高分子材料学

合集下载

《高分子材料学》名词解释

《高分子材料学》名词解释

1.高分子材料:以高分子化合物为基材加入适当助剂,经过混炼的能够进行成型加工的材料。

2.高分子化合物:是指那些众多原子或原子团主要以共价键结合而成的相对分子量在1万以上的化合物3.重复单元:在聚合物的大分子链上重复出现的、组成相同的最小基本单元4.结构单元:重复单元中包括的更小的不能再分的结构单位。

5.聚合度:即聚合物大分子链所含结构单元数目的平均值。

6.分散性:聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小不一的专业术语7.连锁聚合:活性中心引发单体并迅速连锁增长的聚合反应8.逐步聚合:无活性中心,单体官能团之间相互反应而使分子链逐步增长的聚合反应9.加聚反应:烯类单体经过加成而聚合起来的反应10.缩聚反应:单体经过多次缩合而聚成的大分子反应产物,并伴随小分子生成的反应。

11.热塑性聚合物:聚合物大分子之间以物理力聚而成,加热时可熔,并能溶于适当溶剂中的聚合物,受热时可塑化,冷却时可固化成型。

12.热固性聚合物:加热条件下发生了交联反应,形成了网状或体型结构,再加热时不能熔融塑化,也不能溶于溶剂,这类聚合物称为热固性聚合物。

13.聚合反应:由低分子单体合成聚合物的反应14.自由基聚合:用自由基作为活性中心引发,使链增长自由基不断增长的聚合反应15.诱导效应:有机分子引入一原子或基团后,使分子中成键电子云密度发生变化:从而使化学键发生极化的现象16.诱导分解:诱导分解实际上是自由基向引发剂的转移反应:其结果是引发剂效率降低17.笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基,始终处于含大量溶剂分子的高粘度聚合物溶液的包围之中:一部分初级自由基无法与单体分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低18.半衰期:在一定的温度下,引发剂分解至起始浓度一半时所需的时间,用于衡量引发剂活性或反应速率的大小19.引发效率:引发聚合的这部分引发剂占引发剂分解消耗总量的分率称为引发剂效率20.自由基寿命:自由基从产生到引发单体聚合形成聚合物的这段时间。

药用高分子材料学PPT.

药用高分子材料学PPT.
200家辅料生产厂或药厂会员
Drug Application, NDA)中已有完全或部分应用的辅 料。
4、国际药用辅料协会(IPEC)和药用辅料 一体化
国际药用辅料协会 (International Pharmaceutical Excipients Council,
IPEC) 致力于药用辅料及其药典标准一体化的全球性、 非官方、非赢利的制药工业组织,在美国、欧洲 和日本各有相互联系但又独立的分会。
新的药用辅料指在我国首次生产并应用的药用辅料。
原来分类:
我国辅料审评办法中将辅料分为2类
❖ 一类辅料系指全新的、目前尚未在任一 先进国家被批准使用的辅料;
❖ 二类辅料则是指已在国外药典收载或已 经在正式批准的制剂中使用、国内进行 仿制开发的辅料。
2、日本的辅料审批法规
新辅料除全新化合物外还包括: (1)已批准的食品添加剂或已批准的化妆品材
料申请用于口服或外用且从未用作药用辅料者; (2)在国外已有应用但未在日本使用者; (3)在日本已有应用,但改变给药途径或超过
原用量者。
3、美国食品和药品管理局(FDA)对辅料的 管理
FDA主张使用符合以下一项条款或一项以上条款的辅料: 即FDA认定为“GRAS”类型的辅料(即“通常被确认安
全”,generally recognized as safe) 这些辅料包括: 药典、官方文件及权威出版物中收录的辅料 在药品中已广泛使用的辅料 已批准用作食品添加剂或化妆品添加剂的辅料 因某种特殊作用在已批准的特定剂型的新药(New
肠溶衣材料
纤维素衍生物
取代
虫胶
丙烯酸树脂 纤维素衍生物
薄膜包衣工艺
贡献ቤተ መጻሕፍቲ ባይዱ
制剂包衣工艺

