直角三角形等腰直角三角形斜边直线专题
专题02 直角三角形斜边上的中线(专项培优训练)(教师版)

专题02 直角三角形斜边上的中线(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.56一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•赤峰)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.点F是AB中点,连接CF,把线段CF沿射线BC方向平移到DE,点D在AC上.则线段CF在平移过程中扫过区域形成的四边形CFDE 的周长和面积分别是( )A.16,6B.18,18C.16,12D.12,16解:由平移的性质可知DF∥CE,DF=CE,∴四边形CFDE是平行四边形,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,∴AC===8,在Rt△ABC中,∠ACB=90°,AB=10,点F是AB的中点,∴CF=AB=5,∵DF∥CE,点F是AB的中点,∴==,∠CDF=180°﹣∠ABC=90°,∴点D是AC的中点,∴CD=AC=4,∵点F是AB的中点,点D是AC的中点,∴DF是Rt△ABC的中位线,∴DF=BC=3,∴四边形CFDE的周长为2(DF+CF)=2×(5+3)=16,四边形CFDE的面积为DF•CD=3×4=12.故选:C.2.(2分)(2023•金安区校级模拟)如图,△ABC中,∠C=90°,AC=10,BC=8,线段DE的两个端点D、E分别在边AC,BC上滑动,且DE=6,若点M、N分别是DE、AB的中点,则MN的最小值为( )A.10﹣B.﹣3C.2﹣6D.3解:△ABC中,∠C=90°,AC=10,BC=8,∴AB==2,∵DE=6,点M、N分别是DE、AB的中点,∴CN==,CM==3,当C、M、N在同一直线上时,MN取最小值,∴MN的最小值为:﹣3,故选:B.3.(2分)(2023•海曙区校级一模)如图,△ABC中,∠ACB=90°,D是AB的中点,过点D作AB的垂线,交BC于E,连接CD,AE,CD=4,AE=5,则AC=( )A.3B.C.5D.解:∵∠ACB=90°,D是AB的中点,CD=4,∴AB=2CD=8,∵ED⊥AB,∴DE垂直平分AB,∴BE=AE=5,∵AC2=AE2﹣CE2=AB2﹣BC2,∴52﹣CE2=82﹣(5+CE)2,解得CE=1.4,∴AC=.故选:B.4.(2分)(2022春•铁锋区期末)如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP( )A.下滑时,OP增大B.上升时,OP减小C.无论怎样滑动,OP不变D.只要滑动,OP就变化解:∵AO⊥BO,点P是AB的中点,∴OP=AB,∴在滑动的过程中OP的长度不变.故选:C.5.(2分)(2022•雁塔区校级四模)如图,在△ABC中,∠ACB=90°,点D为AB的中点,点E在AC上,且AE=BE,连接CD交BE于点F,若∠A=25°,则∠DFE的度数( )A.65°B.70o C.75o D.80o解:∵D为AB的中点,∠ACB=90°,∴CD=AD,∴∠ACD=∠A=25°,∵AE=BE,∴∠ABE=∠A=25°,∴∠BEC=∠A+∠ABE=50°,∴∠DFE=∠ACD+∠BEC=25°+50°=75°,故选:C.6.(2分)(2021•荷塘区模拟)如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是( )A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=∠BDC解:∵AD=CD,∴∠A=∠ACD,∵∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∴∠B=∠BCD,∴A正确,故A不符合题意;∵∠BDC≠∠BCD,∴BD≠BC,∴B错误,故B符合题意;∵∠B=∠BCD,∴BD=DC,∴AD=BD,∴C正确,故C不符合题意;∵∠BDC=∠A+∠ACD,∠A=∠ACD,∴∠ACD=∠BDC,∴D正确,故D不符合题意;故选:B.7.(2分)(2021•铁岭模拟)如图,在△ABC中,E为边AC的中点,CD⊥AB于点D,AB=2,BC=1,DE=,则∠CDE+∠BCD=( )A.60°B.75°C.90°D.105°解:∵CD⊥AB,E为AC边的中点,∴AC=2DE=,∵AB=2,AC=1,∴BC2+AC2=12+()2=4=22=AB2,∴∠ACB=90°,∵CD⊥AB,E为AC边的中点,∴DE=CE,∴∠EDC=∠ECD,∴∠CDE+∠BCD=∠ECD+∠BCD=∠ACB=90°,故选:C.8.(2分)(2020•汝阳县模拟)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,且∠ACD=30°,DE∥BC交AC于点E,BF⊥CD于点F,连接EF.若AC=2,则EF的长是( )A.2B.C.1D.解:∵∠ACB=90°,D为AB的中点,∴CD=AD=BD,∴∠A=∠ACD,∵∠ACD=30°,∴∠A=30°,∴AB=2BC,∠ABC=60°,∵AC2+BC2=AB2,AC=2,∴(2)2+BC2=(2BC)2,解得:BC=2(负数舍去),∴AB=2BC=4,∵AB=4,D为AB的中点,∴BD=AD=2=BC,∵BF⊥CD,∴CF=DF,∵DE∥BC,D为AB的中点,∴AE=CE,∴EF=AD==1,故选:C.9.(2分)(2021•饶平县校级模拟)如图,在三角形ABC中,AB=AC,BC=6,三角形DEF的周长是7,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,则AF=( )A.B.C.D.7解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=BC=3,∴△DEF的周长=DE+DF+EF=AB+3=7,∴AB=4,由勾股定理知AF==,故选:B.10.(2分)(2020•亳州二模)如图,在△ABC中,∠BCA=90°,D为AC边上一动点,O为BD中点,DE ⊥AB,垂足为E,连接OE,CO,延长CO交AB于F,设∠BAC=α,则( )A.∠EOF=αB.∠EOF=2αC.∠EOF=180°﹣αD.∠EOF=180°﹣2α解:设∠ABD=β,则∠BDC=∠ABD+∠A=β+α,∵DE⊥AB,∴∠BED=90°,∴∠BDE=90°﹣β,∵O为BD中点,∴OE=BD=OD,∴∠OED=∠ODE,同理得OC=OD,∴∠OCD=∠ODC=α+β,∴∠EOD=180°﹣2(90°﹣β)=2β,∠COD=180°﹣2(α+β)=180°﹣2α﹣2β,∴∠EOF=180°﹣∠EOD﹣∠COD=180°﹣2β﹣(180°﹣2α﹣2β)=2α;故选:B.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023•仓山区校级开学)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,若AB =4,则CD的长是 2 .解:∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,AB=4,∴.故答案为:2.12.(2分)(2023•开平市二模)如图,在△ABC中,AB=AC,BC=6,AF⊥BC于F,BE⊥AC于E,且点D 是AB的中点,若△DEF的周长是11,则AF= .解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=BC=3,∴△DEF的周长=DE+DF+EF=AB+3=11,∴AB=8,由勾股定理知AF==,故答案为:.13.(2分)(2023•京口区校级一模)如图,四边形ABCD中,∠ABC=∠ADC=90°,∠BCD=135°,连接AC、BD.M是AC的中点,连接BM、DM.若AC=12,则△BMD的面积为 18 .解:∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=AC=AM=6,∴∠MBD=∠MDB,∠CAB=∠ABM,∠DAC=∠ADM,由三角形的外角性质得,∠BMC=∠ABM+∠CAB=2∠BAC,∠CMD=∠ADM+∠DAC=2∠DAC,∴∠BMD=∠BMC+∠CMD=2(∠BAC+∠DAC)=2∠BAD,四边形ABCD中,∠ABC=∠ADC=90°,∠BCD=135°,∴∠BAD=45°,∴∠BMD=2∠BAD=90°,=BM•DM=×6×6=18.∴S△BMD故答案为:18.14.(2分)(2023•长春一模)如图,在Rt△ABC中,点D是斜边AB的中点,过点D作DE⊥AC于点E,连接CD,过点E作CD的平行线,交BC的延长线于点F.若AB=10,则EF的长为 5 .∵DE⊥AC,∠ACB=90°,∴∠AED=90°=∠ACB,∴DE∥CF,又∵DC∥EF,∴四边形EDCF为平行四边形,∴EF=DC,又∵DC为直角三角形斜边中线,∴,∴EF=DC=5.故答案为:5.15.(2分)(2022•荆州)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于D,E,连接CD.若CE=AE=1,则CD= .解:如图,连接BE,∵CE=AE=1,∴AE=3,AC=4,而根据作图可知MN为AB的垂直平分线,∴AE=BE=3,在Rt△ECB中,BC==2,∴AB==2,∵CD为直角三角形ABC斜边上的中线,∴CD=AB=.故答案为:.16.(2分)(2023•市南区校级开学)如图,在四边形ABCD中∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE、ED、BD,若∠BAD=56°,则∠BED的度数为 112° .解:∵∠ABC=∠ADC=90°,E是AC的中点,∴DE=AC,BE=AC,∴DE=BE=AE,∴∠DAE=∠ADE,∠BAE=∠ABE,∴∠ADE+∠ABE=∠DAE+∠BAE=∠BAD=56°,∵∠DEC=∠DAE+∠ADE,∠BEC=∠BAE+∠ABE,∴∠DEC+∠BEC=∠DAE+∠ADE+∠BAE+∠ABE,∴∠BED=∠BAD+∠ADE+∠ABE=56°+56°=112°.故答案为:112°.17.(2分)(2023•镇江二模)如图,已知∠ABC=∠ADC=90°,∠DAB=45°,M、N分别是AC、BD中点,若AC=10,则MN= .解:连接BM,DM,∵∠ABC=∠ADC=90°,M是AC的中点,AC=10,∴AM=BM=AC=5,AM=DM=AC=5,∴∠MAB=∠MBA,∠MAD=∠MDA,∵∠BMC=∠MAB+∠MBA,∠DMC=∠MAD+∠MDA,∴∠BMD=∠BMC+∠DMC=2∠BAM+2∠DAM=2∠BAD=90°,∵BM=DM=5,∴BD=BM=5,∵N是BD的中点,∴MN=BD=,故答案为:.18.(2分)(2023春•恩施市期末)如图,在Rt△ABC中,∠BAC=90°,点D是BC的中点,连接AD.分别以点A,C为圆心,AD的长为半径在△ABC外画弧,两弧交于点E,连接AE,CE,过点D作DF⊥CE于点F.若AB=12,AC=16,则DF的长为 .解:在Rt△ABC中,∠BAC=90°,点D是BC的中点,∴AD=CD,AE=EC=AD,AE=EC=AD=CD,∴四边形ADCE是菱形,如图,过点A作AH⊥BC于点H,∵AB=12,AC=16,∴BC==20,∴AH===,∵四边形ADCE是菱形,∴CD=CE,=EC•DF=CD•AH,∴S菱形ADCE∴DF=AH=.故答案为.19.(2分)(2022•南岗区模拟)如图,点D是Rt△ABC的斜边BC的中点,点E、F分别在边AB、AC上,且BE=BD=CF,连接DE、DF,若DE=7,DF=10,则线段BE的长为 13 .解:如图,延长FD至点P,使得DP=DF,连接BP,EP,过点E作EQ⊥FD于点Q,在△BDP和△CDF中,,∴△BDP≌△CDF(SAS),∴BP=CF,∠PBD=∠C,∵∠C+∠ABC=90°,∴∠PBD+∠ABC=90°,即∠ABP=90°,∵BE=CF,∴BE=BP,∴△BEP为等腰直角三角形,∴EP=BE,∵∠ABC+∠C=90°,BD=BE,CD=CF,∴∠BDE+∠CDF=135°,∴∠EDQ=45°,∵ED=,∴EQ=DQ=7,∴EP==,∴BE=13.故答案为:13.20.(2分)(2018•青山区模拟)如图,在以AB为斜边的两个直角△ABD和△ABC中,∠ACB=∠ADB=90°,CD=m,AB=2m,则∠AEB= 120° .解:如图所示,取AB的中点F,连接CF,DF,∵∠ACB=∠ADB=90°,∴CF=AB=DF,又∵CD=m,AB=2m,∴CD=AB,∴CF=DF=CD,∴△CDF是等边三角形,∴∠CFD=60°,∴∠AFC+∠BFD=120°,∵CF=BF,AF=DF,∴∠AFC=2∠ABE,∠BFD=2∠BAE,即∠ABE=∠AFC,∠BAE=∠BFD,∴∠ABE+∠BAE=∠BFD+∠AFC=(∠BFD+∠AFC)=×120°=60°,∴△ABE中,∠AEB=180°﹣60°=120°,故答案为:120°.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2022•茂南区一模)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,BE∥CD,CE∥AB.试判断四边形BDCE的形状,并证明你的结论.解:四边形CEBD为菱形,证明如下:∵BE∥CD,CE∥AB,∴四边形CEBD是平行四边形,在Rt△ACB中,D为AB中点,∴CD为Rt△ACB斜边上的中线,∴CD=BD,∴四边形CEBD为菱形.22.(6分)(2021秋•仁寿县期末)在Rt△ABC中,∠ACB=90°,D为AB的中点,DE⊥AB,AD=2DE.①求证:∠B=∠AED;②若CD=,求CE的值.