统计学 - 发展过程
统计学的发展历史

统计学的发展历史从统计学的产生和发展过程来看,可以把统计学大致分为古典统计学、近代统计学、现代统计学三个时期。
(1)古典统计学时期。
17世纪中叶至18世纪中叶统计学的萌芽时期,当时主要有国势学派和政治算术学派。
(2)近代统计学时期。
18世纪末到19世纪末期,主要是数理统计学派和社会统计学派。
(3)现代统计学时期。
20世纪迄今的统计学发展时期,数理统计学发展的主流从描述统计学转向推断统计学。
统计发展史标明,统计学是从设置指标研究现象的数量变化开始的,随着社会的发展和实践需要,统计学也在不断发展和演变。
它的作用与功能已从描述事物现状、反映事物规律向抽样推断、预测未来变化的方向发展。
统计学发展概述由于人类的统计实践是随着计数活动而产生的,因此,统计发展史可以追溯到远古的原始社会,也就是距今有5000多年的漫长岁月。
但是,能使人类的统计实践上升到理论上予以概括总结的程度,即开始成为一门系统的科学统计学,却是近代的事情,距今只有300余年的短暂历史。
统计学发展的概貌,大致可划分为古典记录统计学、近代描述统计学和现代推断统计学三种形态。
古典记录统计学拉普拉斯的主要贡献深入了“概率论”的研究推广了“概率论”在统计中的应用明确了“统计学”的大数法则进行了“大样本”的统计高斯的主要贡献建立最小二乘法发现高斯分布近代描述统计学高尔顿的主要贡献初创生物统计学对统计学的贡献:提出“平均数离差法则”、论述“相关”的统计意义、提出“回归”概念皮尔森的主要贡献变异数据的处理。
首创频率分布表和频率分布直方图分布曲线的选配。
利用相对“斜率”的方法得到12种分布函数型,包括正态分布、矩形分布和U型分布等。
卡方检验的提出。
回归于相关的发展现代推断统计学哥赛特的t检验与小样本思想1908年,哥赛特首次以“学生”的笔名在<生物计量学>杂志上发表了“平均数的概率误差”。
由于这篇文章提供了“学生t检验”的基础,为此,许多科学家把1908年看做是统计推断理论的里程碑。
简述统计发展的历程

简述统计发展的历程统计是一门应用数学的学科,它通过收集、整理、分析和解释数据来揭示事物的规律和变化趋势。
统计的发展历程可以追溯到古代,随着人类社会的不断发展,统计逐渐成为一种重要的工具和方法。
本文将简述统计发展的历程。
古代统计:起源与应用统计最早可以追溯到古代社会的人口普查和土地调查。
在古代,人们经常进行人口普查,统计人口数量和分布情况。
同时,土地调查也是古代统计的重要内容,通过统计土地的面积和利用情况,可以了解农业生产的状况。
这些统计数据对于统治者制定政策和管理国家起到了重要的作用。
现代统计的奠基者:高斯与拉普拉斯现代统计学的奠基者可以追溯到18世纪的高斯和拉普拉斯。
高斯是著名的数学家,他提出了正态分布和最小二乘法等重要概念和方法,为统计学的发展奠定了基础。
拉普拉斯则在概率论和统计学领域做出了重要的贡献,他提出了拉普拉斯变换和最大似然估计等概念,为统计学的发展提供了重要的理论支持。
统计学的建立与发展19世纪是统计学发展的关键时期,统计学作为一门独立的学科开始建立起来。
在这一时期,统计学家们开始研究统计数据的收集和分析方法,提出了一系列的统计学理论和方法。
例如,皮尔逊提出了相关系数和卡方检验等概念,费歇尔提出了方差分析和随机化实验设计等方法。
这些理论和方法的提出,为统计学的发展打下了坚实的基础。
统计学的应用领域不断扩展20世纪是统计学蓬勃发展的时期。
随着科学技术的进步和社会经济的发展,统计学的应用领域不断扩展。
在医学领域,统计学被广泛应用于临床试验和流行病学调查,为医学研究提供了重要的方法和工具。
在经济学领域,统计学被用于经济数据的分析和预测,为经济政策的制定和评估提供了依据。
