基于单片机控制的智能超声波测厚系统的设计
基于MSP430单片机的超声波厚度检测系统设计

内 蒙 古 石 油 化 工
2 0 1 3年第 1 5期
助模 块 。其系统 框 图如 图 2所 示 。 通过超 声波 探头 接触 被测 钢板表 面 后发射 高频 率 的超 声波 信 号 , 经 过 被 测 钢板 反 射 后再 由超声 波 探头 接收 。 因为信 号在 传播 过程 中信 号会 衰减 , 所以 需 通过 放大 电路 对 信 号放 大并 对信 号 进 行 滤波 , 放 大 和滤 波后 的信 号 通 过解 调 后 整形 , 再 经 比较 电路 将 定 时中断信 号送 入 单 片机 _ 7 ] 。通过 温度 传感 器 D S 1 8 C 2 0进行 环境 温度 采 集 对超 声 波 速进 行校 正 , 测出1 0 次 的厚度 并计 算其 平 均值 , 最后 由单片机 控
2 . 2 超 声 波发 生 电 路
圈 5 超 声 波 接 收模 块 原 理 圈
2 . 4 温度 补偿 电路
由于超 声波 的声速 与温 度有 很 大 的关 系 , 因此 在 系统设 计 时要求 对温 度进 行补偿 。温 度检测 电路 用 来 实 时测 量周 围 环境 的温 度 , 补 偿 传播 速 度变 化
冲串。 从 单片 机 的P BO口输 出的 4 0 K赫 兹的脉 冲信 号, 电压 很 低 , 而且 功 率很 低 , 并 不 能直 接驱 动超 声 波 探头 发射 超声 波 , 因此 需要 加 一个 功 率放 大 电路 将 脉冲信 号功率 放 大 , 然后 送 至超声波 探头 , 驱动其 发 出频率 相 同的超声 波 。 又 因为 , 超声 波探头 的驱动 信 号最 好为 正 弦波 , 因此 超 声波 发 射 电路 的主 要作 用是 将功 率很低 的 脉冲信 号变 送为功 率高 的正弦波 信号 。图为发射 电路 。P L US为单 片机 出来脉 冲信 号 。RE CI VE接超 声波 探头 。 当P L US端停 止发射 脉冲, 此 时超声 波发 射理 应停 止[ 9 u 。如 图 4所示 。 2 . 3 超 声 波接 收 电路 超声 波 探 头接 受 到 反 射 回来 的超 声波 后 , 将超 声 波转化 成振 幅很小 的正 弦波 电压信 号 。很 显然此 电压信 号并 不 能直 接 被 单 片机 使 用 , 需 要经 过 放大 偏置 以后 方可使 用 。在接 收 的很 微弱 的信号 后输入 给 带直 流滤 波 的放 大 电路 , 放大 得 到可 以很 方 便处 理 的信号 。在这 里 用两个 交流 运算放 大器组 成两级 放 大 。器放 大倍 数 可达 到 3 0 0 0 倍。 另 外接收 放大单 元 的作 用是 除 了对信 号 进 行放 大 , 还有 抑 制其 它 的 噪 声和干 扰 , 从 而达 到最 大信 噪 比。 信 号经过 放大 以 后, 其 电压 往 往是一 个振 幅不 确定 的正 弦信 号 , 因此
基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计一、本文概述超声波测距技术因其非接触、高精度、实时性强等特点,在机器人导航、车辆避障、工业测量等领域得到了广泛应用。
STM32单片机作为一种高性能、低功耗的嵌入式系统核心,为超声波测距系统的设计提供了强大的硬件支持。
本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足不同应用场景的需求。
二、超声波测距原理本部分将介绍超声波测距的基本原理,包括超声波的产生、传播、接收以及距离的计算方法。
同时,分析影响超声波测距精度的主要因素,为后续系统设计提供理论基础。
三、系统硬件设计3、1在设计基于STM32单片机的高精度超声波测距系统时,我们遵循了“精确测量、稳定传输、易于扩展”的总体设计思路。
我们选用了STM32系列单片机作为系统的核心控制器,利用其强大的处理能力和丰富的外设接口,实现了对超声波发射和接收的精确控制。
在具体设计中,我们采用了回波测距法,即发射超声波并检测其回波,通过测量发射与接收之间的时间差来计算距离。
这种方法对硬件的精度和稳定性要求很高,因此我们选用了高精度的超声波传感器和计时器,以确保测量结果的准确性。
我们还考虑到了系统的可扩展性。
通过STM32的串口通信功能,我们可以将测量数据上传至计算机或其他设备进行分析和处理,为后续的应用开发提供了便利。
我们还预留了多个IO接口,以便在需要时添加更多的传感器或功能模块。
本系统的设计思路是在保证精度的前提下,实现稳定、可靠的超声波测距功能,并兼顾系统的可扩展性和易用性。
31、1.1随着物联网、机器人技术和自动化控制的快速发展,精确的距离测量技术在各个领域的应用越来越广泛。
超声波测距技术作为一种非接触式的距离测量方式,因其具有测量精度高、稳定性好、成本相对较低等优点,在工业自动化、智能家居、机器人导航、安防监控等领域得到了广泛应用。