①证明:∵DE⊥AB,∴∠ACB=∠ADE=90°,∴∠A+∠B=∠AED=90°,∴∠B=∠AED;②解:∵D为Rt△ABC斜边AB上的中点,∴AD=BD=CD=,即AB=2,设DE=x,则AD=2DE=2x,∴AE=,则sin B=sin∠AED=;则AC=AB sin B==4,AE=,∴CE=AC﹣AE=4﹣=.23.(8分)(2021•蚌埠模拟)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)若AB=6,当AD=2DM时,求DE的值;(2)连接OD,OE,当∠A的度数为多少时,四边形ODME是菱形.(1)解:∵∠ABC=90°,点M是AC的中点,∴AM=CM=BM,∴∠A=∠ABM,∵四边形DEBA为⊙O的内接四边形,∴∠ADE+∠ABM=180°,又∵∠ADE+∠MDE=180°,∴∠ABM=∠MDE,∴∠A=∠ABM=∠MDE,∴DE∥AB,∴△MDE∽△MAB,∴=,∵AD=2DM,∴AM=3DM,∵AB=6,∴=,∴DE=2.(2)解:当∠A的度数为60°时,四边形ODME是菱形,理由如下:由(1)知∠A=∠ABM=∠MDE,∵∠A=60°,∴∠A=∠ABM=∠MDE=60°,∴∠AMB=60°,又∵OA=OD=OE=OB,∴△AOD、△OBE都是等边三角形,∴∠ADO=∠AMB=∠OEB=60°,∴OD∥BM,AM∥OE,∴四边形ODME是平行四边形,又∵OD=OE,∴四边形ODME是菱形.24.(8分)(2019秋•浦东新区期末)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.(1)求∠B的度数:(2)求证:BC=3CE.解:(1)∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠CAF+∠ACF=∠ACF+∠ECF=90°,∴∠ECF=∠CAF,∵∠EAD=∠DCB,∴∠CAD=2∠DCB,∵CD是斜边AB上的中线,∴CD=BD,∴∠B=∠DCB,∴∠CAB=2∠B,∵∠B+∠CAB=90°,∴∠B=30°;(2)∵∠B=∠BAE=∠CAE=30°,∴AE=BE,CE=AE,∴BC=3CE.25.(8分)(2019春•赫山区期末)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=3,CE=5,求CD的长.解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=3,∴DE=5﹣3=2,∵CD为AB边上的高,∴在Rt△CDE中,CD===.26.(8分)(2019秋•北碚区校级期中)在Rt△ABC中,∠ABC=90°,BD为∠ABC的角平分线,F为AC 的中点,AE∥BC交BD的延长线于点E,其中∠FBC=2∠FBD.(1)求∠EDC的度数.(2)求证:BF=AE.解:(1)∵∠ABC=90°,BD为∠ABC的角平分线,∴∠ABD=∠DBC=45°,∵∠FBC=2∠FBD.∴∠FBD=15°,∠FBC=30°,∵∠ABC=90°,点F是AC中点,∴AF=BF=CF,∴∠C=∠FBC=30°,∴∠EDC=∠C+∠DBC=75°;(2)∵∠C=30°,∠ABC=90°,∴AC=2AB,∴AB=AF=BF,∵AE∥BC,∴∠E=∠DBC=45°=∠ABD,∴AB=AE,∴AE=BF.27.(8分)(2023•温州模拟)如图所示,在△ABC中,AD是边BC上的高线,CE是边AB上的中线,DG⊥CE于点G,CD=AE.(1)证明:CG=EG.(2)若AB=10,AD=6,求CE的长.(1)证明:连接DE,如图.∵AD⊥BC,∴∠ADB=90°,又E为AB中点,∴DE=AE=BE,∵CD=AE,∴DE=CD,又DG⊥EC,∴EG=CG;(2)解:过E作EM⊥BC于M,如图.∵AD⊥BC,EM⊥BC,∴EM∥AD,∵E为AB中点,∴EM是△ABD的中位线,∴EM=AD=3.∵AB=10,∵DE=AB=5,∴DM=4,∵CD=AE=DE=5,∴CM=CD+DM=9,∴CE==3.28.(8分)(2022秋•顺德区期末)如图1,BD是Rt△ABC斜边AC上的中线.(1)求证:BD=AC;(2)如图2,AB=6,BC=8,点P是BC上一个点,过点P分别作AC和BD的垂线,垂足为E、F.当P 在BC上移动时,求PE+PF的值.(1)证明:如图,过点A作AE∥BC,交BD的延长线于点E,连接CE,∴∠DAE=∠BCD,∵∠ADE=∠BDC,AD=CD,∴△ADE≌△CDB(AAS),∴DE=BD,∴四边形ABCE是平行四边形,∴,∵∠ABC=90°,∴四边形ABCE是矩形,∴AC=BE,∴;(2)解:如图,连接DP,作BG⊥AC,于点G,在Rt△ABC中,AB=6,BC=8,根据勾股定理得:,∴.可知,即,∴,则,即,解得:.。
等腰直角三角形斜边和直角边

等腰直角三角形斜边和直角边
等腰直角三角形是一种特殊的三角形,它的两条腰的长度相等,并且其中一条腰与另一条腰所夹的角度为90度。
本文将探讨等腰直角三角形中的斜边和直角边的关系。
首先,让我们定义等腰直角三角形的斜边、直角边和腰。
斜边是连接直角边的那条边,直角边是与直角相邻的两条边,而腰是与直角边不相邻的那条边。
在等腰直角三角形中,斜边是最长的边。
这是因为根据勾股定理,斜边的平方等于直角边的平方和直角边的平方。
由于直角边长度相等,所以斜边的平方等于2倍直角边的平方。
因此,斜边的长度是直角边长度的开方再乘以√2。
举个例子来说明。
假设直角边的长度为a,那么斜边的长度就是a 乘以√2。
换句话说,等腰直角三角形中,斜边的长度是直角边长度的√2倍。
除此之外,直角边的长度也有一定的关系。
由于等腰直角三角形的两条直角边相等,所以它们的长度是一样的。
假设直角边的长度为a,那么另一条直角边的长度也是a。
综上所述,等腰直角三角形中,斜边的长度是直角边长度的√2倍,而直角边的长度是相等的。
这个关系可以用下面的公式总结:
斜边=直角边×√2
直角边1=直角边2
通过这些关系,我们可以利用已知条件来求解等腰直角三角形的边长。
例如,如果我们知道直角边的长度,就可以通过斜边=直角边×√2来计算斜边的长度。
总之,等腰直角三角形中的斜边和直角边之间有着特定的关系。
通过理解和应用这些关系,我们可以更好地理解和解决与等腰直角三角形相关的问题。
初中数学专题复习等腰三角形与直角三角形

初中数学专题复习等腰三角形与直角三角形在初中数学的学习中,等腰三角形和直角三角形是两个非常重要的几何图形。
它们具有独特的性质和定理,在解决数学问题时经常会用到。
下面我们就来对这两个图形进行一次系统的复习。
一、等腰三角形1、定义有两边相等的三角形叫做等腰三角形。
相等的两条边称为腰,另一边称为底边。
两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
2、性质(1)等腰三角形的两个底角相等(简写成“等边对等角”)。
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。
3、判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。
(2)有两条边相等的三角形是等腰三角形。
4、等腰三角形中的常见计算(1)已知等腰三角形的顶角,求底角:底角=(180°顶角)÷ 2 。
(2)已知等腰三角形的底角,求顶角:顶角= 180° 2×底角。
5、等腰三角形的周长和面积(1)周长:等腰三角形的周长=腰长× 2 +底边。
(2)面积:通常可以通过作底边的高,将等腰三角形分成两个直角三角形,然后利用三角形面积公式 S = 1/2×底×高来计算。
二、直角三角形1、定义有一个角为 90°的三角形叫做直角三角形。
2、性质(1)直角三角形的两个锐角互余。
(2)直角三角形斜边上的中线等于斜边的一半。
(3)在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半。
(4)勾股定理:直角三角形两直角边的平方和等于斜边的平方。
3、判定(1)如果三角形的三边长 a、b、c 满足 a²+ b²= c²,那么这个三角形是直角三角形。
(2)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
4、直角三角形中的常见计算(1)已知直角三角形的两条直角边 a、b,求斜边 c:c =√(a²+b²) 。
如何求解等腰直角三角形的斜边

如何求解等腰直角三角形的斜边等腰直角三角形是一类经典的三角形,它的两条腰(两条等长的边)相等,且其中一条腰与斜边(也就是直角边)垂直相交。
求解等腰直角三角形的斜边可以通过几何方法或三角函数方法进行计算。
本文将介绍两种常用的求解方法。
一、几何方法要求解等腰直角三角形的斜边,我们首先需要明确已知条件,即已知等腰直角三角形的腰的长度。
假设等腰直角三角形的腰的长度为a,则根据等腰直角三角形的性质可知斜边的长度等于a√2。
这是因为在等腰直角三角形中,斜边与腰形成45度角,根据直角三角形的特性,斜边的长度等于直角边长度乘以√2。
因此,通过几何方法,我们可以得出等腰直角三角形的斜边的长度为a√2。
二、三角函数方法除了几何方法,我们还可以利用三角函数来求解等腰直角三角形的斜边。
在等腰直角三角形中,斜边与腰形成45度角,所以我们可以利用正弦函数、余弦函数或正切函数中的一个来计算斜边的长度。
以正弦函数为例,假设等腰直角三角形的腰的长度为a,则根据正弦函数的定义可知:sin(45°) = 斜边长 / 腰长由于正弦45°的值等于√2/2,腰长为a,我们可以得出:√2/2 = 斜边长 / a通过变形,可以得出斜边长为a√2,结果与几何方法中的计算结果相同。
综上所述,我们可以利用几何方法或三角函数方法来求解等腰直角三角形的斜边。
几何方法通过已知腰的长度得到斜边的长度为a√2,而三角函数方法则利用正弦函数、余弦函数或正切函数来计算斜边的长度,得到的结果也是a√2。
对于数学爱好者来说,掌握这些求解等腰直角三角形斜边的方法将有助于更好地理解和应用三角函数的概念和性质。
等腰直角三角形中的共斜边问题1

学 霸 数 学
问题1 等腰RtABC,AB=AC,BAC=BDC=900,求证:ADB=450
C
学
霸
数
学
B
G
D
A
等腰RtABC,AB=AC,BAC=BDC=900,求证:ADB=450
方法1
学
霸
M
数
学B
C
在BD上取一点M,使BM=CD
Q ABD AGB=900,GCD CGD=900
D
CGD=AGB ABG=GCD
Q AB=AC,AEB=AFC
F四A边BE形AEADCFF为正方形
ADB=450
等腰RtABC,AB=AC,BAC=BDC=900,求证:ADB=450
方法3
学 霸 数 学B
C GD
A
延长BD至H,使AH=AB Q ABD AGB=900
H GCD CGD=900
等腰RtABC,AB=AC,BAC=900,ADC=1350,求证:BDC=900
C
方法4
学 霸 数 学B
GD
HCA : IAB可证
H
A
I
问题5 等腰RtABC,AB=AC,BAC=900,ADC=1350,求证:BDC=900
方法5
F C
学
作等腰直角AEF
霸 数E
G D 再证ABE ACF
学
B
方法4 D B
学
霸GΒιβλιοθήκη 数学利用共圆
C
A
问题5 等腰RtABC,AB=AC,BAC=900,ADC=1350,求证:BDC=900
C
学
霸
数
学
专题17等腰三角形与直角三角形-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期)

2021年中考数学真题分项汇编【全国通用】(第01期)专题17等腰三角形与直角三角形(共42题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南衡阳市·中考真题)下列命题是真命题的是( ).A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120︒C .有一个角是60︒的三角形是等边三角形D .对角线相等的四边形是矩形2.(2021·江苏扬州市·中考真题)如图,在44⨯的正方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角....三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .53.(2021·浙江宁波市·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,3BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A .33B 3C .1D .624.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若AB BC =,则点B 是线段AC 的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心5.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinC a c b R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π6.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+B .2sin 1α+C .211cos α+D .2cos 1α+7.(2021·四川凉山彝族自治州·中考真题)如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .748.(2021·陕西中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则AC BD 的值为( )A .12B .22C .32D .339.(2021·安徽中考真题)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+10.(2021·四川乐山市·中考真题)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为( )A .32B .3C .2D .5211.