在社会科学领域,统计学也被广泛应用于民意调查和社会调查,为社会问题的研究和解决提供了帮助。
统计学的发展与技术进步随着计算机技术的快速发展,统计学的发展也得到了极大的推动。
计算机的出现使得大规模数据的分析成为可能,统计学家们可以更加高效地处理和分析数据。
统计学的发展历程

统计学的发展历程统计学是研究收集、整理、分析和解释数据的学科。
它的发展历程可以追溯到古希腊和古罗马时期。
随着时间的推移,统计学逐渐演变为一门独立的学科,并在各个领域有着广泛的应用。
本文将按时间顺序介绍统计学的发展历程。
1. 古代统计学在古希腊和古罗马时期,人们开始对人口、土地面积和资源等进行统计。
这些统计数据用于税收、军事和政治管理。
其中,亚里士多德是最早将统计方法引入科学研究的人之一。
他使用统计分析来研究物种分类和社会现象。
2. 概率论的出现17世纪,概率论的出现为统计学的发展提供了新的视角。
布莱兹·帕斯卡和皮埃尔·德费尔马特在解决赌博问题时提出了概率的概念。
这为后来的统计学家们提供了统计推断和估计的理论基础。
3. 统计学的建立18世纪,统计学逐渐成为一门独立的学科。
托马斯·贝叶斯和雅各布·贝尔努利等学者对概率和统计方法进行了深入研究。
他们提出了贝叶斯定理和最大似然估计等重要概念,为统计学的推理和预测建立了基础。
4. 现代统计学的发展20世纪,随着计算机技术的发展,统计学迎来了飞速的发展。
罗纳德·费雪等统计学家提出了许多重要的统计方法和理论,如方差分析、回归分析和抽样理论等。
这些方法不仅广泛应用于实证研究,而且对决策制定和政策评估也有着重要影响。
5. 应用领域的拓展统计学在各个领域都有广泛的应用。
在医学领域,统计学用于临床试验设计和结果分析,帮助医生做出正确的诊断和治疗方案。
在环境科学领域,统计学被用于分析气候变化和环境污染等数据,为环境保护提供科学依据。
在金融领域,统计学被用于风险管理和投资组合优化,帮助投资者做出明智的决策。
总结起来,统计学的发展经历了从古代的数据收集到现代的统计推断和预测的过程。
随着时间的推移,统计学不断丰富和拓展,成为一门重要的学科。
它的应用不仅帮助我们更好地理解数据,还为科学研究和决策制定提供了有力的工具和方法。
我们有理由相信,在未来的发展中,统计学将继续发挥重要的作用,并为人类社会带来更大的进步。
统计学的产生与发展

统计学的产生与发展统计学的产生与发展是一个悠久且不断演进的过程。
统计学的萌芽产生在欧洲,其原始形态可以追溯到远古社会的“结绳记数”,这是人类统计实践活动的起点,标志着统计学的远古起源。
然而,统计实践上升为理论并形成统计学的时期,则是近代的事情,距今只有300多年的历史。
从17世纪中叶到18世纪中叶,这是统计学的创立时期,也被称为古典统计学时期。
在这一时期,统计学理论初步形成了一定的学术派别,主要有国势学派和政治算术学派。
国势学派又称记述学派,主要产生于17世纪的德国,以文字记述国家的显著事项。
而政治算术学派则更侧重于用数字和分析方法来研究社会经济问题。
从18世纪末到19世纪末,统计学进入了近代时期。
这一时期的主要贡献是建立和完善了统计学的理论体系,并逐步形成了以随机现象的推断统计为主要内容的数理统计学和传统的政治经济现象描述为主要内容的社会统计两大学派。
数理统计并非独立于统计学的新学科,而是统计学在第三个发展阶段所形成的所有收集和分析数据的新方法的一个综合性名词。
从19世纪末开始,统计学进入了现代统计学时期。
在这个时期,数理统计学与社会统计学逐步融合成为统一的现代统计学。
这一时期的统计学不仅在理论和方法上有了更深入的发展,而且应用领域也更为广泛,涵盖了社会科学、自然科学、工程技术等多个领域。
总的来说,统计学的产生与发展是和生产的发展、社会的进步紧密相联的。