STM32单片机作为一款高性价比、低功耗、高性能的嵌入式微控制器,在智能设备开发中占据重要地位。
基于单片机控制的超声波测距系统的设计

基于单片机控制的超声波测距系统的设计一、概述。
超声波测距技术是一种广泛应用的测距技术,它能够非常精确地测量物体到传感器的距离。
本文介绍的基于单片机控制的超声波测距系统主要由控制模块、信号处理模块和驱动模块三部分组成。
其中,控制模块主要实现超声波信号的发射与接收,信号处理模块主要实现对测量结果的处理和计算,驱动模块主要实现对LED灯的控制。
二、硬件设计。
1.超声波发射模块:采用 SR04 超声波发射传感器,并通过单片机的PWM 输出控制 SR04 的 trig 引脚实现超声波信号的发射。
2.超声波接收模块:采用SR04超声波接收传感器,通过单片机的外部中断实现对超声波信号的接收。
3.控制模块:采用STM32F103单片机,通过PWM输出控制超声波发射信号,并通过外部中断接收超声波接收信号。
4.信号处理模块:采用MAX232接口芯片,将单片机的串口输出转换成RS232信号,通过串口与上位机进行通信实现测量结果的处理和计算。
5.驱动模块:采用LED灯,通过单片机的GPIO输出控制LED灯的亮灭。
三、软件设计。
1.控制模块:编写程序实现超声波信号的发射与接收。
其中,超声波发射信号的周期为 10us,超声波接收信号的周期为 25ms。
超声波接收信号的处理过程如下:(1)当 trig 引脚置高时,等待 10us。
(2)当 trig 引脚置低时,等待 echo 引脚为高电平,即等待超声波信号的回波。
(3)当 echo 引脚为高电平时,开始计时,直到 echo 引脚为低电平时,停止计时。
(4)根据计时结果计算物体到传感器的距离,将结果通过串口输出。
2.信号处理模块:编写程序实现接收计算结果,并将结果通过串口与上位机进行通信。
具体步骤如下:(1)等待串口接收数据。
(2)当接收到数据时,将数据转换成浮点数格式。
(3)根据测量结果控制LED灯的亮灭。
以上就是基于单片机控制的超声波测距系统的设计。
该系统能够通过精确测量物体到传感器的距离并对测量结果进行处理和计算,能够广泛应用于各种实际场合。
基于单片机控制的超声波测距系统设计

基于单片机控制的超声波测距系统设计超声波技术是一种非常常用的测距技术,利用超声波在空气中的传播速度和回声原理来实现物体距离的测量。
超声波测距系统是基于这一原理设计的一种系统,可以广泛应用于物体距离的检测和控制领域。
本文将介绍基于单片机控制的超声波测距系统的设计原理、硬件和软件结构,以及系统的性能评估和实际应用。
首先,设计一个基于单片机控制的超声波测距系统需要考虑到硬件的搭建。
该系统主要由超声波发射模块、超声波接收模块、控制单元和显示单元组成。
超声波发射模块用于发送超声波脉冲,超声波接收模块用于接收回波信号。
控制单元则是通过单片机实现对超声波发射和接收模块的控制,同时处理回波信号并计算物体距离。
最后,显示单元用于将测量到的距离值以数字或者图形的形式显示出来。
在硬件搭建的基础上,还需要设计适合的软件算法来实现距离的测量和显示。
首先需要编程单片机实现对超声波发射和接收模块的控制,包括超声波信号的发送和接收,以及回波信号的处理和距离的计算。
在距离的计算方面,需要考虑到超声波在空气中的传播速度,同时考虑到超声波发射和接收模块之间的时间差,从而计算出物体到超声波发射模块的距离。
除了硬件和软件的设计,还需要对系统的性能进行评估。
主要包括系统的精度、测量范围、响应时间和稳定性等方面的评估。
可以通过实验测量不同距离下系统的测量误差,以及系统在不同环境条件下的表现,从而评估系统的性能是否符合实际应用的需求。
在实际应用方面,基于单片机控制的超声波测距系统可以应用于智能家居控制、无人驾驶汽车、智能仓储管理等方面。
例如,可以将该系统应用于智能家居中,通过测量门口到来访者的距离来实现自动开关门的控制;或者可以将该系统应用于无人驾驶汽车中,实现对周围物体距离的检测和避障控制。
梳理一下本文的重点,我们可以发现,在实际应用中具有很大的潜力和广泛的应用前景。
通过合理的硬件和软件设计,以及系统性能评估和实际应用探索,可以更好地发挥该系统在物体距离测量和控制领域的作用。
基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计一、本文概述随着科技的不断进步,超声波测距技术因其非接触性、高精度和快速响应等优点,在机器人导航、物体定位、无人驾驶等领域得到了广泛应用。
本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足现代工业与生活中对测距精度和实时性的高要求。
本文将首先介绍超声波测距的基本原理,包括超声波的传播特性、回声测距原理等。