(2021·浙江丽水市·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .20712.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,613.(2021·云南中考真题)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( ) A .5003 B .5035 C .60 D .8014.(2021·浙江金华市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,以该三角形的三条边为边向形外作正方形,正方形的顶点,,,,,E F G H M N 都在同一个圆上.记该圆面积为1S ,ABC 面积为2S ,则12S S 的值是( )A .52πB .3πC .5πD .112π 15.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D 作DF 的垂线交小正方形对角线EF 的延长线于点G ,连结CG ,延长BE 交CG 于点H .若2AE BE =,则CG BH的值为( )A .32B .2C .3107D .35516.(2021·四川南充市·中考真题)如图,在矩形ABCD 中,15AB =,20BC =,把边AB 沿对角线BD 平移,点'A ,'B 分别对应点A ,B .给出下列结论:∠顺次连接点'A ,'B ,C ,D 的图形是平行四边形;∠点C 到它关于直线'AA 的对称点的距离为48;∠''A C B C -的最大值为15;∠''A C B C +的最小值为917.其中正确结论的个数是( )A .1个B .2个C .3个D .4个17.(2021·四川广元市·中考真题)如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是( )A .32B .1C .2D .3218.(2021·浙江绍兴市·中考真题)如图,菱形ABCD 中,60B ∠=︒,点P 从点B 出发,沿折线BC CD -方向移动,移动到点D 停止.在ABP △形状的变化过程中,依次出现的特殊三角形是( )A .直角三角形→等边三角形→等腰三角形→直角三角形B .直角三角形→等腰三角形→直角三角形→等边三角形C .直角三角形→等边三角形→直角三角形→等腰三角形D .等腰三角形→等边三角形→直角三角形→等腰三角形二、填空题19.(2021·浙江绍兴市·中考真题)如图,在ABC 中,AB AC =,70B ∠=︒,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是_______.20.(2021·四川广安市·中考真题)如图,将三角形纸片ABC 折叠,使点B 、C 都与点A 重合,折痕分别为DE 、FG .已知15ACB ∠=︒,AE EF =,3DE =,则BC 的长为_______.21.(2021·江苏苏州市·中考真题)如图.在Rt ABC △中,90C ∠=︒,AF EF =.若72CFE ∠=︒,则B ∠=______.22.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A ∠的度数是_______度.23.(2021·江苏扬州市·中考真题)如图,在ABCD 中,点E 在AD 上,且EC 平分BED ∠,若30EBC ∠=︒,10BE =,则ABCD 的面积为________.24.(2021·云南中考真题)已知ABC 的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC 的一条边长为6,则点D 到直线AB 的距离为__________.25.(2021·江苏南京市·中考真题)如图,在四边形ABCD 中,AB BC BD ==.设ABC α∠=,则ADC ∠=______(用含α的代数式表示).26.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O )沿直径MN 对折后,按图1分成六等份折叠得到图2,将图2沿虚线AB 剪开,再将AOB 展开得到如图3的一个六角星.若75CDE ∠=︒,则OBA∠的度数为______.27.(2021·浙江金华市·中考真题)如图,菱形ABCD的边长为6cm,60∠=︒,将该菱形沿AC方向BAD'''',A D''交CD于点E,则点E到AC的距离为____________cm.平移23cm得到四边形A B C D△在同一平面内,点C,D不重合,28.(2021·浙江绍兴市·中考真题)已知ABC与ABD∠=∠=︒,430ABC ABDAB=,22==CD长为_______.AC AD29.(2021·四川凉山彝族自治州·中考真题)如图,等边三角形ABC的边长为4,C3P为AB边上一动点,过点P作C的切线PQ,切点为Q,则PQ的最小值为________.30.(2021·浙江丽水市·中考真题)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中2FM EM =,则“奔跑者”两脚之间的跨度,即,AB CD 之间的距离是__________.31.(2021·四川成都市·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.32.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形∠的边BC 及四边形∠的边CD 都在x 轴上,“猫”耳尖E 在y 轴上.若“猫”尾巴尖A 的横坐标是1,则“猫”爪尖F 的坐标是___________.33.(2021·江苏宿迁市·中考真题)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B '(示意图如图,则水深为__尺.三、解答题34.(2021·浙江温州市·中考真题)如图44⨯与66⨯的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P 为它的一个顶点,并画出将它向右平移3个单位后所得的图形. (2)选一个合适的三角形,将它的各边长扩大到原来的5倍,画在图3中.35.(2021·浙江温州市·中考真题)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC . (2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.36.(2021·浙江绍兴市·中考真题)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE .(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.37.(2021·四川眉山市·中考真题)“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:2sin 245≈°,9cos 2410︒≈,9tan 2420︒≈)38.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.39.(2021·重庆中考真题)在等边ABC 中,6AB =,BD AC ⊥ ,垂足为D ,点E 为AB 边上一点,点F 为直线BD 上一点,连接EF .图1 图2 图3(1)将线段EF 绕点E 逆时针旋转60°得到线段EG ,连接FG .∠如图1,当点E 与点B 重合,且GF 的延长线过点C 时,连接DG ,求线段DG 的长;∠如图2,点E 不与点A ,B 重合,GF 的延长线交BC 边于点H ,连接EH ,求证:3BE BH BF +=; (2)如图3,当点E 为AB 中点时,点M 为BE 中点,点N 在边AC 上,且2DN NC =,点F 从BD 中点Q 沿射线QD 运动,将线段EF 绕点E 顺时针旋转60°得到线段EP ,连接FP ,当12NP MP +最小时,直接写出DPN △的面积.40.(2021·浙江中考真题)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,3ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.41.(2021·江苏连云港市·中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)ABC 是边长为3的等边三角形,E 是边AC 上的一点,且1AE =,小亮以BE 为边作等边三角形BEF ,如图1,求CF 的长;(2)ABC 是边长为3的等边三角形,E 是边AC 上的一个动点,小亮以BE 为边作等边三角形BEF ,如图2,在点E 从点C 到点A 的运动过程中,求点F 所经过的路径长;(3)ABC 是边长为3的等边三角形,M 是高CD 上的一个动点,小亮以BM 为边作等边三角形BMN ,如图3,在点M 从点C 到点D 的运动过程中,求点N 所经过的路径长;(4)正方形ABCD 的边长为3,E 是边CB 上的一个动点,在点E 从点C 到点B 的运动过程中,小亮以B 为顶点作正方形BFGH ,其中点F 、G 都在直线AE 上,如图4,当点E 到达点B 时,点F 、G 、H 与点B 重合.则点H 所经过的路径长为______,点G 所经过的路径长为______.42.(2021·湖北随州市·中考真题)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;(2)∠如图1,P 是边长为a 的正ABC 内任意一点,点O 为ABC 的中心,设点P 到ABC 各边距离分别为1h ,2h ,3h ,连接AP ,BP ,CP ,由等面积法,易知()123123ABC OAB h h h S a S ++==△△,可得123h h h ++=_____;(结果用含a 的式子表示)∠如图2,P 是边长为a 的正五边形ABCDE 内任意一点,设点P 到五边形ABCDE 各边距离分别为1h ,2h ,3h ,4h ,5h ,参照∠的探索过程,试用含a 的式子表示12345h h h h h ++++的值.(参考数据:8tan 3611≈°,11tan 548≈°)(3)∠如图3,已知O 的半径为2,点A 为O 外一点,4OA =,AB 切O 于点B ,弦//BC OA ,连接AC ,则图中阴影部分的面积为______;(结果保留π)∠如图4,现有六边形花坛ABCDEF ,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形ABCDG ,其中点G 在AF 的延长线上,且要保证改造前后花坛的面积不变,试确定点G 的位置,并说明理由.。
专题17等腰三角形与直角三角形

第十六讲:等腰三角形与直角三角形基础知识知识点一:等腰三角形的性质与判定:1. 等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2. 等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角(或三条边)都相等的三角形是等边三角形;推论2:有一个角是60°的等腰三角形是等边三角形;典型例题解析例1:已知实数x ,y 满足|x ﹣4|+=0,则以x ,y 的值为两边长的等腰三角形的周长是 .思路分析:先根据非负数的性质列式求出x 、y 的值,再分x 的值是腰长与底边两种情况讨论求解.解:根据题意得,x ﹣4=0,3y ﹣6=0,解得x=4,y=2,①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,周长=4+4+2=10; ②4是底边时,三角形的三边分别为4、2、2,不能组成三角形,所以,三角形的周长为:10;故答案为:10.点评:本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出x 、y 的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.例2:等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为 .思路分析:分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.解:在三角形ABC 中,设AB=AC ,BD ⊥AC 于D .①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.点评:此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.对应训练1.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.5第1题图第2题图第6题2.如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°3.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.64. 如果三角形的两边长分别是方程x2-8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5 B.5 C.4.5 D.4时后到达B处,测得C在A的北偏东30°方向,并在B的北偏东60°方向,那么B处与灯第9题图 第10题图 第11题图10.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D ,若AB=6,CD=4,则△ABC 的周长是 .11. 如图,在等腰三角形纸片ABC 中,AB=AC ,∠A=50°,折叠该纸片,使点A 落在点B 处,折痕为DE ,则∠CBE= °.12. 如图,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD=BC ,AE=AC ,则∠DCE 的大小为 度.第12题图 第13题图 第14题图13. 如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E= 度.14.如图,在Rt △ABC 中,∠ACB=90°,AB 的垂直平分线DE 交AC 于E ,交BC 的延长线于F ,若∠F=30°,DE=1,则BE 的长是 .知识点二:勾股定理:3.直角三角形的性质: (1)直角三角形的两个锐角互余(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