它伴随着人类社会的发展,从最初的简单计数到如今的复杂数据分析,经历了从描述性统计到推断性统计,再到现代统计学的演变过程。
如今,统计学已经成为一门重要的方法论科学,广泛应用于各个领域,为人类的科学研究和社会发展提供了有力的支持。
了解统计学的历史和发展

了解统计学的历史和发展统计学是一门研究数据收集、分析和解释的学科,广泛应用于各个领域,如经济学、社会学、医学等。
了解统计学的历史和发展对于理解这门学科的基本概念和方法、掌握其应用的原理和技巧具有重要意义。
本文将带领读者回顾统计学的发展历程,介绍统计学的基本原理和方法,并探讨其在现代社会中的应用。
一、统计学的起源统计学的起源可以追溯到古代社会的人口普查和土地调查。
在古代,人们常常需要对人口数量、财富分配和土地利用等进行统计,以便更好地管理资源和收税。
然而,当时的统计方法较为简单,主要依赖于人工数数和记录。
随着科学方法的发展,统计学逐渐形成了自己的理论体系和方法论。
17世纪,意大利数学家威廉·莱布尼兹和雅各布·贝尔努利等人开始探索数据的收集和分析方法,并提出了一些基本的概率理论。
18世纪,英国政治家约翰·格雷和法国统计学家阿道夫·奥古斯特·奥古斯坦·克尔尼对人口数据进行了深入研究,并提出了一些基本的统计原理。
二、统计学的基本原理和方法统计学的基本原理主要包括概率、抽样和推断。
概率是指随机事件发生的可能性,通过概率理论可以对事件的发生进行量化和分析。
抽样是指从总体中选择一部分样本进行观察和测量,通过对样本数据的分析可以推断总体的特征和规律。
推断是指通过对样本数据进行统计分析,进而推断总体数据的特征和规律。
统计学的方法主要包括描述统计和推断统计。
描述统计是对数据进行汇总、整理和展示,以便更好地理解数据的特征和分布。
常用的描述统计方法包括频数分布表、直方图和散点图等。
推断统计是通过对样本数据的分析,来推断总体数据的特征和规律。
常用的推断统计方法包括参数估计、假设检验和回归分析等。
三、统计学的应用统计学在现代社会中广泛应用于各个领域。
在经济学中,统计学被用来分析经济数据,预测经济走势,评估经济政策的效果。
在社会学中,统计学被用来研究社会现象和社会关系,如人口数量、教育水平和就业情况等。
统计学的历史与发展

统计学的历史与发展统计学是研究数据收集、分析、解释和呈现的科学方法。
它通过使用数学和统计原理来帮助我们理解和解释现实世界中的数据,从而对各种问题做出准确的判断和预测。
本文将介绍统计学的历史发展,详细探讨统计学在不同领域的应用,以及未来统计学的发展趋势。
1. 古代统计学的起源在古代,人们就开始意识到数据的重要性,并通过不同的方式进行数据的收集和分析。
例如,古代中国的黄帝内经中就包含了对人群体质的统计分析,为后世的医学研究提供了有力的依据。
另外,古代埃及和巴比伦也培养了一些数据处理和计算的技术。
2. 统计学的现代起源统计学的现代起源可以追溯到17世纪。
正是在这个时期,人们开始关注经济和人口的统计数据,并意识到这些数据对社会和政府决策的重要性。
1654年,约翰·格劳恩沃尔德在《观察论》中首次提出了一些现代统计学的概念,为统计学的发展奠定了基础。
随着时间的推移,统计学的理论和方法逐渐完善。
3. 统计学的应用领域统计学的应用领域广泛,几乎渗透到各个学科和行业。
在社会科学领域,统计学被用于研究人口、教育、经济等方面的数据,帮助分析社会现象和问题。
在自然科学领域,统计学在物理学、化学、生物学等领域中起着重要作用,帮助科学家通过数据分析和实验设计得出结论。
此外,统计学在医学、工程、金融等领域也有广泛的应用。
4. 统计学的发展趋势随着科技的进步和大数据时代的到来,统计学将面临更多挑战和机遇。