药用高分子材料学

药用高分子材料学

药用高分子材料学药用高分子材料学是研究药物与高分子材料相互作用的学科,它将高分子材料的独特性能与药物的治疗效果相结合,有力地推动了药物传递和药物治疗领域的发展。

药用高分子材料是指那些在药物传递和控释系统中应用的材料,它们具有良好的生物相容性和生物可降解性,能够与药物稳定结合并通过体内的代谢和排出途径进行自行降解。

这些材料具有多种形态,包括颗粒、纳米粒、微球、纤维、薄膜等,可以通过不同的制备方法进行制备。

药用高分子材料的研究主要集中在以下几个方面:1.控释系统:药物的快速释放容易导致药物的代谢和排泄,降低治疗效果。

因此,研究人员开发了一些控释系统,例如微球、纳米粒等,通过调节材料的构型和孔隙结构来控制药物的释放速度和时间,从而确保药物可以持续稳定地释放。

2.靶向传递:药物的靶向传递是指将药物直接送达到疾病部位,减少对正常细胞的损害。

药用高分子材料可以作为药物载体,经过改性后具有靶向识别特性,可以通过配体-受体相互作用、磁性导引等方式将药物精确地传递到病变组织。

3.仿生组织工程:随着组织工程学的发展,药用高分子材料也被广泛应用于修复和再生组织。

例如,通过制备生物可降解的支架材料,可以在体内形成新的组织,加速伤口愈合和损伤修复。

4.药物检测:药用高分子材料也可以用于药物的检测,例如利用其光学、电化学、磁性等特性,开发出一系列荧光探针、电化学传感器和磁共振成像探针,用于检测药物的浓度和分布。