直角三角形等腰直角三角形斜边直线专题

直角三角形等腰直角三角形斜边直线专题(韩)(总39页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--直角三角形、斜边中线、等腰直角三角形专题一、直角三角形的性质1.一块直角三角板放在两平行直线上,如图,∠1+∠2= 度.2.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC,求证:①∠BAD=∠C;②∠AEF=∠AFE;③AG⊥EF.3.如图所示,在△ABC中,CD,BE是两条高,那么图中与∠A相等的角有4.如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:△APQ是等腰直角三角形.二、含30°角的直角三角形的性质5.在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,求AD的长6.如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=6,求PD的长7.如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,求∠EDC的度数8.如图,△ABC为等边三角形,点D为BC边上的中点,DF⊥AB于点F,点E 在BA的延长线上,且ED=EC,若AE=2,求AF的长9.如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,求CD的长10.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB于E,求证:(1)CD=DE;(2)AC=BE;(3)BD=2CD;三、直角三角形斜边中线问题11.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,求证:△PMN为等边三角形;12.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.13.如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,求AC的长14.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,求AM的最小值15.如图,在△ABC中,∠ACB=90°,∠B=20°,D在BC上,AD=BD,E为AB 的中点,AD、CE相交于点F,求∠DFE等于多少16.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,求∠ACB′=.17.如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,若DE=5,AE=8,求BC的长度.18.如图,在平行四边形ABCD中,以AC为斜边作Rt△ACE,又∠BED=90°.求证:AC=BD.19.已知:如图,在Rt△ABC中,∠ACB=90°,点M是AB边的中点,CH⊥AB 于点H,CD平分∠ACB.(1)求证:∠1=∠2.(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)△AEB是什么三角形证明你的猜想.20.如图,已知在△ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点.求证:△PMN是等腰三角形.四、等腰直角三角形问题21.如图,△ACB、△CDE为等腰直角三角形,∠CAB=∠CDE=90°,F为BE的中点,求证:AF⊥DF,AF=DF.22.已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分∠CAB交CD于E,在DB上取点F,使DF=DE,求证:CF平分∠DCB.23.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB 中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.24.如图①,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)将图①中的△ADE绕点A逆时针旋转45°,如图②所示,则(1)题中的结论“△BMD为等腰直角三角形”是否仍然成立请说明理由.25.已知:如图△ABC中,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°(1)求证:△DEF为等腰直角三角形;(2)求证:S四边形AEDF =S△BDE+S△CDF;(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF还仍然是等腰直角三角形吗请画图说明理由.26.△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于点E,AD⊥BC于点D.(1)如图1,作∠ADB的角平分线DF交BE于点F,连接AF.求证:∠FAB=∠FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG①依据题意补全图形;②用等式表示线段AE、BE、DG之间的数量关系,并加以证明.27.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗(填“可能”或“不可能”).直角三角形斜边中线等腰直角三角形专题参考答案与试题解析1.【解答】解:如图,∠1=∠3,∠2=∠4(对顶角相等),∵∠3+∠4=90°,∴∠1+∠2=90°.故答案为:90.【点评】本题考查了直角三角形两锐角互余的性质,对顶角相等,熟记性质是解题的关键.2.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC,给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.其中正确的结论是()A.②③④B.①③④C.①②④D.①②③【分析】根据同角的余角相等求出∠BAD=∠C,再根据等角的余角相等可以求出∠AEF=∠AFE;根据等腰三角形三线合一的性质求出AG⊥EF.【解答】解:∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选C.【点评】本题考查了直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.3.如图所示,在△ABC中,CD,BE是两条高,那么图中与∠A相等的角的个数有()A.1个B.2个C.3个D.4个【分析】根据已知条件CD,BE是两条高可知:∠A+∠DCA=90°,∠ABE+∠BHD=90°,∠A+∠ABE=90°,∠CHE+∠HCE=90°,再根据同角的余角相等即可得到答案.【解答】解:∵CD⊥AB,∴∠CDA=∠BDH=90°,∴∠A+∠DCA=90°,∠ABE+∠BHD=90°,∵BE⊥AC,∴∠A+∠ABE=90°,∠CHE+∠HCE=90°,∴∠A=∠BHD=∠CHE,故选:B.【点评】此题主要考查了直角三角形的性质,关键是根据垂直得到有哪些角互余.4.如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ的形状.【分析】利用BE、CF都是△ABC的高,求证∠1=∠2,然后求证△ACQ≌△PBA,利用AQ=AP,AQ⊥AP,即可证明△APQ是等腰直角三角形.【解答】解:△APQ是等腰直角三角形.∵BE、CF都是△ABC的高,∴∠1+∠BAE=90°,∠2+∠CAF=90°(同角(可等角)的余角相等)∴∠1=∠2又∵AC=BP,CQ=AB,在△ACQ和△PBA中,∴△ACQ≌△PBA∴AQ=AP,∴∠CAQ=∠BPA=∠3+90°∴∠QAP=∠CAQ﹣∠3=90°∴AQ⊥AP∴△APQ是等腰直角三角形【点评】此题考查学生对全等三角形的判定和性质和等腰直角三角形的理解和掌握,难度不大,属于基础题.5.(2016秋?泰山区期中)在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AD的长是()A.3 B.4 C.5 D.【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,解答即可.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∵BD=2,∴AD=4,故选B【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6.(2016秋?大丰市月考)如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD ⊥OA于D,若PC=6,则PD等于()A.4 B.3 C.2 D.1【分析】过点P作PE⊥OB于E,根据两直线平行,内错角相等可得∠AOP=∠COP,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=∠AOB=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:如图,过点P作PE⊥OB于E,∵PC∥OA,∴∠AOP=∠COP,∴∠PCE=∠BOP+∠COP=∠BOP+∠AOP=∠AOB=30°,又∵PC=6,∴PE=PC=3,∵AOP=∠BOP,PD⊥OA,∴PD=PE=3,故选B.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及平行线的性质,作辅助线构造出含30°的直角三角形是解题的关键.7.(2015春?兰溪市期末)如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,则∠EDC的度数是()A.30°B.75°C.45°D.15°【分析】根据矩形性质得出∠C=∠ABC=90°,AB=CD,DC∥AB,推出AE=2AB,得出∠AEB=30°=∠DAE,求出∠EDC的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠C=∠ABC=90°,AB=CD,DC∥AB,∵AB=AD,E为BC上的一点,且AE=AD,∴AE=2AB,∴∠AEB=30°,∵AD∥BC,∴∠AEB=∠DAE=30°,∵AE=AD,∴∠ADE=∠AED=(180°﹣∠EAD)=75°,∵∠ADC=90°,∴∠EDC=90°﹣75°=15°,故选D.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数,题目比较好,是一道综合性比较强的题目.8.(2013春?重庆校级期末)如图,△ABC为等边三角形,点D为BC边上的中点,DF⊥AB于点F,点E在BA的延长线上,且ED=EC,若AE=2,则AF的长为()A.B.2 C.+1 D.3【分析】过点E作EH∥AC交BC的延长线于H,证明△ABH是等边三角形,求出CH,得到BD的长,根据直角三角形的性质求出BF,计算即可.【解答】解:过点E作EH∥AC交BC的延长线于H,∴∠H=∠ACB=60°,又∠B=60°,∴△EBH是等边三角形,∴EB=EH=BH,∴CH=AE=2,∵ED=EC,∴∠EDC=∠ECD,又∠B=∠H,∴∠BED=∠HEC,在△BED和△HEC中,,∴△BED≌△HEC,∴BD=CH=2,∴BA=BC=4,BF=BD=1,∴AF=3.故选:D.【点评】本题考查的是等边三角形的性质、直角三角形的性质以及等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半、等边三角形的三个角都是60°是解题的关键.9.(2012春?古冶区校级期中)如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A.2 B.3 C.1 D.【分析】在Rt△AEC中,由于=,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【解答】解:在Rt△AEC中,∵=,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=AD=2.故选A.【点评】本题利用了:(1)直角三角形的性质;(2)三角形内角和定理;(3)等边对等角的性质.10.(2012秋?包河区期末)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB于E,以下结论(1)CD=DE;(2)AC=BE;(3)BD=2CD;(4)DE=AC中,正确的有()A.1个B.2个C.3个D.4个【分析】根据角平分线的性质可得CD=DE,AC=BE,结合含30°角的直角三角形的性质可得BD=2CD,而AC和BD不一定相等,所以可得出答案.【解答】解:∵∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB,∴DC=DE,∠ADC=∠ADE=60°,∴AD平分∠CDE,∴AC=AE,在Rt△BDE中,∠B=30°,∴BD=2DE=2CD,在Rt△ADE中,DE=AE=AC,∴正确的有(1)、(2)、(3),故选C.【点评】本题主要考查角平分线的性质及含30°角的直角三角形的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.11.(2015秋?江阴市期中)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②△PMN 为等边三角形;下面判断正确是()A.