首先,统计学将需要适应和应用新兴技术,例如机器学习和人工智能,以提高数据处理和分析的效率。
其次,统计学将需要更多的跨学科合作,与其他领域的专家共同解决复杂的问题。
此外,统计学还应注重数据伦理和隐私保护,确保数据的合法和安全使用。
综上所述,统计学作为一门重要的科学方法,在数据分析和解释方面发挥着重要作用。
它的历史发展可以追溯到古代,而现代统计学的起源可以从17世纪开始。
统计学在各个学科和行业都有广泛的应用,未来将面临更多的挑战和机遇。
统计学的产生与发展简介
统计学的产生与发展简介人类的统计实践是随着记数活动而产生的。
因此,对统计发展的历史可追溯到远古的原始社会。
但是,使人类的统计实践上升到理论予以总结和概括成一门系统的科学----统计学,却是近代的事情,距今只有300多年的历史。
从统计学的产生和发展过程来看,大致可以分为三个时期:萌芽期⇒近代期⇒现代期1.萌芽期(17世纪中叶~18世纪)主要学派:国势学派(代表人物为德国的H.Conring和G.Achenwall);政治算术学派(代表人物为英国的W.Petty)。
国势学派所做的工作主要是对国家重要事项的记录,因此又称为“记述学派”。
严格讲,这一学派的研究对象和研究方法都不符合统计学的要求,但国势学派对统计学的创立和发展作了不少贡献:(1)为这门新兴的学科起了一个至今仍为世界公认的名词:“统计学”(statistics);(2)提出了至今仍为统计学者所采用的一些术语,如:“显著事项“,“统计数字资料”,“数字对比”等等。
政治算术学派的代表人物W.Petty曾被马克思称为“政治经济学之父,在某种程度上也可以说是统计学的创始人”。
原因就是W.Petty 在他所著的《政治算术》一书中,对当时的英国、荷兰、法国之间的“国富和力量”进行了数量上的计算和比较,做了前人从没有做过的从数量方面来研究社会经济现象的工作。
政治算术学派对统计学的主要贡献:(1)不仅满足于社会经济现象的数量登记、列表、汇总、记述等过程,还要求把这些统计经验加以全面系统地总结,并从中提炼出某些理论原则。
(2)在搜集资料方面,提出了“大量观察法”、“典型调查”、“定期调查”等思想。
(3)在处理资料方面,广泛运用了分类、制表以及各种指标来浓缩与显现数量资料的内涵信息。
2.近代期(18世纪末~19世纪)主要学派:数理统计学派(代表人物为法国的place和比利时的A .Quetelet);社会统计学派(代表人物为德国的K.G.A.Knies和C.L.E.Engel)。
统计学的发展历程
统计学的发展历程统计学是一门研究数据采集、分析和解释的学科。
它起源于古代人类对数据的记录和分析的需求,并在过去几个世纪中不断发展和演变。
以下是统计学的发展历程的详细描述。
1. 古代统计学的起源统计学的起源可以追溯到古代文明时期,人们开始对人口、土地和财富等数据进行记录和分析。
古代埃及、巴比伦和中国等文明都有相关的统计记录,例如埃及的人口普查和中国的农业产量统计。
2. 概率论的发展17世纪,概率论的发展为统计学的进一步发展奠定了基础。
数学家布莱兹·帕斯卡和皮埃尔·德费尔马特等人对概率论进行了深入研究,为后来的统计学家提供了理论基础。
3. 统计学的早期发展18世纪末到19世纪初,统计学开始成为一门独立的学科。
德国数学家卡尔·高斯和英国统计学家弗朗西斯·高尔顿等人对统计学的理论和方法进行了重要的贡献。
高斯提出了正态分布曲线和最小二乘法等概念,高尔顿则开创了现代统计学的基本原理。
4. 统计学的应用拓展19世纪中叶,统计学开始在各个领域得到广泛应用。
政府机构开始使用统计学方法进行人口普查和经济数据采集。
同时,统计学也在医学、社会学和心理学等学科中得到应用,为这些学科的研究提供了数据支持。
5. 现代统计学的兴起20世纪,随着计算机技术的发展,统计学进入了一个新的阶段。