药用高分子材料的应用已经取得了一系列的研究进展。

例如,通过调控高分子材料的结构和性质,可以改善药物的溶解度和稳定性,提高药物的生物利用度。

同时,还可以优化药物的代谢途径和药效学特性,加强药效的持续性和生物活性。

总之,药用高分子材料学在药物传递和药物治疗领域具有重要的应用前景,有望进一步推动药物研发和临床治疗的发展。

药用高分子材料学

药用高分子材料学

药用高分子材料学
药用高分子材料学是一门研究药物在高分子材料中的载体、释放、控制释放等方面的学科。

它将高分子材料与药物相结合,旨在提高药物的生物利用度、降低毒性、改善稳定性和控制释放速率。

在医药领域中,药用高分子材料学具有重要的应用价值,对于提高药物疗效、减少药物副作用、改善药物的稳定性和控制释放速率都有重要意义。

首先,药用高分子材料学在药物的载体方面发挥着重要作用。

传统的药物往往需要通过口服或注射等方式进入人体,但由于药物本身的特性,往往会受到胃酸、酶解、免疫系统等的影响,导致药物的生物利用度较低。

而利用高分子材料作为药物的载体,可以提高药物的生物利用度,延长药物在体内的停留时间,从而提高药物的疗效。

其次,药用高分子材料学在药物的释放方面也具有重要意义。

一些药物需要在一定的时间内持续释放,而另一些药物则需要在特定部位或特定时间释放。

通过对高分子材料的设计和改性,可以实现对药物释放速率的控制,从而满足不同药物的释放需求,提高药物的疗效。

此外,药用高分子材料学还可以改善药物的稳定性。

一些药物在长时间内容易降解,失去活性,而高分子材料可以有效地保护这些药物,延长其有效期,提高药物的稳定性。

总的来说,药用高分子材料学在医药领域中具有重要的应用前景和意义。

通过对高分子材料与药物相结合的研究,可以提高药物的生物利用度、改善药物的稳定性、控制释放速率,从而提高药物的疗效,减少药物的副作用,为人类健康事业做出重要贡献。

希望未来在这一领域的研究能够取得更多的突破,为人类的健康带来更多的福祉。

高分子材料科学

高分子材料科学

高分子材料科学高分子材料科学是一门研究高分子材料的学科,高分子材料指的是由大量重复单元组成的一类特殊材料。

高分子材料具有分子量大、结构多样、性能优异等特点,广泛应用于各个领域,如塑料、橡胶、纤维、聚合物等。

高分子材料科学研究的内容主要包括高分子的合成方法、结构与性能的关系、材料加工方法以及应用等方面。

首先,高分子材料的合成方法有多种,如聚合反应、开环聚合、共聚反应等,通过不同的合成方法可以得到不同结构和性能的高分子材料。

其次,研究高分子材料的结构与性能的关系是高分子材料科学的核心内容之一。

高分子材料具有复杂的结构,包括聚合度、聚合物链的取向和排列等,这些结构对材料的性能有着重要的影响。

通过研究不同结构对材料性能的影响,可以合理设计高分子材料,提高其性能。

另外,高分子材料的加工方法也是高分子材料科学的重要内容之一。

高分子材料一般都是在高温下通过熔融、溶液或者热固化等方式进行加工,通过合适的加工方法可以得到理想的形态和性能。

最后,高分子材料的应用也是高分子材料科学的重要研究内容。

高分子材料具有优异的性能,可以应用于众多领域,如汽车、航空航天、电子、医药等。

高分子材料的研究与应用对于社会的发展有着重要的意义。

高分子材料在汽车领域的应用可以减轻车辆重量、提高燃油效率;在医药领域的应用可以开发出更安全、更有效的药物;在电子领域的应用可以制造更小、更快的电子设备。

高分子材料科学的发展将进一步推动人类社会的进步。

总之,高分子材料科学是一门重要的学科,研究高分子材料的合成方法、结构与性能的关系、材料加工方法以及应用等内容。

高分子材料具有分子量大、结构多样、性能优异等特点,广泛应用于各个领域。

高分子材料科学的发展将推动社会的进步,为人类创造更多的福祉。

药用高分子材料学

药用高分子材料学

药用高分子材料学
药用高分子材料是近年来非常流行的一门新兴学科,它聚焦于药物和生物学领域,集中研究各种药物技术及其应用。

药用高分子材料学旨在构建药物和生物计算机的技术框架,为药物的发现、研发和使用提供科学的支持,以满足人们的需求。

药用高分子材料包括各种用于制备药物的材料,如细胞培养基、肽类抗生素、蛋白质、脂类和多肽等。

这些材料在制备、稳定和评价药物时都具有重要作用。

药用高分子材料学研究机理、性质、结构和功能,以及药物途径和释放,以实现对药物临床给药的更佳控制。

药物、生物计算机和药用高分子材料结合使用,可以将其技术发挥到极致,实现有效的应用。

借助药物先进技术,药物设计可以更精确地控制药物的释放路径,使药物具有更强的结构可靠性和更长的活性半衰期,从而实现更高的药物有效性。

另外,利用药用高分子材料制备的纳米粒子,可以作为给药载体,将药物定向投放到针对性细胞,实现有效的药物释放和靶标细胞特异性抑制。

随着纳米技术的发展,药用高分子材料研究也在持续深入,为各种药物的发现、研发和使用提供了深入的科学依据。

药用高分子材料学不仅可以应用于药物设计,还可以应用于药物临床试验、药物制剂、药物生物利用度和毒性评价等。

药用高分子材料学的发展将为药物的发现、研发和使用提供新的思路,为疾病治疗提供更高效有效的治疗方案。

药用高分子材料学的发展将对全球药物产业产生重大影响,是未
来药物研发和应用的发展趋势。

药用高分子材料学可以将物理、化学、药物学和生物信息技术有机结合起来,实现更为有效的药物研发。

未来,药用高分子材料学将继续发挥关键作用,为未来药物的更快、更有效的发现和开发奠定基础。

高分子材料科学

高分子材料科学

高分子材料科学⏹2000年,世界合成高分子材料的年总产量已达到2亿吨。

其中塑料1.63亿吨,合成橡胶0.11亿吨,合成纤维0.28亿吨。

⏹高分子科学既是一门基础学科,又是一门应用科学,主要由高分子化学、高分子物理、高分子材料和高分子工艺四个学科分支组成。

什么是高分子?高分子的含义分子量很大(104~107,甚至更大)。

分子似“一条链”,由许多相同的结构单元组成。

以共价键的形式重复连接而成。

与小分子比较⏹分子量不确定,只有一定的范围,是分子量不等的同系物的混合物;⏹没有固定熔点,只有一段宽的温度范围;⏹分子间力很大,没有沸点,加热到2000C~3000C以上,材料破坏(降解或交联)。

高分子材料分类⏹按材料来源分类天然高分子合成高分子⏹按材料性能和用途分类塑料橡胶(称为三大合成材料)纤维涂料粘合剂功能高分子通用高分子材料塑料、橡胶、纤维,称为三大合成材料全世界产量1亿多吨塑料主要品种有:聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯等合成橡胶主要用途为制造轮胎,约占60%合成纤维主要品种有:涤纶(PET)、尼龙、聚丙烯腈、聚丙烯等合成纤维、天然纤维、人造纤维比例为2 ׃ 3 ׃1工程塑料⏹性能:坚硬、韧性、耐磨、耐热水及蒸气,加工时尺寸稳定性好、化学稳定性好。