接着,将详细阐述基于STM32单片机的超声波测距系统的硬件设计,包括超声波发射器、接收器、信号处理电路以及STM32单片机的选型与外围电路设计等。
在此基础上,本文将探讨软件设计的关键技术,如超声波发射与接收的时序控制、回声信号的处理算法以及距离计算的实现方法。
为了提高测距精度和稳定性,本文将重点研究信号处理算法的优化,包括滤波技术、阈值设定、时间测量精度提升等。
还将讨论系统校准方法,以减小环境因素对测距结果的影响。
本文将给出系统的实际测试结果,包括在不同距离和环境条件下的测距精度和响应速度。
通过实验结果的分析,验证所设计的基于STM32单片机的超声波测距系统的性能与可靠性,为相关领域的实际应用提供参考。
二、系统总体设计本系统以STM32单片机为核心,结合超声波传感器、信号处理电路、电源管理模块以及外设接口,构建了一个高精度超声波测距系统。
系统的设计目标是实现稳定、准确的距离测量,同时满足低功耗、小型化以及易于集成的要求。
STM32单片机凭借其高性能、低功耗和易于编程的特点,成为本系统的理想选择。
该单片机具备丰富的外设接口和强大的处理能力,可以满足超声波信号的处理、距离计算以及与其他模块的通信需求。
为了保证测距的精度和稳定性,本系统选择了高性能的超声波传感器。
该传感器具有发射和接收超声波信号的功能,通过测量超声波在空气中的传播时间,可以计算出目标与传感器之间的距离。
信号处理电路是系统的关键部分,负责接收和处理超声波传感器输出的信号。
本系统设计了专门的信号处理电路,包括放大电路、滤波电路和ADC转换电路等,以确保信号的稳定性和准确性。
《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言随着科技的不断发展,高精度测距技术被广泛应用于各个领域,如机器人导航、环境监测、智能家居等。
本文将介绍一种基于STM32单片机的高精度超声波测距系统的设计。
该系统采用先进的超声波测距原理,结合STM32单片机的强大处理能力,实现了高精度、快速响应的测距功能。
二、系统概述本系统主要由超声波发射模块、接收模块、STM32单片机以及相关电路组成。
通过STM32单片机控制超声波发射模块发射超声波,然后接收模块接收反射回来的超声波信号,根据超声波的传播时间和速度计算距离。
系统具有高精度、抗干扰能力强、测量范围广等特点。
三、硬件设计1. STM32单片机本系统采用STM32系列单片机作为主控制器,具有高性能、低功耗、丰富的外设接口等特点。
通过编程控制单片机的GPIO 口,实现超声波发射和接收的控制。
2. 超声波发射模块超声波发射模块采用40kHz的超声波传感器,具有体积小、功耗低、测距范围广等优点。
通过单片机控制发射模块的触发引脚,产生触发信号,使传感器发射超声波。
3. 超声波接收模块超声波接收模块同样采用40kHz的超声波传感器。
当传感器接收到反射回来的超声波信号时,会产生一个回响信号,该信号被接收模块的回响引脚捕获并传递给单片机。
4. 相关电路相关电路包括电源电路、滤波电路、电平转换电路等。
电源电路为系统提供稳定的电源;滤波电路用于去除干扰信号;电平转换电路用于匹配单片机与传感器之间的电平标准。
四、软件设计1. 主程序设计主程序采用C语言编写,通过STM32单片机的标准库函数实现各功能模块的初始化、参数设置以及控制逻辑。
主程序首先进行系统初始化,然后进入循环等待状态,等待触发信号的到来。
当接收到触发信号时,开始测距流程。
2. 测距流程设计测距流程主要包括发射超声波、等待回响信号、计算距离等步骤。
当接收到触发信号时,单片机控制超声波发射模块发射超声波;然后等待接收模块的回响信号。
《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言随着科技的进步和智能化的发展,测距技术在众多领域得到了广泛的应用。
其中,基于STM32单片机的超声波测距系统以其高精度、低成本和易于实现的优点,成为了许多项目的首选方案。
本文将详细介绍基于STM32单片机的高精度超声波测距系统的设计,旨在为相关研发人员提供一定的参考。
二、系统概述本系统以STM32单片机为核心,通过超声波模块进行测距。
系统包括超声波发射模块、接收模块、STM32单片机控制模块以及通信接口模块等部分。
其中,STM32单片机负责控制超声波模块的发射和接收,并对数据进行处理和传输。
三、硬件设计1. STM32单片机控制模块:STM32系列单片机具有高性能、低功耗的特点,可满足本系统的需求。
该模块主要完成对超声波模块的控制、数据处理以及与上位机的通信。
2. 超声波发射模块:采用40kHz超声波传感器,通过PWM 信号控制其发射超声波。
该模块包括超声波传感器、驱动电路和发射电路。
3. 超声波接收模块:接收反射回来的超声波信号,并将其转换为电信号。
该模块包括超声波传感器、信号处理电路和ADC (模数转换器)电路。