数学家罗纳德·费舍尔和杰拉尔德·韦尔斯等人提出了现代统计学的基本原理和方法,例如假设检验、方差分析和回归分析等。
统计学开始广泛应用于科学研究、工程和商业领域。
6. 统计学的发展与创新近年来,随着大数据时代的到来,统计学又面临了新的挑战和机遇。
统计学家们不断创新和发展新的统计方法和模型,以适应大数据分析的需求。
机器学习、数据挖掘和人工智能等技术的发展也为统计学带来了新的发展机遇。
总结:统计学的发展历程经历了数千年的演变和创新。
从古代的数据记录到现代的大数据分析,统计学在科学研究、社会和经济发展中发挥着重要的作用。
统计学发展历程简述
统计学发展历程简述
统计学是一门通过搜索、整理、分析数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。
其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。
据权威统计学史记载,从17世纪开始就有了“政治算术”、“国势学”,即初级的社会统计学,起源于英国、德国。
几乎同时在意大利出现了“赌博数学”,即初级的概率论。
直到19世纪,由于概率论出现了大数定理和误差理论,才形成了初级的数理统计学。
也就是说,社会统计学的形成早于数理统计学两个世纪。
由于社会统计学广泛地用于经济和政治,所以得到各国历届政府的极大重视,并得到系统的发展。
而数理统计在20世纪40年代以后,由于概率论的发展,而得到飞速发展。
经过近400年的变迁,目前世界上已形成社会统计学和数理统计学两大体系。
两体系争论不休,难分伯仲。
简述统计学的发展历程
简述统计学的发展历程统计学的发展历程就像一段奇妙的旅程,走过的每一步都充满了惊喜和挑战。
想想看,早在古代,咱们的祖先们就开始用数数来解决问题了,生活中碰到的各种事情,都得依靠数量来搞定。
比如,谁家的羊多,谁家的庄稼丰收,都是通过数来判断的。
这可真是统计学的雏形啊,简直就像在开荒种地,没想到后面会收获如此丰硕的果实。
再往后发展,到了18世纪,统计学开始变得有点像个小明星了,慢慢地吸引了大家的目光。
那个时候,欧洲正是科学发展的热潮,数学家们就像是披着白大褂的超人,纷纷拿起笔,开始研究数据的收集和分析。
比如,那个有名的统计学家高斯,他就像是一个调皮的孩子,总是想方设法把复杂的问题变得简单明了。
他的“高斯分布”就像是给统计学打了鸡血,让大家看到了数据分析的无穷可能。
快到19世纪,统计学变得更加成熟了。
这个时期,各种各样的调查开始流行,大家都想知道自己的国家、社会到底是什么样子的。
人口普查就像是家长在每年开家长会,看看孩子们的成长情况,数据分析变得越来越重要。
那个时候,数据的使用开始出现在政治、经济、社会各个方面,统计学俨然成了社会发展的“黑科技”。
就像是一个好帮手,无处不在。
进入20世纪,统计学的变化就更为惊人了。
你可以想象,二战后的世界,科学技术的飞速发展给统计学带来了新的机遇。
大数据的概念悄然兴起,大家开始觉得,光靠几个数据就能解开很多秘密。
各种新工具层出不穷,计算机的出现就像是为统计学插上了翅膀,数据的处理速度快得让人眼花缭乱。
统计学家们如同大海中的水手,借助这些新工具,驶向了前所未有的广阔天地。
而如今,统计学简直就像是一位万事通,几乎渗透到我们生活的方方面面。
你看啊,从手机上的应用程序到商业决策,从医学研究到天气预报,统计学都在发挥着关键作用。
数据分析变得像做饭一样简单,谁都能动手尝试,统计工具就像是厨房里的小电器,帮你轻松搞定大菜。
就算是小孩也能用统计学来玩游戏,真是让人感慨科技的进步。
在这个信息爆炸的时代,统计学的角色也变得愈发重要了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1发展过程