①正确B.②正确C.①②都正确D.①②都不正确【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断②正确.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;所以①②都正确.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,熟练掌握性质是解题的关键.12.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.【分析】(1)根据直角三角形斜边上中线性质求出DM=BC=4,EM=BC=4,即可求出答案;(2)根据三角形内角和定理求出∠ABC+∠ACB=120°,根据直角三角形斜边上中线性质求出DM=BM,EM=CM,推出∠ABC=∠BDM,∠ACB=∠CEM,根据三角形内角和定理求出即可;(3)求出EM=EN,解直角三角形求出∠EMD度数,根据三角形的内角和定理求出即可.【解答】解:(1)∵CD,BE分别是AB,AC边上的高,∴∠BDC=∠BEC=90°,∵M是线段BC的中点,BC=8,∴DM=BC=4,EM=BC=4,∴△DME的周长是DE+EM+DM=3+4+4=11;(2)证明:∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠BDC=∠BEC=90°,M是线段BC的中点,∴DM=BM,EM=CM,∴∠ABC=∠BDM,∠ACB=∠CEM,∴∠EMC+∠DMB=∠ABC+∠ACB=120°,∴∠DME=180°﹣120°=60°;(3)解:过M作MN⊥DE于N,∵DM=EM,∴EN=DN=DE,∠ENM=90°,∵EM=DM=BC,DN=EN=DE,BC2=2DE2,∴(2EM)2=2(2EN)2,∴EM=EN,∴sin∠EMN==,∴∠EMN=45°,同理∠DMN=45°,∴∠DME=90°,∴∠DMB+∠EMC=180°﹣90°=90°,∵∠ABC=∠BDM,∠ACB=∠CEM,∴∠ABC+∠ACB=(180°﹣∠DMB+180°﹣∠EMC)=135°,∴∠BAC=180°﹣(∠ABC+∠ACB)=45°.【点评】本题考查了等腰三角形的判定和性质,三角形的内角和定理,解直角三角形的性质,直角三角形斜边上中线性质的应用,能综合运用性质进行推理是解此题的关键,本题综合性比较强,有一定的难度,注意:直角三角形斜边上的中线等于斜边的一半.13.(2014春?永川区校级期中)如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是()A.3 B.4 C.5 D.6【分析】连结AF.由AB=AD,F是BD的中点,根据等腰三角形三线合一的性质得出AF⊥BD.再根据直角三角形斜边上的中线等于斜边的一半求得AC=2EF=4.【解答】解:如图,连结AF.∵AB=AD,F是BD的中点,∴AF⊥BD.∵在Rt△ACF中,∠AFC=90°,E是AC的中点,EF=2,∴AC=2EF=4.故选B.【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.利用等腰三角形三线合一的性质得出AF⊥BD是解题的关键.14.(2011秋?姜堰市期末)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.2 B.C.D.3【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用相似三角形对应边成比例即可求得AP最短时的长,然后即可求出AM最短时的长.【解答】解:连结AP,在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CBA,∴=,∴=,∴AP最短时,AP=∴当AM最短时,AM==.故选B.【点评】此题主要考查学生对相似三角形判定与性质、垂线段最短和直角三角形斜边上的中线的理解和掌握,此题涉及到动点问题,有一定的拔高难度,属于中档题.15.(2010?武隆县模拟)如图,在△ABC中,∠ACB=90°,∠B=20°,D在BC 上,AD=BD,E为AB的中点,AD、CE相交于点F,∠DFE等于()A.40°B.50°C.60°D.70°【分析】根据已知得,∠BAC=70°,∠BAD=∠B,再根据直角三角形斜边上的中线等于斜边的一半,得出∠ECB=∠B,从而得出∠ACE,再由三角形的内角和定理得∠AFC,根据对顶角相等求出答案.【解答】解:∵∠ACB=90°,∠B=20°,∴∠BAC=70°,∵AD=BD,∴∠BAD=∠B=20°,∴∠DAC=50°,∵E为AB的中点,∴BE=CE,∴∠ECB=∠B=20°,∴∠ACE=70°,在△ACF中,∠ACF+∠AFC+∠FAC=180°,∴∠AFC=60°,∵∠DFE=∠AFC=60°(对顶角相等),故选C.【点评】本题考查了等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半,是基础知识要熟练掌握.16.(2016?江岸区模拟)如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′=10°.【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质分别求出∠BCD、∠DCA的度数,根据翻折变换的性质求出∠B′CD的度数,计算即可.【解答】解:∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.【点评】本题考查的是直角三角形的性质、翻折变换的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17.(2016秋?嵊州市期末)如图,△ABC中,AB=AC,D为AB中点,E在AC 上,且BE⊥AC,若DE=5,AE=8,则BC的长度为2.【分析】由BE⊥AC,D为AB中点,DE=5,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得BC的长.【解答】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=2DE=2×5=10,∵AE=8,∴BE==6.∴BC===2,故答案为:2.【点评】此题考查了直角三角形斜边上的中线的性质以及勾股定理.注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键.18.如图,在平行四边形ABCD中,以AC为斜边作Rt△ACE,又∠BED=90°.求证:AC=BD.【分析】连接EO,首先根据平行四边形的性质可得AO=CO,BO=DO,即O为BD 和AC的中点,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,进而得到AC=BD,再根据对角线相等的平行四边形是矩形可证出结论.【解答】证明:连接EO,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,在Rt△EBD中,∵O为BD中点,∴EO=BD,在Rt△AEC中,∵O为AC中点,∴EO=AC,∴AC=BD.【点评】此题主要考查了平行四边形的性质,直角三角形斜边上的中线,关键是掌握直角三角形斜边上的中线等于斜边的一半.19.已知:如图,在Rt△ABC中,∠ACB=90°,点M是AB边的中点,CH⊥AB 于点H,CD平分∠ACB.(1)求证:∠1=∠2.(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)△AEB是什么三角形证明你的猜想.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到AM=CM=BM,由等腰三角形到性质得到∠CAB=∠ACM,由余角的性质得到∠CAB=∠BCH,等量代换得到∠BCH=∠ACM,根据角平分线的性质得到∠ACD=∠BCD,即可得到结论;(2)根据EM⊥AB,CH⊥AB,得到EM∥AB,由平行线的性质得到∠HCD=∠MED,由于∠HCD=∠MCD,于是得到∠MCD=∠MED,即可得到结论;(3)根据 CM=EM AM=CM=BM,于是得到EM=AM=BM,推出△AEB是直角三角形,由于 EM垂直平分AB,得到EA=EB于是得到结论.【解答】证明:(1)Rt△ABC中,∠ACB=90°,∵M是AB边的中点,∴AM=CM=BM,∴∠CAB=∠ACM,∴∠CAB=90﹣∠ABC,∵CH⊥AB,∴∠BCH=90﹣∠ABC,∴∠CAB=∠BCH,∴∠BCH=∠ACM,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ACD﹣∠ACM=∠BCD﹣∠BCH,即∠1=∠2;(2)∵EM⊥AB,CH⊥AB,∴EM∥CH,∴∠HCD=∠MED,∵∠HCD=∠MCD,∴∠MCD=∠MED,∴CM=EM;(3)△AEB是等腰直角三角形,∵CM=EM AM=CM=BM,∴EM=AM=BM,∴△AEB是直角三角形,∵EM垂直平分AB,∴EA=EB,∴△AEB是等腰三角形,∴△AEB是等腰直角三角形.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定和性质,角平分线的定义,线段垂直平分线的性质,等腰三角形的性质,熟练掌握各定理是解题的关键.20.如图,已知在△ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点.求证:△PMN是等腰三角形.【分析】连接BM、CN,根据等腰三角形三线合一得到∠BMC=90°,根据直角三角形的性质得到MP=BC,同理NP=BC,得到答案.【解答】证明:连接BM、CN,∵BA=BD,DM=MA,∴BM⊥AD,∴∠BMC=90°,又BP=PC,∴MP=BC,同理,NP=BC,∴MP=NP,∴△PMN是等腰三角形.【点评】本题考查的是直角三角形的性质和等腰三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半、等腰三角形三线合一是解题的关键.21.如图,△ACB、△CDE为等腰直角三角形,∠CAB=∠CDE=90°,F为BE的中点,求证:AF⊥DF,AF=DF.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AF=BF=AE,DF=BF=AE,再根据等边对等角可得∠ABF=∠BAF,∠DBF=∠BDF,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AFD=2∠ABC,再根据等腰直角三角形的性质求解即可.【解答】证明:∵∠CAB=∠CDE=90°,F为BE的中点,∴AF=BF=AE,DF=BF=AE,∴AF=DF,∴∠ABF=∠BAF,∠DBF=∠BDF,由三角形的外角性质得,∠AFD=∠ABF+∠BAF+∠DBF+∠BDF=2∠ABC,∵△ABC是等腰直角三角形,∴∠ABC=45°,∴∠AFD=90°,∴AF⊥DF,综上所述,AF⊥DF,AF=DF.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰直角三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.22.已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分∠CAB交CD于E,在DB上取点F,使DF=DE,求证:CF平分∠DCB.【分析】延长FE交AC于点G,利用角平分线的性质可知EG=ED,然后证明△CEG≌△FED,得出CE=FE,利用等腰三角形的性质,平行线的性质即可求出∠ECF=∠BCF.【解答】解:延长FE交AC于点G,∵DE=DF,CD是斜边AB上的高,∴∠DEF=45°,∵∠DCB=45°,∴EF∥BC,∴∠EFC=∠FCB,∠CGF=90°,∵AE平分∠CAB,∠CGF=∠BDC=90°,∴GE=DE,在△CGE与△FDE中,,∴△CGE≌△FDE(ASA),∴CE=FE,∴∠ECF=∠EFC,∴∠ECF=∠BCF,∴CF平分∠DCB.【点评】本题考查等腰三角形的性质,涉及全等三角形的性质与判定,等腰直角三角形的性质,平行线的判定与性质等知识点,综合程度较高.23.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB 中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.【分析】由△OBD和△OCA是等腰直角三角形得到∠ACB=∠ADB=90°,∠OBD=45°,由M为AB的中点,根据直角三角形斜边上的中线性质得到DM=AM=BM,CM=AM=BM,则CM=DM,∠MBD=∠MDB,∠MCB=∠MBC,理由三角形外角性质得∠AMD=2∠MBD,∠AMC=2∠MBC,则∠AMD﹣∠AMC=2(∠MBD﹣∠MBC)=2∠OBD=90°,于是可得到△CDM为等腰直角三角形.【解答】解:△CDM为等腰直角三角形.理由如下:∵△OBD和△OCA是等腰直角三角形,∴∠ACB=∠ADB=90°,∠OBD=45°,而M为AB的中点,∴DM=AM=BM,CM=AM=BM,∴CM=DM,∠MBD=∠MDB,∠MCB=∠MBC,∴∠AMD=2∠MBD,∠AMC=2∠MBC,∴∠AMD﹣∠AMC=2(∠MBD﹣∠MBC)=2∠OBD=90°,即∠CMD=90°,∵CM=DM,∴△CDM为等腰直角三角形.同理可得:第2个图中△CDM为等腰直角三角形.【点评】本题考查了等腰直角三角形的性质和直角三角形斜边上的中线性质、三角形外角的性质,灵活利用直角三角形的斜边上的中线的性质是关键.24.(2010?渝中区模拟)如图①,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)将图①中的△ADE绕点A逆时针旋转45°,如图②所示,则(1)题中的结论“△BMD为等腰直角三角形”是否仍然成立请说明理由.