4. 通信接口模块:通过串口或I2C等接口与上位机进行通信,将测距数据传输至上位机进行显示或处理。
四、软件设计1. 系统初始化:STM32单片机上电后,首先进行系统初始化,包括时钟配置、I/O口配置、PWM配置等。
2. 超声波发射控制:STM32单片机通过PWM信号控制超声波发射模块发射超声波。
当发射一定时间后,停止PWM信号的输出,使超声波发射模块停止发射。
3. 超声波接收处理:接收模块接收到反射回来的超声波信号后,通过信号处理电路将其转换为电信号,并经过ADC电路进行模数转换,将数字信号传输至STM32单片机进行处理。
4. 数据处理与传输:STM32单片机对接收到的数据进行处理,计算出测距结果,并通过串口或I2C等接口将数据传输至上位机进行显示或处理。
基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计基于STM32单片机的高精度超声波测距系统的设计摘要:超声波测距技术是一种常用的非接触测距技术,具有测量范围广、分辨率高、稳定性好等特点。
本文通过使用STM32单片机,设计了一种高精度的超声波测距系统。
该系统主要由超声波发射电路、超声波接收电路、模数转换电路和STM32单片机控制电路组成。
通过对超声波信号的发射和接收,并利用模数转换器将模拟信号转换为数字信号,进而通过STM32单片机对距离进行计算和显示。
实验结果表明,该系统具有较高的测量精度和稳定性,能够满足高精度测距的需求。
关键词:超声波测距,STM32单片机,高精度,测量精度,稳定性1. 引言超声波测距技术是一种利用超声波在空气中的传播速度和传播时间来测量目标物体离超声波传感器的距离的技术。
该技术具有非接触、非破坏、测量范围广、分辨率高等特点,在物流、自动化控制、智能家居等领域得到广泛应用。
为了满足高精度测距的需求,本文设计了一种基于STM32单片机的高精度超声波测距系统。
2. 系统设计2.1 系统框图+----[超声波发射电路]----+| |超声波发射器————||+----[超声波接收电路]----|| |超声波接收器————|———————[模数转换电路]——————|———————[STM32单片机控制电路]2.2 超声波发射电路超声波发射电路由超声波发射器和驱动电路组成。
超声波发射器将电信号转换为超声波信号并发射出去。
驱动电路负责对超声波发射器进行驱动。
设计中采用了高频谐振电路作为超声波发射电路的驱动电路。
2.3 超声波接收电路超声波接收电路由超声波接收器和放大电路组成。
超声波接收器接收到超声波信号后将其转换为电信号,并通过放大电路将电信号放大。
设计中采用了能够满足高精度测距要求的超声波接收器和放大电路。
2.4 模数转换电路模数转换电路主要负责将模拟信号转换为数字信号。
设计中采用了高精度的模数转换器来完成此任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
介质与被测物体的介质不同。因此,当激励脉冲传
mm,步进时间为 1.2 µs。
在上述基础上,进行深层次的开发。要求如
下:(1)当被测厚度大于 100 mm 时,要求通过
“扩展延迟”,保证覆盖整个测量范围,从而实现
宽范围的高精度测量。(2)实现自动测厚、测速
的功能。
2 实验原理及方案
2.1 超声波测厚原理 当振动频率为 20 kHz 以上的超声波在均匀介
Abstract — This paper designs a set of experimental circuit of intelligent ultrasonic thickness measurement system based on single chip computer control. It analyses the basic principle of ultrasonic thickness measurement, demonstrates the design scheme of the system, and then gives the test requirements and methods of the experiment. Experiments show that through this experiment, we can fully grasp the principle of single chip computer and its application expertise, and solve the practical problems in the process of modern scientific research and development. Index Terms — MCU control, ultrasonic, thickness measurement, velocity measurement.
