构造法

合集下载

高中数学6种构造函数法

高中数学6种构造函数法

高中数学6种构造函数法1、几何体构造法:几何体构造法是高中数学中常见的构造函数,即根据给定的条件,从原点出发,通过叠加若干条定义运算,利用实际工具画出题目要求构造的图形或者要求构造的几何体。

例如:根据给定的定义三角形ABC,在其外接圆上构造一个直角,使得构造出的四边形的一条边和三角形的一条边等长。

2、用线段构造法:用线段构造法是高中数学中常见的构造函数,是根据给定的条件,几何体和直线的位置,及题目要求的其他条件,按照一定的步骤和规律来画出要构造的几何体或其他东西。

例如:依据给定的线段AB,在其上端点A处构造一个半径等于原线段AB一半长度的圆,使得线段AB的端点A和圆的交点坐标相同;并在构造出的圆上构造一个到线段AB 端点B距离等于原线段AB一半长度的直线段。

3、从原点构造法:从原点构造法是高中数学中常见的构造函数,是指从某一原点出发,根据给定的情况,经过若干步的构造,建立若干定义关系,确定一个几何体的形状和大小,并与给定的几何体完全相同或满足给定条件的几何体。

例如:在原点构造一个半径等于原点O到给定点A的距离的圆,从这个圆上构造与 OA 相等的直线段,在这个直线段依次画上给定的点B、C。

4、标准图形构造法:标准图形构造法是在高中数学中学习的构造函数,即根据给定的它定义的图形和要求画出的图形之间的规律,采用实际的工具画出要求的图形。

例如:构造出与正方形相等的长方形(15cm×20cm),方法为:在一根边长15cm的尺子上划分出4等分点,然后再在另一根尺子上划分出5等分点,将它们相互链接,即可构造出长方形。

5、参数方程构造法:参数方程构造法是高中数学中学习的构造函数,即根据给定的参数条件所决定的几何体的特征,可利用参数方程的技巧,根据参数条件用参数方程来求出构造出几何体的函数,并且利用函数求出相应的构造过程,或者利用参数方程既定的几何图形,求出给定点的位置。

例如:求出构造出半径为 2 的半圆的函数,可以用参数方程 x = 2cos t,其中x 为构造出的半圆的横坐标,t 为角度参数。

基础算法(构造法)

基础算法(构造法)

3125467 3126457 3127456 3142567 3145267
3125476 3125647 3126475 3126547 3127465 3127546 3142576 3142657 3145276 3145627
3125674 3126574 3127564 3142675 3145672
3125746 3126745 3127645 3142756
3125764 3126754 3127654 3142765
program li2_2_2; var a:string;n,i,j:integer;t:char; begin assign(input,'1.in');reset(input); assign(output,'1.out');rewrite(output); readln(a); writeln(a); n:=length(a); repeat i:=n-1; while (a[i]>a[i+1]) and (i>0) do dec(i); if i=0 then break; j:=n; while a[j]<a[i] do dec(j); t:=a[j];a[j]:=a[i];a[i]:=t; for j:=1 to (n-i) div 2 do begin t:=a[i+j];a[i+j]:=a[n+1-j];a[n+1-j]:=t; end; writeln(a); until false; end.
构造法
所谓构造法是指当一个问题有1个或多个解,而我 们找到了直接生成其中一个解的办法,或者找到了从 一免去搜索穷举产生解。
例:全排列n个不同对象共有n!种,按升序依次输出这n!种排列。例如,5个数字1, 2,3,4,5,共有120种,按12345,12354,12435,12453,……54321

构造法求数列通项公式典型例题解析

构造法求数列通项公式典型例题解析

构造法求数列通项公式典型例题解析构造法是一种求解数列通项公式的有效方法,也是数学中最具有挑战性的问题之一。

在广泛的数学研究和应用中,构造法往往可以解决复杂的问题,为我们提供求解给定数列的通项公式的有效方法。

本文将从构造法的基本定义和思想出发,通过一系列典型例题,详细解析构造法求解数列通项公式的基本原理和方法,以期更深入地理解构造法求数列通项公式的实际应用。

首先,构造法是什么?构造法是一种求解数列通项公式的策略,它以建立数列通项公式为目标,通过构造一个符合一定规律的数列来解决问题。

根据构造法的思想,我们可以确定以下步骤:首先,确定数列的个数和元素的值;其次,当确定了数列的个数和元素的值后,还需要确定数列的规律;最后,根据上述步骤,数列的规律和期望求解结果,最终确定数列通项公式。