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,求出BM=EN=MC,DM=EM=MC,然后根据等边对等角的性质可以证明∠BMD=90°,所以△BMD为等腰直角三角形;(2)延长DM交BC于N,先根据∠EDB=∠ABC=90°证明ED∥BC,然后根据两直线平行,内错角相等求出∠DEM=∠MCN,从而证明△EDM与△MNC全等,根据全等三角形对应边相等可得DM=MN,然后即可证明BM⊥DM,且BM=DM.【解答】(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.(2分)同理可证:DM=EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠BCA=90°,(4分)∴BM=DM.∴△BMD是等腰直角三角形.(5分)(2)(1)题中的结论仍然成立.理由:延长DM与BC交于点N,(6分)∵DE⊥AB,CB⊥AB,∴∠EDB=∠CBD=90°,∴DE∥BC.∴∠DEM=∠MCN.又∵∠EMD=∠NMC,EM=MC,∴△EDM≌△MNC.(8分)∴DM=MN.DE=NC=AD.又AB=BC,∴AB﹣AD=BC﹣CN,∴BD=BN.∴BM⊥DM.即∠BMD=90°.(9分)∵∠ABC=90°,∴BM=DN=DM.∴△BMD是等腰直角三角形.(10分)【点评】本题主要考查了全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握判定定理及性质并灵活运用是解题的关键,难度中等.25.(2011秋?昌平区校级期中)已知:如图△ABC中,∠A=90°,AB=AC,D 是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°(1)求证:△DEF为等腰直角三角形;(2)求证:S四边形AEDF =S△BDE+S△CDF;(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF还仍然是等腰直角三角形吗请画图说明理由.【分析】(1)连接AD,根据等腰直角三角形的性质可得AD⊥BC,AD=BD,∠1=45°,从而得到∠1=∠B,再根据同角的余角相等求出∠2=∠4,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证;(2)同理求出△ADE和△CDF全等,根据全等三角形的面积相等即可得证;(3)依然成立,连接AD,根据等腰直角三角形的性质可得AD=BD,∠CAD=45°,再根据等角的补角相等求出∠DAF=∠DBE,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证.【解答】(1)证明:如图,连接AD,∵∠A=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD,∠1=45°,∴∠1=∠B=45°,∵∠EDF=90°,∴∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形;(2)解:同理可证,△ADE≌△CDF,所以,S四边形AEDF =S△ADF+S△ADE=S△BDE+S△CDF,即S四边形AEDF =S△BDE+S△CDF;(3)解:仍然成立.如图,连接AD,∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD,∠1=45°,∵∠DAF=180°﹣∠1=180°﹣45°=135°,∠D BE=180°﹣∠ABC=180°﹣45°=135°,∴∠DAF=∠DBE,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形.【点评】本题考查了等腰直角三角形的性质,全等三角形判定与性质,作辅助线构造出全等三角形是解题的关键.26.(2016?汕头校级自主招生)△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于点E,AD⊥BC于点D.(1)如图1,作∠ADB的角平分线DF交BE于点F,连接AF.求证:∠FAB=∠FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG①依据题意补全图形;②用等式表示线段AE、BE、DG之间的数量关系,并加以证明.【分析】(1)欲证明∠FAB=∠FBA,由△ADF≌△BDF推出AF=BF即可解决问题.(2)①根据条件画出图形即可.②数量关系是:GD+AE=BE.过点D作DH⊥DE交BE于点H,先证明△ADE≌△BDH,再证明四边形GEHD是平行四边形即可解决问题.【解答】证明:(1)如图1中,∵AD⊥BC,∠ABC=45°,∴∠BAD=45°,∴AD=BD,∵DF平分∠ADB,∴∠1=∠2,在△ADF和△BDF中,,∴△ADF≌△BDF.∴AF=BF,∴∠FAB=∠FBA.(2)补全图形如图2中所示,数量关系是:GD+AE=BE.理由:过点D作DH⊥DE交BE于点H∴∠ADE+∠ADH=90°,∵AD⊥BC,∴∠BDH+∠ADH=90°,∴∠ADE=∠BDH,∵AD⊥BC,BE⊥AC,∠AKE=∠BKD,∴∠DAE=∠DBH,在△ADE和△BDH中,,∴△ADE≌△BDH.∴DE=DH,AE=BH,∵DH⊥DE,∴∠DEH=∠DHE=45°,∵BE⊥AC,∴∠DEC=45°,∵点G与点D关于直线AC对称,∴AC垂直平分GD,∴GD∥BE,∠GEC=∠DEC=45°,∴∠GED=∠EDH=90°,∴GE∥DH,∴四边形GEHD是平行四边形∴GD=EH,∴GD+AE=BE.【点评】本题考查三角形综合题、全等三角形的判定和性质、平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是熟练正确全等三角形判定方法,学会添加常用辅助线,构造全等三角形以及特殊四边形解决问题,属于中考常考题型.27.(2016春?东港市期末)如图,在△ABC中,∠ACB=90°,AC=BC,D为BC 中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是AD=CF ;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗不可能(填“可能”或“不可能”).【分析】(1)根据等腰直角三角形的性质得到∠CBA=∠CAB=45°,根据平行线的性质得到∠FBE=∠CAB=45°,根据全等三角形的判定定理证明即可;(2)根据全等三角形的性质定理得到答案;(3)根据线段垂直平分线的性质得到AD=AF,等量代换即可;(4)根据直角三角形的直角边小于斜边解答.【解答】(1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,,∴△ACD≌△CBF;(2)∵△ACD≌△CBF,∴AD=CF,故答案为:AC=BF;(3)连接AF,∵DF⊥AE,DE=EF,∴AD=AF,∵AD=CF,∴AF=CF,∴△ACF是等腰三角形;(4)在Rt△ACF中,AC<AD,∴AC<AF,∴△ACF不可能是等边三角形,故答案为:不可能.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、等腰三角形的判定以及等边三角形的判定,掌握相关的判定定理和性质定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形、斜边中线、等腰直角三角形专题一、直角三角形的性质1.一块直角三角板放在两平行直线上,如图,∠1+∠2=度.2.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG 平分∠DAC,求证:①∠BAD=∠C;②∠AEF=∠AFE;③AG⊥EF.3.如图所示,在△ABC中,CD,BE是两条高,那么图中与∠A相等的角有4.如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:△APQ是等腰直角三角形.二、含30°角的直角三角形的性质5.在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E 两点.若BD=2,求AD的长6.如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=6,求PD的长7.如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,求∠EDC的度数8.如图,△ABC为等边三角形,点D为BC边上的中点,DF⊥AB于点F,点E 在BA的延长线上,且ED=EC,若AE=2,求AF的长9.如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,求CD的长10.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB于E,求证:(1)CD=DE;(2)AC=BE;(3)BD=2CD;三、直角三角形斜边中线问题11.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,求证:△PMN为等边三角形;12.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.13.如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,求AC的长14.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,求AM的最小值15.如图,在△ABC中,∠ACB=90°,∠B=20°,D在BC上,AD=BD,E为AB的中点,AD、CE相交于点F,求∠DFE等于多少16.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,求∠ACB′=.17.如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,若DE=5,AE=8,求BC的长度.18.如图,在平行四边形ABCD中,以AC为斜边作Rt△ACE,又∠BED=90°.求证:AC=BD.19.已知:如图,在Rt△ABC中,∠ACB=90°,点M是AB边的中点,CH⊥AB 于点H,CD平分∠ACB.(1)求证:∠1=∠2.(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)△AEB是什么三角形?证明你的猜想.20.如图,已知在△ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点.求证:△PMN是等腰三角形.四、等腰直角三角形问题21.如图,△ACB、△CDE为等腰直角三角形,∠CAB=∠CDE=90°,F为BE的中点,求证:AF⊥DF,AF=DF.22.已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分∠CAB交CD 于E,在DB上取点F,使DF=DE,求证:CF平分∠DCB.23.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.24.如图①,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)将图①中的△ADE绕点A逆时针旋转45°,如图②所示,则(1)题中的结论“△BMD为等腰直角三角形”是否仍然成立?请说明理由.25.已知:如图△ABC中,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°(1)求证:△DEF为等腰直角三角形;=S△BDE+S△CDF;(2)求证:S四边形AEDF(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF 还仍然是等腰直角三角形吗?请画图说明理由.26.△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于点E,AD⊥BC于点D.(1)如图1,作∠ADB的角平分线DF交BE于点F,连接AF.求证:∠FAB=∠FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG①依据题意补全图形;②用等式表示线段AE、BE、DG之间的数量关系,并加以证明.27.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗?(填“可能”或“不可能”).直角三角形斜边中线等腰直角三角形专题参考答案与试题解析1.【解答】解:如图,∠1=∠3,∠2=∠4(对顶角相等),∵∠3+∠4=90°,∴∠1+∠2=90°.故答案为:90.【点评】本题考查了直角三角形两锐角互余的性质,对顶角相等,熟记性质是解题的关键.2.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG 平分∠DAC,给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.其中正确的结论是()A.②③④B.①③④C.①②④D.①②③【分析】根据同角的余角相等求出∠BAD=∠C,再根据等角的余角相等可以求出∠AEF=∠AFE;根据等腰三角形三线合一的性质求出AG⊥EF.【解答】解:∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选C.【点评】本题考查了直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.3.如图所示,在△ABC中,CD,BE是两条高,那么图中与∠A相等的角的个数有()A.1个 B.2个 C.3个 D.4个【分析】根据已知条件CD,BE是两条高可知:∠A+∠DCA=90°,∠ABE+∠BHD=90°,∠A+∠ABE=90°,∠CHE+∠HCE=90°,再根据同角的余角相等即可得到答案.