中图分类号:TB553 文章编号:1674-2583(2019)05-0103-02 DOI:10.19339/j.issn.1674-2583.2019.05.040 中文引用格式:张文远,宋苏阳,张捷,茹国宝.基于单片机控制的智能超声波测厚系统的设计[J].集成电 路应用, 2019, 36(05): 103-104.
图 1 超声波测厚原理
基金项目:湖北省教育系统科技创新课题项目。 作者简介:张文远,武汉大学电子信息学院,研究方向:电子信息技术应用。 通信作者:茹国宝,武汉大学电子信息学院,教授,博士,研究方向:电子控制与通信。
收稿日期:2019-04-04,修回日期:2019-04-22。
ห้องสมุดไป่ตู้
集成电路应用 第 36 卷 第 5 期(总第 308 期)2019 年 5 月 103
脉冲。(2)通过产生阶梯波和小斜波,获得步进
间的时间间隔来测算被测介质的厚度。
系统的取样信号,经 A/D 转换成界面波和底波的
图 1 中,左方第一个是激励脉冲,它通过电
数字量,并存贮于存储器中。(3)当被测厚度小
缆送到探头,探头受到激励而产生振动。由于探头
于 100 mm 时,要求测厚系统的测量精度为 0.01
Applications 创新应用
基于单片机控制的智能超声波测厚系统
的设计
张文远1,宋苏阳2,张捷3,茹国宝1 (1. 武汉大学电子信息学院,湖北 430072; 2. 华中科技大学光电学院,湖北 430074; 3. 华中科技大学同济医学院附属梨园医院,湖北 430077)
摘要:设计了一套基于单片机控制的智能超声波测厚系统的实验电路。分析超声波测厚的基本原理,对 系统的设计方案进行了论证,进而给出了该实验的考核要求与方法。实验表明,通过该实验,可全面掌 握单片机原理及其应用方面的专业知识,解决现代科研开发过程中的实际问题。 关键词:单片机控制;超声波;测厚;测速。
2. College of Optoelectronics, Huazhong University of Science and Technology, Hubei 430074, China. 3. Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hubei 430077, China. )
创新应用 Applications
输到界面 a 时就会产生回波,称为“界面波”。除
了反射回界面波之外,还有一部分超声波将在被测
物体中继续传播,当它到达界面 b 时,又会产生回
波,称为“底波”。显然,界面波和底波之间的时
间间隔与被测物体的厚度成正比。设超声波在被测
物体中的传播速度为 v,被测物体的厚度为 d,界
面波和底波之间的时间为 t,则有式(1)。
d=v×0.5×t
(1)
当被测物体给定之后,超声波在其中的传播速
度 v 便是一个已知量,因此测定出 t 就可以求出被
测物体的厚度 d。
2.2 实现方案
基于单片机控制的智能超声波测厚系统(图
2)主要采用步进取样的方法采集界面波和底波,其
工作分取样存贮、数据处理和显示三个过程。
Design of Intelligent Ultrasound Thickness
Measurement System Based on MCU Control
ZHANG Wenyuan1, SONG Suyang2, ZHANG Jie3, RU Guobao1 ( 1. School of Electronic Information, Wuhan University, Hubei 430072, China.
1 引言
质中传播时,其传播速度不变且基本沿直线传播。
实验内容与任务:根据所学知识,设计一套
但当它通过一种介质和另一种介质分界面时,部分
基于单片机控制的智能超声波测厚系统。基本要
超声波将反射会形成回波。超声波测厚就是根据超
求为:(1)产生振动频率为 20 kHz 的超声波
声波进入被测介质和退出被测介质时所产生回波之