构造法求解数列通项公式的典型例题,将从比较简单的例题开始介绍:例题1:已知数列{an}的通项公式为:an=3n-2,求数列{an}的前5项。

解:数列{an}的前5项为a1=3×1-2=1,a2=3×2-2=4,a3=3×3-2=7,a4=3×4-2=10,a5=3×5-2=13。

例题2:已知数列{bn}的前4项为:b1=2,b2=10,b3=26,b4=50,求数列{bn}的通项公式。

解:根据数列{bn}的前4项值,构造出以下数列:2,8,16,24,…,由此可得出bn=2n×4,即数列{bn}的通项公式为bn=2n×4。

例题3:已知数列{cn}的前3项为:c1=3,c2=12,c3=27,求数列{cn}的通项公式。

解:根据数列{cn}的前3项值,构造出以下数列:9,9,18,27,…,故数列{cn}的通项公式为cn=3n2-2n,即cn=3n2-2n。

以上就是构造法求解数列通项公式的三个典型例题及其解析,可以看出,构造法是一种有效的求解数列通项公式的方法。

例谈几何图形构造法

例谈几何图形构造法

在几何中,构造法是使用规则或原则来绘制几何图形的方法。

下面是几个常见的构造法例子。

1 垂线构造法:在平面内给定一点和一条直线,从该点作垂线与该
直线的交点,就是所求的点。

2 垂足构造法:在平面内给定一点和一条直线,从该点作垂线与该
直线的交点,这个交点称作该点的垂足。

3 垂直平分线构造法:在平面内给定一点和一条直线,从该点作垂
线,并做该垂线的中垂线,这条中垂线称作该点的垂直平分线。

4 垂直于直线的平分线构造法:在平面内给定一点和一条直线,从
该点作垂线,并做该垂线的中垂线,这条中垂线垂直于给定的直线,称作该点的垂直于直线的平分线。

5 直线平分线构造法:在平面内给定一条直线和一个点,从该点作
该直线的平分线,并做该直线的中垂线,这条中垂线称作该点的直线平分线。

6 对称构造法:在平面内给定两点或两条直线,建立一条对称轴,
使得对称轴上的一侧和对称轴的对侧关于对称轴对称,这样就可以使用对称构造法来构造出许多几何图形。

7 图形复制构造法:在平面内给定一个图形,通过将图形复制并移
动到另一个位置来构造出新的图形。

8 线段构造法:在平面内给定两个点,连接这两个点就是所求的线
段。

9 圆构造法:在平面内给定一个点和一条直线,以该点为圆心,该
直线为圆的直径,连接两端点即为圆。

这些只是几何图形构造法的一小部分例子,在几何学中还有许多其他的构造法。

构造法求数列通项公式专题讲座ppt课件

构造法求数列通项公式专题讲座ppt课件

令 1 1 ( 1 ), 则 3 , 3
an1
2 an
22
1 3 1 ( 1 3), 又 1 3 5
an1
2 an
a1
2
1 an
3
是首项为 5
2
1 公比为 2 的等比数列
1 3 5 ( 1 )n1, 1 3 5 ( 1 )n1
an an
3
22 1 5 (1)n1
1 2
,
1 an
是首项为
1 2
公差3的等差数列。
1 an
1 (n 1) 3 3n 5
2
2
6n 2
5
,
a
n
2 6n 5
例6数列 an
中,a1
2, an1
2an 1 3an
,求 an
解: an1
2an 1 3an
1 ,
an1
1 3an 2an
3 11
2 2 an
构造法的定义
• 所谓构造法就是在解决某些数学问题中 通过对条件和结论的充分剖析,有时会 联想出一些适当的辅助模型,以促成命 题的转换,产生新的解题方法。下面就 构造法求数列的通项公式的分类和解题 方法分别进行论述。
类型1形如 an1 pa nq p 1, p 0,q 0 的递推式
• 基本思路:可用待定系数法,设an1 pan
•bn p(an An2 Bn C) ;
• (2)本题也可由 an 3an1 2n 1 • , an1 3an2 2(n 1) 1
• ( n 3 )两式相减得
an an 1 3(an 1 an 2 ) 2
• 转化为 bn2 pbn1 qbn 求之.
练习1 数列 an 前 n 项和为 Sn