【解答】解:∵CD⊥AB,∴∠CDA=∠BDH=90°,∴∠A+∠DCA=90°,∠ABE+∠BHD=90°,∵BE⊥AC,∴∠A+∠ABE=90°,∠CHE+∠HCE=90°,∴∠A=∠BHD=∠CHE,故选:B.【点评】此题主要考查了直角三角形的性质,关键是根据垂直得到有哪些角互余.4.如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ的形状.【分析】利用BE、CF都是△ABC的高,求证∠1=∠2,然后求证△ACQ≌△PBA,利用AQ=AP,AQ⊥AP,即可证明△APQ是等腰直角三角形.【解答】解:△APQ是等腰直角三角形.∵BE、CF都是△ABC的高,∴∠1+∠BAE=90°,∠2+∠CAF=90°(同角(可等角)的余角相等)∴∠1=∠2又∵AC=BP,CQ=AB,在△ACQ和△PBA中,∴△ACQ≌△PBA∴AQ=AP,∴∠CAQ=∠BPA=∠3+90°∴∠QAP=∠CAQ﹣∠3=90°∴AQ⊥AP∴△APQ是等腰直角三角形【点评】此题考查学生对全等三角形的判定和性质和等腰直角三角形的理解和掌握,难度不大,属于基础题.5.(2016秋•泰山区期中)在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AD的长是()A.3 B.4 C.5 D.4.5【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,解答即可.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∵BD=2,∴AD=4,故选B【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6.(2016秋•大丰市月考)如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=6,则PD等于()A.4 B.3 C.2 D.1【分析】过点P作PE⊥OB于E,根据两直线平行,内错角相等可得∠AOP=∠COP,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=∠AOB=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:如图,过点P作PE⊥OB于E,∵PC∥OA,∴∠AOP=∠COP,∴∠PCE=∠BOP+∠COP=∠BOP+∠AOP=∠AOB=30°,又∵PC=6,∴PE=PC=3,∵AOP=∠BOP,PD⊥OA,∴PD=PE=3,故选B.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及平行线的性质,作辅助线构造出含30°的直角三角形是解题的关键.7.(2015春•兰溪市期末)如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,则∠EDC的度数是()A.30°B.75°C.45°D.15°【分析】根据矩形性质得出∠C=∠ABC=90°,AB=CD,DC∥AB,推出AE=2AB,得出∠AEB=30°=∠DAE,求出∠EDC的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠C=∠ABC=90°,AB=CD,DC∥AB,∵AB=AD,E为BC上的一点,且AE=AD,∴AE=2AB,∴∠AEB=30°,∵AD∥BC,∴∠AEB=∠DAE=30°,∵AE=AD,∴∠ADE=∠AED=(180°﹣∠EAD)=75°,∵∠ADC=90°,∴∠EDC=90°﹣75°=15°,故选D.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数,题目比较好,是一道综合性比较强的题目.8.(2013春•重庆校级期末)如图,△ABC为等边三角形,点D为BC边上的中点,DF⊥AB于点F,点E在BA的延长线上,且ED=EC,若AE=2,则AF的长为()A.B.2 C.+1 D.3【分析】过点E作EH∥AC交BC的延长线于H,证明△ABH是等边三角形,求出CH,得到BD的长,根据直角三角形的性质求出BF,计算即可.【解答】解:过点E作EH∥AC交BC的延长线于H,∴∠H=∠ACB=60°,又∠B=60°,∴△EBH是等边三角形,∴EB=EH=BH,∴CH=AE=2,∵ED=EC,∴∠EDC=∠ECD,又∠B=∠H,∴∠BED=∠HEC,在△BED和△HEC中,,∴△BED≌△HEC,∴BD=CH=2,∴BA=BC=4,BF=BD=1,∴AF=3.故选:D.【点评】本题考查的是等边三角形的性质、直角三角形的性质以及等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半、等边三角形的三个角都是60°是解题的关键.9.(2012春•古冶区校级期中)如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A.2 B.3 C.1 D.1.5【分析】在Rt△AEC中,由于=,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【解答】解:在Rt△AEC中,∵=,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=AD=2.故选A.【点评】本题利用了:(1)直角三角形的性质;(2)三角形内角和定理;(3)等边对等角的性质.10.(2012秋•包河区期末)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB于E,以下结论(1)CD=DE;(2)AC=BE;(3)BD=2CD;(4)DE=AC中,正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据角平分线的性质可得CD=DE,AC=BE,结合含30°角的直角三角形的性质可得BD=2CD,而AC和BD不一定相等,所以可得出答案.【解答】解:∵∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB,∴DC=DE,∠ADC=∠ADE=60°,∴AD平分∠CDE,∴AC=AE,在Rt△BDE中,∠B=30°,∴BD=2DE=2CD,在Rt△ADE中,DE=AE=AC,∴正确的有(1)、(2)、(3),故选C.【点评】本题主要考查角平分线的性质及含30°角的直角三角形的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.11.(2015秋•江阴市期中)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②△PMN 为等边三角形;下面判断正确是()A.①正确B.②正确C.①②都正确D.①②都不正确【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断②正确.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;所以①②都正确.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,熟练掌握性质是解题的关键.12.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.【分析】(1)根据直角三角形斜边上中线性质求出DM=BC=4,EM=BC=4,即可求出答案;(2)根据三角形内角和定理求出∠ABC+∠ACB=120°,根据直角三角形斜边上中线性质求出DM=BM,EM=CM,推出∠ABC=∠BDM,∠ACB=∠CEM,根据三角形内角和定理求出即可;(3)求出EM=EN,解直角三角形求出∠EMD度数,根据三角形的内角和定理求出即可.【解答】解:(1)∵CD,BE分别是AB,AC边上的高,∴∠BDC=∠BEC=90°,∵M是线段BC的中点,BC=8,∴DM=BC=4,EM=BC=4,∴△DME的周长是DE+EM+DM=3+4+4=11;(2)证明:∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠BDC=∠BEC=90°,M是线段BC的中点,∴DM=BM,EM=CM,∴∠ABC=∠BDM,∠ACB=∠CEM,∴∠EMC+∠DMB=∠ABC+∠ACB=120°,∴∠DME=180°﹣120°=60°;(3)解:过M作MN⊥DE于N,∵DM=EM,∴EN=DN=DE,∠ENM=90°,∵EM=DM=BC,DN=EN=DE,BC2=2DE2,∴(2EM)2=2(2EN)2,∴EM=EN,∴sin∠EMN==,∴∠EMN=45°,同理∠DMN=45°,∴∠DME=90°,∴∠DMB+∠EMC=180°﹣90°=90°,∵∠ABC=∠BDM,∠ACB=∠CEM,∴∠ABC+∠ACB=(180°﹣∠DMB+180°﹣∠EMC)=135°,∴∠BAC=180°﹣(∠ABC+∠ACB)=45°.【点评】本题考查了等腰三角形的判定和性质,三角形的内角和定理,解直角三角形的性质,直角三角形斜边上中线性质的应用,能综合运用性质进行推理是解此题的关键,本题综合性比较强,有一定的难度,注意:直角三角形斜边上的中线等于斜边的一半.13.(2014春•永川区校级期中)如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是()A.3 B.4 C.5 D.6【分析】连结AF.由AB=AD,F是BD的中点,根据等腰三角形三线合一的性质得出AF⊥BD.再根据直角三角形斜边上的中线等于斜边的一半求得AC=2EF=4.【解答】解:如图,连结AF.∵AB=AD,F是BD的中点,∴AF⊥BD.∵在Rt△ACF中,∠AFC=90°,E是AC的中点,EF=2,∴AC=2EF=4.故选B.【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.利用等腰三角形三线合一的性质得出AF⊥BD是解题的关键.14.(2011秋•姜堰市期末)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC 上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.2 B.2.4 C.2.6 D.3【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用相似三角形对应边成比例即可求得AP最短时的长,然后即可求出AM最短时的长.【解答】解:连结AP,在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CBA,∴=,∴=,∴AP最短时,AP=4.8∴当AM最短时,AM==2.4.故选B.【点评】此题主要考查学生对相似三角形判定与性质、垂线段最短和直角三角形斜边上的中线的理解和掌握,此题涉及到动点问题,有一定的拔高难度,属于中档题.15.(2010•武隆县模拟)如图,在△ABC中,∠ACB=90°,∠B=20°,D在BC上,AD=BD,E为AB的中点,AD、CE相交于点F,∠DFE等于()A.40°B.50°C.60°D.70°【分析】根据已知得,∠BAC=70°,∠BAD=∠B,再根据直角三角形斜边上的中线等于斜边的一半,得出∠ECB=∠B,从而得出∠ACE,再由三角形的内角和定理得∠AFC,根据对顶角相等求出答案.【解答】解:∵∠ACB=90°,∠B=20°,∴∠BAC=70°,∵AD=BD,∴∠BAD=∠B=20°,∴∠DAC=50°,∵E为AB的中点,∴BE=CE,∴∠ECB=∠B=20°,∴∠ACE=70°,在△ACF中,∠ACF+∠AFC+∠FAC=180°,∴∠AFC=60°,∵∠DFE=∠AFC=60°(对顶角相等),故选C.【点评】本题考查了等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半,是基础知识要熟练掌握.16.(2016•江岸区模拟)如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′=10°.【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质分别求出∠BCD、∠DCA的度数,根据翻折变换的性质求出∠B′CD的度数,计算即可.【解答】解:∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.【点评】本题考查的是直角三角形的性质、翻折变换的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17.(2016秋•嵊州市期末)如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,若DE=5,AE=8,则BC的长度为2.【分析】由BE⊥AC,D为AB中点,DE=5,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得BC的长.【解答】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=2DE=2×5=10,∵AE=8,∴BE==6.∴BC===2,故答案为:2.【点评】此题考查了直角三角形斜边上的中线的性质以及勾股定理.注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键.18.如图,在平行四边形ABCD中,以AC为斜边作Rt△ACE,又∠BED=90°.求证:AC=BD.【分析】连接EO,首先根据平行四边形的性质可得AO=CO,BO=DO,即O为BD 和AC的中点,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,进而得到AC=BD,再根据对角线相等的平行四边形是矩形可证出结论.【解答】证明:连接EO,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,在Rt△EBD中,∵O为BD中点,∴EO=BD,在Rt△AEC中,∵O为AC中点,∴EO=AC,∴AC=BD.