肠道显示欠佳外,可以检查全身任何部位。
5、磁共振检查有核辐射吗?磁共振是利用人体生物磁自旋原理及磁共振现象成像,虽然其最初的名称为核磁共振(NMRI),但完全不存在核辐射现象及放射性物质,磁共振检查非常安全,对人体是没有辐射危害。
6、磁共振检查前需要注意什么?1)受检者不能将任何铁磁性物质带入磁体间,检查前需更换检查服。
2)安装心脏起搏器、神经刺激器、血管夹、支架、人工心瓣膜者禁做MR检查(冠脉支架植入术3月后可慎做MRI复查,须出具完整的病历、支架材料及其它相关证明,并由本人签署同意书)。
% m* o1 U& m1 @, y) Q1 i) U3)准备怀孕或者已经怀孕者,需事先告诉医护人,由医务人员综合考虑检查之必要性及安全性。
4)如果体内有人工关节、骨科固定物、补片、铁屑或植入的药物泵等,需告知检查人员。
5)有空间恐惧症、心脏病、癫痫、无意识、躁动、肾脏功能不全或有药物过敏病史等状况,请预先告知检查人员。
5 X/ i( B, E* V& w( p$ i6)腹盆部检查要求空腹。
- p$ D+ ?2 j7 u/ x5 }7)小儿检查需要在医生指导下服用镇静剂,检查前一天晚上尽量让小朋友睡眠减半,以利检查顺利完成。
不能合作的成人也需要提前使用镇静剂。
8)因为检查扫瞄室的空间较狭隘,而且机器在检查过程中会产生较大噪音,检查时间依部位的不同需10-30分钟不等,受检者需保持静躺不动,避免因移动而影响到影像的清晰度,进而影响诊断。
或许您会感觉时间过得很慢,建议可采闭眼、呼吸放松、想象等方式来减低焦虑。
9)依照病情需要,检查过程中可能会要求受检者憋气,每次约10-20秒,请务必配合。
受检者在检查中可透过双向式麦克风和扫描室外的医师沟通。
& |: \3 t# ^7 o2 u* _7、为什么铁磁性物质不能带入磁共振扫描室内?磁共振系统主磁体强大吸引力产生的投射效应是MR室最大的安全问题之一,越接近磁体,磁场迅速增大,任何被磁体吸引的物体都会对病人或医生造成严重伤害。
铁磁性投射物既可以是缝衣针、别针、螺丝刀、扳手等小物体,也可能是氧气瓶、吸尘器、工具箱等大物体。
典型的铁磁性投射物含有铁的成分,但镍和钴等元素也具有较强的铁磁性。
非铁磁性金属物品虽然不产生投射效应,却能形成金属伪影而干扰图像。
8、为什么安装心脏起搏器的人不能做磁共振检查?磁共振强大的磁场会引起心脏起搏器工作异常或停止工作,从而导致心脏骤停或其它严重的意外事件发生。
. a! H8 P1 U8 r9 i: u9、植入冠状动脉支架的人不能做磁共振检查吗?冠状动脉支架一般由钽、镍钛合金或不锈钢制成,目前研究表明,在支架植入冠状动脉3月以后,随着血管内皮对支架表面的覆盖,支架可牢固的固定在血管壁内,在MR检查时不会发生支架移位或是产生明显的产热效应;因而冠状动脉支架植入3月以后,可以进行MR检查。
冠状动脉支架植入后进行MR检查前,受检者必须出示所植入的支架材料类型及植入支架时间的相关有效证明资料。
10、怀孕者能做磁共振检查吗?MR是否有致畸作用一直是一个有争议的话题,但电磁场作用于机体产生一定的生物效应是肯定的,因而建议“在妊娠的头3个月谨慎应用”MR 检查,须与临床医生进行必要的沟通,综合考虑检查的必要性。
9 B7 q' Q; I8 o11、磁共振扫描时为什么身体会发热?有什么影响?人体受到电磁波照射时将其能量转换为热。
磁共振扫描时射频脉冲(RF)激励波的功率将全部或大部被人体所吸收,其生物效应主要是体温的变化,但RF照射引起的实际组织温升还决定于照射时间、环境温度以及被检者自身的温度调节功能;所以磁共振检查时有的人会出现局部和全身发热,有的人不会出现,体温变化随着检查终止很快会消失,一般对人体没有影响。
高热患者不宜做磁共振检查。
人体中散热功能不好的器官,如睾丸、眼等对温度的升高非常敏感,这些部位是最容易受MR射频辐射损伤的部位,局部检查时需慎重。
8 x7 y6 K; u/ G( s/ u12、体内有金属植入物的人做磁共振检查时会产生什么影响?如果体内的金属异物(假牙、避孕环、金属植入物、术后金属夹等)位于扫描范围内时,应慎重扫描,以防止金属物运动或产热造成损伤,金属物亦可产生伪影而影响诊断;如扫描其它部位,亦应注意有无不适感。
眼球内有金属异物、植入动脉夹或植入人工心脏瓣膜者禁做磁共振检查。
13、磁共振检查时为什么会产生很大的噪音?由于梯度场使磁体内磁场发生变化,法拉第的电感定律告诉我们:变化的磁场会在导线中产生电流,通电的导线在磁场中会产生运动,这些都是磁共振噪音的来源。