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法
构造法是一种常用的数学解题方法,特别适用于几何问题的解决。

下面我们将介绍在
高中数学解题中构造法的应用方法。

一、构造辅助线:
1. 构造线段、角的等分线:通过构造等分线可以将原先复杂的形状简化为几个简单
的相等的部分,便于解题。

2. 构造三角形的高线、中线、角平分线:通过利用三角形的性质,可以确定三角形
的一些特殊线段,从而解题。

3. 构造平行线、垂直线:通过构造平行线和垂直线,可以得到一些等角关系、相似
三角形等,从而解题。

二、构造形状:
1. 构造圆、三角形、四边形:通过构造几何形状,可以利用其性质来解题。

2. 构造相似形:通过构造相似形状,可以利用相似三角形等性质来解题。

三、构造特殊点:
1. 构造重心、垂心、外心、内心:通过构造特殊点,可以利用它们的性质来解题。

2. 构造交点、中点:通过构造交点和中点,可以得到一些等分线段、等角关系等,
从而解题。

四、构造长度关系:
1. 构造比例关系:通过构造长度的比例,可以利用这些比例关系来解题。

2. 构造勾股定理:通过构造特殊的长度关系,可以利用勾股定理来解题。

构造法是一种灵活但有效的解题方法,在高中数学解题中应用广泛。

通过构造辅助线、形状、特殊点和长度关系等,可以利用它们的性质来解决各种几何问题。

在解题过程中要
善于观察和发现,合理运用构造法,提高解题的效率和准确性。

构造法在高等代数中的应用

构造法在高等代数中的应用

构造法在高等代数中的应用
构造法(Construction)指的是通过某种方式构造一个新的数
学对象,这种方式可以是从已知对象中提取信息、进行运算、组合,或者是通过更抽象的方式,例如通过极限过渡、构造性证明等。


高等代数中,构造法被广泛应用于各种数学结构的构建和证明中。

以下是一些高等代数中应用构造法的例子:
1. 群和环的构造:群和环是最基本的抽象代数结构之一。

构造
法可以用来构造新的群和环,例如通过群的直积、半直积、商群等
方式来构造新的群;通过态射同构、理想、商环等方式来构造新的环。

2. 向量空间的构造:向量空间是线性代数中的重要概念。

构造
法可以用来构造新的向量空间,例如通过向量的张量积、双线性函数、外代数等方式来构造新的向量空间。

3. 域的构造:域是代数学中的基本概念。

构造法可以用来构造
新的域,例如通过有限扩张、代数闭包、分式域等方式来构造新的域。

4. 哈密顿四元数的构造:哈密顿四元数是一种四维的超复数。

通过构造法,我们可以将哈密顿四元数看作是复数和二维向量的轮
换积,从而可以更加直观地理解哈密顿四元数的性质。

5. 矩阵群的构造:矩阵群是代数拓扑中的重要概念。

构造法可
以用来构造新的矩阵群,例如通过李群的指数映射,我们可以将矩
阵群看作是一个向量场在单位元上的切向量,从而使得矩阵群的性
质显得更加清晰。

总之,构造法在高等代数中是一个非常重要的方法,它可以帮助我们构建新的数学结构,深入理解已知的数学对象,并证明一些重要的定理和性质。

用构造法求数列通项公式

用构造法求数列通项公式

用构造法求数列通项公式
一、构造法的原理
构造法是一种求解数列通项公式的方法,它依赖于对数列数据的分析,其基本原理是通过分析数列前几项的关系,推出数列的规律,从而确定数
列的通项公式。