【点评】此题主要考查了平行四边形的性质,直角三角形斜边上的中线,关键是掌握直角三角形斜边上的中线等于斜边的一半.19.已知:如图,在Rt△ABC中,∠ACB=90°,点M是AB边的中点,CH⊥AB 于点H,CD平分∠ACB.(1)求证:∠1=∠2.(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)△AEB是什么三角形?证明你的猜想.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到AM=CM=BM,由等腰三角形到性质得到∠CAB=∠ACM,由余角的性质得到∠CAB=∠BCH,等量代换得到∠BCH=∠ACM,根据角平分线的性质得到∠ACD=∠BCD,即可得到结论;(2)根据EM⊥AB,CH⊥AB,得到EM∥AB,由平行线的性质得到∠HCD=∠MED,由于∠HCD=∠MCD,于是得到∠MCD=∠MED,即可得到结论;(3)根据CM=EM AM=CM=BM,于是得到EM=AM=BM,推出△AEB是直角三角形,由于EM垂直平分AB,得到EA=EB于是得到结论.【解答】证明:(1)Rt△ABC中,∠ACB=90°,∵M是AB边的中点,∴AM=CM=BM,∴∠CAB=∠ACM,∴∠CAB=90﹣∠ABC,∵CH⊥AB,∴∠BCH=90﹣∠ABC,∴∠CAB=∠BCH,∴∠BCH=∠ACM,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ACD﹣∠ACM=∠BCD﹣∠BCH,即∠1=∠2;(2)∵EM⊥AB,CH⊥AB,∴EM∥CH,∴∠HCD=∠MED,∵∠HCD=∠MCD,∴∠MCD=∠MED,∴CM=EM;(3)△AEB是等腰直角三角形,∵CM=EM AM=CM=BM,∴EM=AM=BM,∴△AEB是直角三角形,∵EM垂直平分AB,∴EA=EB,∴△AEB是等腰三角形,∴△AEB是等腰直角三角形.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定和性质,角平分线的定义,线段垂直平分线的性质,等腰三角形的性质,熟练掌握各定理是解题的关键.20.如图,已知在△ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点.求证:△PMN是等腰三角形.【分析】连接BM、CN,根据等腰三角形三线合一得到∠BMC=90°,根据直角三角形的性质得到MP=BC,同理NP=BC,得到答案.【解答】证明:连接BM、CN,∵BA=BD,DM=MA,∴BM⊥AD,∴∠BMC=90°,又BP=PC,∴MP=BC,同理,NP=BC,∴MP=NP,∴△PMN是等腰三角形.【点评】本题考查的是直角三角形的性质和等腰三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半、等腰三角形三线合一是解题的关键.21.如图,△ACB、△CDE为等腰直角三角形,∠CAB=∠CDE=90°,F为BE的中点,求证:AF⊥DF,AF=DF.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AF=BF=AE,DF=BF=AE,再根据等边对等角可得∠ABF=∠BAF,∠DBF=∠BDF,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AFD=2∠ABC,再根据等腰直角三角形的性质求解即可.【解答】证明:∵∠CAB=∠CDE=90°,F为BE的中点,∴AF=BF=AE,DF=BF=AE,∴AF=DF,∴∠ABF=∠BAF,∠DBF=∠BDF,由三角形的外角性质得,∠AFD=∠ABF+∠BAF+∠DBF+∠BDF=2∠ABC,∵△ABC是等腰直角三角形,∴∠ABC=45°,∴∠AFD=90°,∴AF⊥DF,综上所述,AF⊥DF,AF=DF.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰直角三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.22.已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分∠CAB交CD 于E,在DB上取点F,使DF=DE,求证:CF平分∠DCB.【分析】延长FE交AC于点G,利用角平分线的性质可知EG=ED,然后证明△CEG ≌△FED,得出CE=FE,利用等腰三角形的性质,平行线的性质即可求出∠ECF=∠BCF.【解答】解:延长FE交AC于点G,∵DE=DF,CD是斜边AB上的高,∴∠DEF=45°,∵∠DCB=45°,∴EF∥BC,∴∠EFC=∠FCB,∠CGF=90°,∵AE平分∠CAB,∠CGF=∠BDC=90°,∴GE=DE,在△CGE与△FDE中,,∴△CGE≌△FDE(ASA),∴CE=FE,∴∠ECF=∠EFC,∴∠ECF=∠BCF,∴CF平分∠DCB.【点评】本题考查等腰三角形的性质,涉及全等三角形的性质与判定,等腰直角三角形的性质,平行线的判定与性质等知识点,综合程度较高.23.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.【分析】由△OBD和△OCA是等腰直角三角形得到∠ACB=∠ADB=90°,∠OBD=45°,由M为AB的中点,根据直角三角形斜边上的中线性质得到DM=AM=BM,CM=AM=BM,则CM=DM,∠MBD=∠MDB,∠MCB=∠MBC,理由三角形外角性质得∠AMD=2∠MBD,∠AMC=2∠MBC,则∠AMD﹣∠AMC=2(∠MBD﹣∠MBC)=2∠OBD=90°,于是可得到△CDM为等腰直角三角形.【解答】解:△CDM为等腰直角三角形.理由如下:∵△OBD和△OCA是等腰直角三角形,∴∠ACB=∠ADB=90°,∠OBD=45°,而M为AB的中点,∴DM=AM=BM,CM=AM=BM,∴CM=DM,∠MBD=∠MDB,∠MCB=∠MBC,∴∠AMD=2∠MBD,∠AMC=2∠MBC,∴∠AMD﹣∠AMC=2(∠MBD﹣∠MBC)=2∠OBD=90°,即∠CMD=90°,∵CM=DM,∴△CDM为等腰直角三角形.同理可得:第2个图中△CDM为等腰直角三角形.【点评】本题考查了等腰直角三角形的性质和直角三角形斜边上的中线性质、三角形外角的性质,灵活利用直角三角形的斜边上的中线的性质是关键.24.(2010•渝中区模拟)如图①,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)将图①中的△ADE绕点A逆时针旋转45°,如图②所示,则(1)题中的结论“△BMD为等腰直角三角形”是否仍然成立?请说明理由.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,求出BM=EN=MC,DM=EM=MC,然后根据等边对等角的性质可以证明∠BMD=90°,所以△BMD为等腰直角三角形;(2)延长DM交BC于N,先根据∠EDB=∠ABC=90°证明ED∥BC,然后根据两直线平行,内错角相等求出∠DEM=∠MCN,从而证明△EDM与△MNC全等,根据全等三角形对应边相等可得DM=MN,然后即可证明BM⊥DM,且BM=DM.【解答】(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.(2分)同理可证:DM=EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠BCA=90°,(4分)∴BM=DM.∴△BMD是等腰直角三角形.(5分)(2)(1)题中的结论仍然成立.理由:延长DM与BC交于点N,(6分)∵DE⊥AB,CB⊥AB,∴∠EDB=∠CBD=90°,∴DE∥BC.∴∠DEM=∠MCN.又∵∠EMD=∠NMC,EM=MC,∴△EDM≌△MNC.(8分)∴DM=MN.DE=NC=AD.又AB=BC,∴AB﹣AD=BC﹣CN,∴BD=BN.∴BM⊥DM.即∠BMD=90°.(9分)∵∠ABC=90°,∴BM=DN=DM.∴△BMD是等腰直角三角形.(10分)【点评】本题主要考查了全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握判定定理及性质并灵活运用是解题的关键,难度中等.25.(2011秋•昌平区校级期中)已知:如图△ABC中,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°(1)求证:△DEF为等腰直角三角形;(2)求证:S=S△BDE+S△CDF;四边形AEDF(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF 还仍然是等腰直角三角形吗?请画图说明理由.【分析】(1)连接AD,根据等腰直角三角形的性质可得AD⊥BC,AD=BD,∠1=45°,从而得到∠1=∠B,再根据同角的余角相等求出∠2=∠4,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证;(2)同理求出△ADE和△CDF全等,根据全等三角形的面积相等即可得证;(3)依然成立,连接AD,根据等腰直角三角形的性质可得AD=BD,∠CAD=45°,再根据等角的补角相等求出∠DAF=∠DBE,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证.【解答】(1)证明:如图,连接AD,∵∠A=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD,∠1=45°,∴∠1=∠B=45°,∵∠EDF=90°,∴∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形;(2)解:同理可证,△ADE≌△CDF,所以,S=S△ADF+S△ADE=S△BDE+S△CDF,四边形AEDF=S△BDE+S△CDF;即S四边形AEDF(3)解:仍然成立.如图,连接AD,∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD,∠1=45°,∵∠DAF=180°﹣∠1=180°﹣45°=135°,∠DBE=180°﹣∠ABC=180°﹣45°=135°,∴∠DAF=∠DBE,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形.【点评】本题考查了等腰直角三角形的性质,全等三角形判定与性质,作辅助线构造出全等三角形是解题的关键.26.(2016•汕头校级自主招生)△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于点E,AD⊥BC于点D.(1)如图1,作∠ADB的角平分线DF交BE于点F,连接AF.求证:∠FAB=∠FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG①依据题意补全图形;②用等式表示线段AE、BE、DG之间的数量关系,并加以证明.【分析】(1)欲证明∠FAB=∠FBA,由△ADF≌△BDF推出AF=BF即可解决问题.(2)①根据条件画出图形即可.②数量关系是:GD+AE=BE.过点D作DH⊥DE交BE于点H,先证明△ADE≌△BDH,再证明四边形GEHD是平行四边形即可解决问题.【解答】证明:(1)如图1中,∵AD⊥BC,∠ABC=45°,∴∠BAD=45°,∴AD=BD,∵DF平分∠ADB,∴∠1=∠2,在△ADF和△BDF中,,∴△ADF≌△BDF.∴AF=BF,∴∠FAB=∠FBA.(2)补全图形如图2中所示,数量关系是:GD+AE=BE.理由:过点D作DH⊥DE交BE于点H∴∠ADE+∠ADH=90°,∵AD⊥BC,∴∠BDH+∠ADH=90°,∴∠ADE=∠BDH,∵AD⊥BC,BE⊥AC,∠AKE=∠BKD,∴∠DAE=∠DBH,在△ADE和△BDH中,,∴△ADE≌△BDH.∴DE=DH,AE=BH,∵DH⊥DE,∴∠DEH=∠DHE=45°,∵BE⊥AC,∴∠DEC=45°,∵点G与点D关于直线AC对称,∴AC垂直平分GD,∴GD∥BE,∠GEC=∠DEC=45°,∴∠GED=∠EDH=90°,∴GE∥DH,∴四边形GEHD是平行四边形∴GD=EH,∴GD+AE=BE.【点评】本题考查三角形综合题、全等三角形的判定和性质、平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是熟练正确全等三角形判定方法,学会添加常用辅助线,构造全等三角形以及特殊四边形解决问题,属于中考常考题型.27.(2016春•东港市期末)如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是AD=CF;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗?不可能(填“可能”或“不可能”).【分析】(1)根据等腰直角三角形的性质得到∠CBA=∠CAB=45°,根据平行线的性质得到∠FBE=∠CAB=45°,根据全等三角形的判定定理证明即可;(2)根据全等三角形的性质定理得到答案;(3)根据线段垂直平分线的性质得到AD=AF,等量代换即可;(4)根据直角三角形的直角边小于斜边解答.【解答】(1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,,∴△ACD≌△CBF;(2)∵△ACD≌△CBF,∴AD=CF,故答案为:AC=BF;(3)连接AF,∵DF⊥AE,DE=EF,∴AD=AF,∵AD=CF,∴AF=CF,∴△ACF是等腰三角形;(4)在Rt△ACF中,AC<AD,∴AC<AF,∴△ACF不可能是等边三角形,故答案为:不可能.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、等腰三角形的判定以及等边三角形的判定,掌握相关的判定定理和性质定理是解题的关键.。