14、磁共振检查前能化妆吗?许多化妆品内都含重金属,磁共振检查前不应化妆,纹身(纹眉)、化妆品、染发等应事先去掉,因其可能会引起灼伤。
15、为什么做磁共振时皮肤会有麻痒感?人也是导体,在变化的磁场中也会产生电流。
磁共振扫描时多数人会感觉有皮肤上有麻痒感(虫爬感),这种现象叫周围神经刺激效应,这种效应在检查完毕后即可消失,一般不会对机体造成伤害。
0 z- W, @- A7 l16、磁共振检查时医生所讲的序列是什么意思?所谓序列,是具有一定带宽、一定幅度的射频脉冲与梯度脉冲的有机组合。
不同的组合方式构成不同的序列,不同的序列获得的图像有各自的特点,也有其对应的应用范围。
17、磁共振图像中加权(T1WI、T2WI、PDWI)都是什么意思?机体组织不同的T1值、T2值及质子密度是磁共振成像的基本因子,磁共振实际扫描过程中获得的信号既包含T1信号,也包含T2信号。
通过调节扫描参数,可以使所得信号中某种信号所占的比例大些,称为加权成像(英文缩写为WI)。
除T1加权(T1WI)、T2加权(T2WI)外,还可以有质子密度加权(PdWI)和混合加权。
T1加权(T1WI)侧重于显示组织结构,T2加权(T2WI)侧重于显示病变。
* \' j( X, J5 v6 |4 X+ I18、什么是磁共振波普(MRS)?磁共振波普成像是利用磁共振中的“化学位移”(chemical shift)来测定分子组成及空间构型的一种检测方法。
磁共振化学位移是因为围绕原子核旋转的电子改变了原子核周围的磁场强度,因而使原子核的共振频率发生了位移,于是,通过检测原子核的共振频率,就可以推算出其所处的电子也就是化学环境,核磁共振波谱学便应运而生了。
MRS(波谱分析)是唯一能够无创检测活体组织内化学物质、反应组织代谢的方法。
1 {% h3 F, x' q& {( T19、心脏磁共振检查为什么要在胸前放置电极片?心脏是不断运动的器官,心脏搏动的影响成为心脏磁共振成像的决定性因素,目前采用心电门控技术使数据采集与心脏的运动同步,从而采集到高质量的心脏形态和功能的图像。
检查前正确放置心脏电极片是实现有效心电门控获得高质量图像必须的操作步骤。
20、心脏磁共振检查时为什么要常在呼气后憋气?呼吸和胸腹部器官的运动是磁共振成像中第二大影响因素,这类运动叠加于心脏的收缩,对图像的质量产生重要的影响。
随着磁共振快速成像技术的发展,可以使图像的采集在一次屏气(15秒内完成),这也是心脏磁共振成像在近年能够快速应用于临床的基础,采集数据时大多数情况下需要受检者憋气配合(在使用呼吸导航门控时无须憋气,但需要均匀一致的呼吸配合)。
研究显示每次呼气末屏气幅度能够保持相对一致,为避免多层面多次屏气采集时,屏气幅度不一致对图像的影响,常采用呼气末屏气方式。
2 V/ T m/Q$ T* a21、心脏磁共振检查时间久吗?心脏是一个结构复杂、不断跳动的脏器,获得清晰的心脏磁共振图像,需要受检者及检查者密切配合,处理好各个环节,其检查时间相对于其它部位要长,一般心脏基本扫描需要20分钟左右时间,如果进行心肌灌注、延迟增强及冠状动脉成像,需要更长的时间。
22、心血管磁共振检查有何优势?磁共振良好的时间和空间分辨率是其具备同时显示心脏结构和功能的能力,加之其不存在辐射损害,故这种集形态、功能及细胞生物学检查为一体的无创性检查已经发展为心脏病诊断和鉴别诊断的理想方法,被认为是判断心脏和功能结构的“金标准”。
心肌活性及灌注成像是心脏磁共振独有的优势,其影像分辨率远高于核素显像。
目前,磁共振的诸多特点越来越广泛的被临床应用。
- l2 f6 `. I% m q1 y$ [0 A6 h23、磁共振检查能够显示哪些心脏疾病?1)心肌病变,包括各型原发性心肌病,急、慢性心肌梗塞及其主要并发症室壁瘤、附壁血栓等,高血压性心脏病,肺动脉高压或肺动脉瓣病变等所致的心室肌肥厚及慢性肺源性心脏病等。
2)心脏肿瘤,包括心腔内、心壁内肿瘤及其与心包、纵膈肿瘤的区别。
3)各种先天性心脏病,特别是复杂畸形。
4)心脏瓣膜病。
5)各种大血管疾患,包括各种动脉瘤、主动脉夹层、马凡氏综合症、大动脉炎、主动脉缩窄及褶曲畸形和阻塞,以及各种大血管先天畸形和变异。
6)心包疾患,包括心包积液、缩窄性心包炎以及心包内占位性病变。
5 K# ?/ p( @ ~+ J3 z7 }24、磁共振与超声检查心血管疾病,哪个更好?1)磁共振影像对比度及分辨率远高于超声心动图,更利于心肌及瓣膜微小病变的显示。