统计在金融上应用广泛
统计学的英文statistics最早源于现代拉丁文statisticum collegium(国会)
以及意大利文statista(国民或政治家)。
德文Statistik,最早是由Gottfried Achenwall于1749年使用,代表对国家的资料进行分析的学问,也就是“研
究国家的科学”。
在十九世纪统计学在广泛的数据以及资料中探究其意义,并
且由John Sinclair引进到英语世界。
统计学是一门很古老的科学,一般认为其学理研究始于古希腊的亚里斯多德时代,迄今已有两千三百多年的历史。
它起源于研究社会经济问题,在两千多年
的发展过程中,统计学至少经历了“城邦政情”,“政治算数”和“统计分析
科学”三个发展阶段。
所谓“数理统计”并非独立于统计学的新学科,确切地说:它是统计学在第三个发展阶段所形成的所有收集和分析数据的新方法的一
个综合性名词。
概率论是数理统计方法的理论基础,但是它不属于统计学的范畴,而属于数学的范畴。
城邦政情
“城邦政情”(Matters of state)阶段始于古希腊的亚里斯多德撰写“城邦政情”或“城邦纪要”。
他一共撰写了一百五十馀种纪要,其内容包括各城邦的
历史、行政、科学、艺术、人口、资源和财富等社会和经济情况的比较、分析,具有社会科学特点。
“城邦政情”式的统计研究延续了一两千年,直至十七世
纪中叶才逐渐被“政治算数”这个名词所替代,并且很快被演化为“统计学”(Statistics)。
统计学依然保留了城邦(state)这个词根。
政治算术
威廉·配第
与“城邦政情”阶段没有很明显的分界点,本质的差别也不大。
“政治算术”的特点是统计方法与数学计算和推理方法开始结合。
分析社会经济问题的方式更加注重运用定量分析方法。
1690年英国威廉·配弟出版《政治算数》一书作为这个阶段的起始标志。
威廉·配第用数字,重量和尺度将社会经济现象数量化的方法是近代统计学的重要特征。
因此,威廉·配第的《政治算术》被后来的学者评价为近代统计学的来源,威廉·配第本人也被评价为近代统计学之父。
配第在书中使用的数字有三类:
第一类是对社会经济现象进行统计调查和经验观察得到的数字.因为受历史条件的限制,书中通过严格的统计调查得到的数据少,根据经验得出的数字多;
第二类是运用某种数学方法推算出来的数字。
其推算方法可分为三种:
平均数为基础进行推算的方法”;
第三类是为了进行理论性推理而采用的例示性的数字。
配第把这种运用数字和符号进行的推理称之为“代数的算法”。
从配第使用数据的方法看,“政治算数”阶段的统计学已经比较明显地体现了“收集和分析数据的科学和艺术”特点,统计实证方法和理论分析方法浑然一体,这种方法即使是现代统计学也依然继承。
[1]
统计分析科学
在“政治算术”阶段出现的统计与数学的结合趋势逐渐发展形成了“统计分析科学”。
十九世纪末,欧洲大学开设的“国情纪要”或“政治算数”等课程名称逐渐消失,代之而起的是“统计分析科学”课程。
当时的“统计分析科学”(Science of statistical analysis)课程的内容仍然是分析研究社会经济问题。
“统计分析科学”课程的出现是现代统计发展阶段的开端. 1908年,“学生”
氏(William Sleey Gosset的笔名Student)发表了关于t分布的论文,这是一
篇在统计学发展史上划时代的文章。
它创立了小样本代替大样本的方法,开创
了统计学的新纪元。
正态分布的钟型曲线
现代统计学的代表人物首推比利时统计学家奎特莱(Adolphe Quelet),他将统计分析科学广泛应用于社会科学,自然科学和工程技术科学领域,因为他深信
统计学是可以用于研究任何科学的一般研究方法.