⏹主要有:尼龙(聚酰胺)、聚碳酸酯(PC)、聚苯醚(PPO)、聚甲醛(POM)、饱和聚酯(PET、PBT)等按结构单元的化学组成分类1. 碳链高分子⏹ 主链以C 原子间共价键相联结 加聚反应制得⏹ 如 聚乙烯,聚氯乙烯,聚丙烯,聚甲基丙稀酸甲酯,聚丙烯2. 杂链高分子⏹ 主链除C 原子外还有其它原子如O 、N 、S 等,并以共价键联接,缩聚反应而得,如聚对苯二甲酸乙二脂(涤纶)聚酯聚胺、聚甲醛、聚苯醚、聚酚等3. 元素有机高分子⏹ 主链中不含C 原子,而由Si 、 B 、P 、Al 、 Ti 、As 等元素与O 组成,其侧链为有机基团;⏹ 兼有无机高分子和有机高分子的特性,既有很高耐热和耐寒性,又具有较高弹性和可塑性,如硅橡胶。

药用高分子材料学

药用高分子材料学

药用高分子材料学药用高分子材料学是研究用于药物传递和药物释放的高分子材料的学科。

随着现代医学技术的不断发展和人们对抗癌症、糖尿病和其他严重疾病的需求,药用高分子材料学变得越来越重要。

这一领域的研究旨在开发出新型的高分子材料,用于药物分子的载体、控释系统和生物传感器。

这些材料可以提高药物的生物利用度、减小药物的副作用、增加药物的稳定性,并提高疗效。

药用高分子材料学的一个重要研究方向是开发可控释放系统。

药物的控释是指通过材料的特性来控制药物的释放速度和时间。

这可以通过改变材料的溶解度、粘度、微孔结构和渗透性等来实现。

例如,一些药用高分子材料可以根据环境温度、pH值或电压来控制药物的释放。

这种系统可以更好地满足患者的需求,提高药物疗效,并减少药物的副作用。

生物传感器是药用高分子材料学中另一个重要的研究方向。

生物传感器是一种能够感知和检测生物分子的装置,可以用于诊断疾病或监测生物过程。

药用高分子材料可以用于制备生物传感器的载体、信号放大器和生物识别元件。

这些生物传感器可以在检测特定分子时提供高灵敏性和高选择性,并在药物监测、癌症筛查和病原体检测等领域得到广泛应用。

同时,药用高分子材料也可以应用于组织工程和再生医学。

组织工程是一个利用材料学、生物学和工程学原理来修复和替代受损组织的学科。

药用高分子材料可以用于制备支架、基质和载体,以支持和引导组织的再生。

这将为创伤患者的治疗提供新的选择,并促进器官移植和组织修复的发展。

总之,药用高分子材料学是一个综合学科,涉及材料科学、化学、生物学和医学等多个学科的交叉。

通过研究和开发药用高分子材料,我们可以为临床医学提供更有效和安全的治疗手段,进一步促进医学的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章高分子材料学
1、影响高分子材料性能的化学因素有哪些?
答:高分子材料的化学结构,即构成元素的种类及其连接方式(重复结构单元的特性)、端基、支化与交联、结构缺陷、基团的空间位置等是决定其性能的主要化学因素。

2、按高分子材料的主链构成元素可将其分成哪几类?试举例。

答:(1)碳链高分子主链以碳-碳共价键相联结而成,大多由加聚反应制得,分子间主要以次价力(范德华力)或氢键相吸引而显示一定强度,耐热性较低,不易水解。

如PE、PP、PVC、PS、PMMA 等。

(2)杂链高分子由碳-氧、碳-氮、碳-硫等以共价键相联结而成,主要是由缩聚反应或开环聚合制得。

特点是链刚性较大,耐热性和力学性能较高,但一般易水解、醇解或酸解。

如PET、PA、PF、POM、PSF、PEEK等。

(3)元素有机高分子主链中常含硅、磷、硼等,常见的为有机硅高分子化合物,热稳定性好,具有较好的弹性和塑性,高耐热性是其特征。

3、影响高分子材料性能的物理因素有哪些?
答:一、相对分子质量及其分布;二、结晶性;三、粒径与粒度分布;
四、成型过程中的取向;五、熔体粘度与成形性
4、相对分子质量对高分子材料制品的哪些性能影响较大,哪些性
能影响较小?
答:受相对分子量影响大的性能有:拉伸强度、弯曲强度、弹性模量、冲击强度、玻璃化转变温度、熔点、热变形温度、熔融粘度、溶液粘度、溶解性、溶解速度等。

受相对分子量影响较小的性能有:比热、热传导率、折射率、透光性、吸水性、透气性、耐化学药品性、热稳定性、耐候性、燃烧性等。

5、高分子材料相对分子质量分布与其成型性及制品性能的关系任
何?为兼顾成型性和制品的性能,可采取什么措施?
答:对于塑料制品,一般要求相对分子量分布较窄,这样成型加工性和制品性能都较均一。