二、构造法的步骤
1、根据给定的数列,找出相邻两项的关系;
2、根据求出的关系,确定该数列的类型,即数列的递推公式;
3、根据确定的递推公式,从第一项开始,逐步求出数列中的其它项;
4、推出数列的规律,并将其表示为数列的通项公式;
5、利用确定的通项公式,验证数列中的其它项。

三、构造法的应用
1、举例:
给出一个数列:1,2,4,8,16,32
(1)根据给定的数列,找出相邻两项的关系:
由数列可以看出,数列中相邻两项的关系是:an = 2 * an-1
(2)根据求出的关系,确定该数列的类型,即数列的递推公式:
an = 2 * an-1
递推公式:an+1 = 2 * an
(3)根据确定的递推公式,从第一项开始,逐步求出数列中的其它项:
a1=1
a2=2*a1=2
a3=2*a2=4
a4=2*a3=8
a5=2*a4=16
a6=2*a5=32
(4)推出数列的规律,并将其表示为数列的通项公式:
由所求得的数列可以看出,数列中每一项都是前一项的2倍,因此可
得数列的通项公式为:an=2^(n-1)。

(5)利用确定的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

构造法
构造法,顾名思义是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料,运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。

历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。

数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。

近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。

构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。

用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。

但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。

下面,我们通过几个例题,来简单看一下高中阶段几种常见的构造法。

例1.(构造函数)已知三角形的三边长分别为,,a b c ,且m 为正数,求证:a b c a m b m c m
+>+++ 解:构造函数()1x m f x x m x m
==-++,则()f x 在()0+∞,上是增函数。

0a b c +>> ,()()f a b f c ∴+>。

例2.(构造距离)求函数()f x = 的最小值。

解:()f x =其几何意义是平面内动点(),0P x 到两定点()()1,4,3,2M N --的距离之和,当,,P M N 三点共
线时距离之和最小为MN =
=
即()f x
的最小值为。

例3.(构造直线斜率)求函数()sin cos 3
x f x x =- 的值域。

解:构造动点()cos ,sin P x x 与定点()3,0Q 的连线的斜率,而动点P 的轨迹为单位圆。

设直线PQ 的方程为()3y k x =-,即30kx y k --= 。

即44
y -≤≤ 例4.(构造方程)已知,,a b c R ∈,2221,1a b c a b c ++=++=,求c 的取值范围。

解: ()()2
222222a b c ab ac bc a b c ++-++=++ ,
将,a b 看成方程()()2110x c x c c ----=的两根, 即()()11130,13
c c c -+≤∴-≤≤ 练习
1. 求证: 3
10910
22≥++=x x y (构造函数) 解:设)3(92
≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2
1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9
10322=+=≥++=f x x y 2. 已知01a <<,01b <<,求证:
(构造图形)
解:构造单位正方形,O 是正方形内一点,O 到AD , AB 的距离为a , b ,
则|AO | + |BO | + |CO | + |DO |≥|AC | + |BD |, 其中22||b a AO +=
, 又:2||||=
=BD AC ∴22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a
3.
求函数y =+
解:由根号下的式子看出11x+x=-且01x ≤≤
故可联想到三角函数关系式并构造2sin
x θ= (0)2πθ≤≤
所以 sin cos )4y x x πθ=+=+, 当4
πθ=即12x =时,max y =4. 求证:9)9(272≤-+x x ,并指出等号成立的条件。

(构造向量) 解:不等式左边可看成7与 x 和2与29x -两两乘积的和,从而联想到数量积的 坐标表示,将左边看成向量a =(7,2)与b =( x ,
29x -)的数量积,又||||a b a b ≤, 所以9)9(·)2()7()9(2722222=-++≤-+x x x x 当且仅当b =λa (λ>0)
λ==>得:x=7,λ=1,即 x =7时,等号成立。

5. 求函数()f x
解: ()f x 其几何意义是平面内动点P (,0)到两定点
M (2,3)和 N (5,-1)的距离之和(如图1)
为求其值域只要求其最值即可,
易知当M ,N ,P 三点共线(即P 在线段MN 上)时,
()f x 取得最小值, min ()||5f x MN ===,无最大值,故得函数的值域为[5,)+∞。

相关文档
最新文档