现代统计学的理论基础概率论始于研究赌博的机遇问题,大约开始于1477年。
数学家为了解释支配机遇的一般法则进行了长期的研究,逐渐形成了概率论理
论框架。
在概率论进一步发展的基础上,到十九世纪初,数学家们逐渐建立了
观察误差理论,正态分布理论和最小平方法则。
于是,现代统计方法便有了比
较坚实的理论基础。
主要术语
统计学(statistics):收集、处理、分析、解释数据并从数据中得出结论的科学。
描述统计(descriptive statistics):研究数据收集、处理和描述的统计学方法。
推断统计(inferential statistics):研究如何利用样本数据来推断总体特征的统计学方法。
变量(variable):每次观察会得到不同结果的某种特征。
分类变量(categorical variable):观测结果表现为某种类别的变量。
顺序变量(rank variable):又称有序分类变量,观测结果表现为某种有序类别的变量。
数值型变量(metric variable):又称定量变量,观测结果表现为数字的变量。
均值(mean):均值也就是平均数,有时特指算术平均数,这是相对其他方
式计算的均值,求法是先将所有数字加起来,然后除以数字的个数,这是测量
集中趋势,或者说平均数的一种方法。
中位数(median):也就是选取中间的数,要找中位数,首先需要从小到大排序,排序后,再看中间的数字是什么。
众数(mode):众数也就是数据集中出现频率最多的数字。
[2]
相关观念
统计中的各种图
为了将统计学应用到科学,工业以及社会问题上,我们由研究母体开始。
这可能是一个国家的人民,石头中的水晶,或者是某家特定工厂所生产的商品。
一个母体甚至可能由许多次同样的观察程序所组成;由这种资料收集所组成的母体我们称它叫时间序列。
为了实际的理由,我们选择研究母体的子集代替研究母体的每一笔资料,这个子集称做样本。
以某种经验设计实验所搜集的样本叫做资料。
资料是统计分析的对象,并且被用做两种相关的用途:描述和推论。
描述统计学处理有关叙述的问题:资料是否可以被有效的摘要,不论是以数学或是图片表现,以用来代表母体的性质?基础的数学描述包括了平均数和标准差。
图像的摘要则包含了许多种的表和图。
推论统计学被用来将资料中的数据模型化,计算它的机率并且做出对于母体的推论。
这个推论可能以对/错问题的答案所呈现(假设检定),对于数字特征量的估计(估计),对于未来观察的预测,关联性的预测(相关性),或是将关系模型化(回归)。
其他的模型化技术包括变异数分析(ANOVA),时间序列,以及数据挖掘。
相关的观念特别值得被拿出来讨论。
对于资料集合的统计分析可能显示两个变量(母体中的两种性质)倾向于一起变动,好像它们是相连的一样。
举例来说,对于人收入和死亡年龄的研究期刊可能会发现穷人比起富人平均来说倾向拥有较短的生命。
这两个变量被称做相关的。
但是实际上,我们不能直接推论这两个变量中有因果关系;参见相关性推论因果关系(逻辑谬误)。
如果样本足以代表母体的,那么由样本所做的推论和结论可以被引申到整个母体之上。
最大的问题在于决定样本是否足以代表整个母体。
统计学提供了许多方法来估计和修正样本和收集资料过程中的随机性(误差),如同上面所提到的透过经验所设计的实验。
参见实验设计。
要了解随机性或是机率必须具备基本的数学观念。
数理统计(通常又叫做统计理论)是应用数学的分支,它使用机率论来分析并且验证统计的理论基础。
任何统计方法是有效的只有当这个系统或是所讨论的母体满足方法论的基本假设。
误用统计学可能会导致描述面或是推论面严重的错误,这个错误可能会影响社会政策,医疗实践以及桥梁或是核能发电计划结构的可靠性。
即使统计学被正确的应用,结果对于不是专家的人来说可能会难以陈述。
举例来说,统计资料中显著的改变可能是由样本的随机变量所导致,但是这个显著性可能与大众的直觉相悖。
人们需要一些统计的技巧(或怀疑)以面对每天日常生活中透过引用统计数据所获得的资讯。