相对分子量分布过宽说明其中存在相对分子量偏低和过高部分。

当相对分子量偏低部分所占比例过高时,有利于改善加工性能,但力学性能、耐热性、热稳定性、电气绝缘性能和耐老化性能均有下降;而当相对分子量过高的部分比例过高时,则塑化困难,影响制品的内在质量,降低外观质量,甚至出现象“鱼眼”一样的未塑化颗粒。

对于塑料的成型加工来说,相对分子量分布可适当宽些。

往往采用双峰分布的树脂,其相对分子量高的部分赋予制品优良的机械性能,而相对分子量低的部分则提供足够的成型加工流动性。

对于合成纤维,则希望相对分子量分布尽可能窄些。

6、高分子化合物的哪些链结构因素有利于其结晶?
答:有利于结晶性的因素有:
1)链结构简单,重复结构单元较小,相对分子量适中;
2)主链上不带或只带极少的支链;
3)主链化学对称性好,取代基不大且对称;
4)规整性好;
5)高分子链的刚柔性及分子间作用力适中。

各种高分子化合物的结晶形态不同,但以斜方晶型、单斜晶型、三斜晶型为主。

7、熔融温度和熔融时间对制品的结晶度有何影响?为提高制品的
机械性能和热变形温度,应采用怎样的熔融温度和时间?
答:熔体中残存的晶核数量和大小与成型温度有关,也影响结晶速度。

成型温度越高,即熔融温度高,如熔融时间长,则残存的晶核少,熔体冷却时主要以均相成核形成晶核,故结晶速度慢,结晶尺寸较大;反之,如熔融温度低,熔融时间短,则残存晶核多,熔体冷却时会引起异相成核作用,结晶速度快,结晶尺寸小而均匀,有利于提高机械性能和热变形温度。

8、为了改善高分子材料制品的结晶度和尺寸稳定性,应对成型后
的制品做何处理?并简述处理方法的实质。

而为了提高制品的
冲击韧性,应对制品如何处理?简述处理方法的实质。


9、液晶聚合物注射注射成型制品的哪一层面取向度最高?哪一层
面取向度最低?
答:表层最高,中心层最低
10、加工温度对聚合物的熔体粘度有何影响?为降低聚合物的熔融
粘度,采用升高温度的办法对于PMMA和PP哪个更有效?答:温度升高,可使高分子链热运动和分子间的间距增加,从而使熔
体粘度下降。

通常温度升高10℃,熔体粘度降低1/2~1/3。

同升高40℃后,PP熔体粘度比为1.5,PMMA为4.1,故对PMMA更有效。

11、画图说明相对分子质量、压力、填充剂、温度和增塑剂对高分
子化合物熔体粘度的影响,并做简要说明。

12、高分子共混物可分为几种型式?什么型式的为高分子合金?画
出示意图说明。

答:宏观上分相型高分子共混物(分散相粒径>1µm)共混物微观分相型高分子共混物(分散相的粒径在0.1~1µm)
完全相容型高分子共混物
微观分相型高分子共混物
高分子合金
完全相容型高分子共混物
13、简述高分子合金化的制造技术,并画出高分子合金制造的通用
流程。

答:(1)简单共混技术—完全相容型体系有效;不相容体系效果很差。

(2)接枝共聚技术—HIPS、ABS;嵌段共聚物也是一种高分子合金,如SBS、SEBS等。

(3)多层乳液技术—乳液聚合,形成核、壳结构不同的多层乳胶微粒。

(4)相容剂技术—可制得具有稳定微观分相型结构、性能优良的高分子合金。

已较广泛应用。

(5)互穿聚合物网络技术(IPN)—如PU/EP、PU/UP、PU/POM、
PU/PVC等。

(6)反应挤出技术—如PA/EPDM超韧尼龙、PP/EPDM热塑性弹性体等。

(7)分子复合技术—刚性高分子化合物均匀分散在柔性或半刚性链的高分子化合物基体中,形成分子水平的复合。

(8)力化学技术—利用高剪切力作用下,高分子链的断裂或交联而形成接枝、嵌段或交联高分子。

14、聚合物填充剂分为哪几类?试举例说明。

答:
15、填充剂与高分子化合物复合化时,为什么要对填充剂进行处
理?
答:采用偶联剂进行表面处理,改善高分子化合物与填充剂的界面张力
16、对于纳米颗粒填充剂常采用哪些方法使其在高分子化合物中分
散均匀?
答:(1)层间插入法—高分子化合物插入层状分子层间。

(2)就地聚合法
(3)溶胶-凝胶法
(4)超细粒子直接分散法
17、乙烯、丙稀共聚物的性能特点。

答:。

相关文档
最新文档