超高水充填材料及其充填开采技术研究与应用

合集下载

高水充填【可编辑范本】

高水充填【可编辑范本】

Chinauniversity ofmining and technology 高水充填(论文)学院名称孙越崎学院专业名称采矿工程学生姓名刘瑞明学号01090190任课教师许家林二〇一二年十月(超)高水充填工艺系统和应用研究刘瑞明(中国矿业大学孙越崎学院,江苏徐州)摘要:我国目前“三下"压煤问题比较严重,充填开采是解决“三下”压煤的根本途径,其中(超)高水充填相比其他充填方法它特别的优势。

本文详细介绍了(超)高水材料的组分、基本性能及在充填时的水化反应,并且重点叙述(超)高水充填工艺系统流程和充填方法,总结出(超)高水充填的意义,得出(超)高水充填将会在以后广泛应用。

关键词:“三下"压煤(超)高水材料(超)高水充填引言随着我国经济的持续发展,煤炭资源的不断开采,“三下”(建筑物下、铁路下、水体下)压煤量占煤炭资源总量的比例越来越大。

据对国有重点煤矿的不完全统计,全国压煤量约为137。

9亿吨,其中建筑物下压煤为87.亿t,村庄下压煤又占建筑物下压煤的60%。

随着社会经济发展,村镇规模不断扩大,新矿区和新井田的建设,实际压煤量远高于这一数字。

主要产煤省如山东、江苏、安徽、河南、河北等省,多数矿区(井)地处平原,人口密度大,村庄密集,村庄压煤比重较大,有的矿区或井田村庄压煤量占总储量的70%,有的新疆井田投产(首采面)即遇到村庄下压煤开采问题.长期以来我国煤矿村庄压煤,主要采用迁村或采用条带开采的方法进行开采,然而迁村法存在搬迁或者成本高、侵占土地、选址困难以及开采后破坏环境等问题,条带开采,采出率很低,而且万吨掘进率(每回采一万吨原煤,所需掘进的巷道数量)很高,以上方法都被煤炭企业所抛弃。

为了缓解日益突出的煤炭资源的枯竭与经济发展的矛盾,有效地进行“三下”压煤开采对充分利用地下资源,延长矿井寿命,促进煤炭工业的健康发展具有重要意义。

采空区充填逐渐成为解放“三下”压煤的主要方法之一,按充填材料区分,有水砂充填、矸石充填、膏体充填和高水充填。

采矿工程超高水充填材料应用与展望-采矿工程论文-工程论文

采矿工程超高水充填材料应用与展望-采矿工程论文-工程论文

采矿工程超高水充填材料应用与展望-采矿工程论文-工程论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:本文对采矿工程中超高水充填材料的应用与展望进行分析,首先对此种材料的应用范围进行列举,如采空区的应用、在预充空巷开采技术中的应用、在注浆堵水技术中的应用等,而后对超高水充填材料的未来应用方向进行展望。

关键词:采矿工程;超高水充填材料;注浆堵水随着城市发展步伐的逐步加速,人们的生活水平获得提升,人们基础生活中对能源的需求越来越大,因此,我国矿业工程必须加大矿产开采力度,满足人们的能源需求。

但是传统的采矿方式不仅会对环境造成较大的污染、安全性也不够高,由此,超高水充填材料的出现,不仅让工程施工环境的安全得到维护,还对资源的可持续发展起到了支撑作用。

1采矿工程中的超高充填材料应用1.1在采空区的应用在采矿工程中,使用充填工艺目的是让矿产开采工作对地面造成的凹陷危害得到有效预防与缓解,因为地下开采活动可能会造成地层、地质构造出现断裂或是错位等情况,同时此项操作可减轻开采活动对井下巷道与工作面造成的影响,促进采矿工作的顺利与安全。

同时,工作人员操作充填工艺对矿区的环境进行改善,还可让巷道得到维护,提升通风效果,可以有效缓解采矿工程操作对环境造成的压力,实现绿色开采。

通常情况下,可以选择的传统充填材料主要有砂石、碎石、工业废渣等,同时充填方式主要有水利输送、充填管路输送等方式。

如果技术操作人员选择水利输送的方式,需要承担较为复杂的人为操作工序。

同时,此种输送方式需要消耗大量的充填材料,最重要的一点是容易在输送的过程中发生充填管路堵塞问题,解决过程中还需占用大量的维修与输送资金,因此此种方式并未得到大范围推广。

而超高水填充材料颗粒粒径较小,同时具备较好的浆液流动性能,操作工艺上也较为简单,对技术操作人员的要求不高,便于操作。

在用料量上也相对较少,因此可以节约大量的材料成本,由此可以得出的结论是超高水充填材料具备诸多应用优势。

采矿工程超高水充填材料应用标准

采矿工程超高水充填材料应用标准

采矿工程超高水充填材料应用标准摘要:在煤矿开采环节经常会存在着以下几个问题:煤炭自燃发火、工作面过空巷等,这些问题在老矿井中尤为明显,严重影响着矿井开采的安全性。

现如今超高水充填材料在采矿工程中有着十分广泛的应用,可以起到很好的预充空巷和防火灭火的作用。

本文将对超高水充填材料的注浆防火技术、欲充空巷开采技术以及充填开采技术进行深入分析,希望可以促进煤炭采矿工程的顺利施工。

关键词:超高水填充材料;煤矿工程;具体应用超高水充填材料由两部分组成的,一部分是以铝土矿为主要原材料经过烧制和复合超缓凝剂组成,另一部分是由石膏与复合速凝剂组成,在使用时需要将两种液体按照等体积比例混合,在混合一段时间后即可凝固成具有相对强度的充填材料。

超高水充填材料不仅无毒无害,而且制作过程简单,两种液体在混合后的8~30分钟内就可呈现初凝状态,凝固后的抗压强度可达到0.66~1.65MPa,并且单浆液能够做到长时间运输且不凝固,因此在采矿工程中具有十分广泛的应用[1]。

1超高水材料充填开采技术及原理1.1超高水材料充填开采技术利用超高水材料对采矿区进行充填,常用的方法有混合式充填法、开放式充填法以及袋式充填法等,施工人员需要结合矿井的实际情况选择合适的充填方法。

超高水材料充填技术在应用时涉及到浆体制备、材料储运、浆液输送、采空区充填等几个步骤,具体的技术流程如图1所示,其中制备浆体是整个充填技术的核心所在,现如今已经实现了由PLC系统进行自动化控制。

1.2超高水材料充填开采技术的原理分析矿井在开采后采空区的上覆岩层会形成裂隙带、弯曲下沉带以及冒落带,彻底形成这三带需要一定时间,也就是具有一定的滞后特点,所以利用超高水材料进行充填就是利用矿井开采后的缓冲时间,让采矿区域充满超高水材料并且胶结在一起,这可有效防止采空区顶板塌落,使得上层岩石的活动趋于稳定,确保采空区域的安全性。

同时对裂隙带空隙以及冒落带进行密实充填,也会极大的降低下沉带的下沉空间,从而控制地表的下沉量,这可有效防止地表塌陷,降低对地面的影响。

超高水充填材料

超高水充填材料

超高水充填材料
超高水充填材料是一种新型的地下水治理材料,具有很高的吸水性能和稳定性,被广泛应用于地下水治理、地铁隧道施工、地下管道维修等领域。

本文将介绍超高水充填材料的特点、应用及施工方法。

首先,超高水充填材料具有极强的吸水性能。

它可以在短时间内吸收大量的水分,并形成一种坚固的胶状物质,能够有效地阻止地下水的渗透。

这种特性使得超高水充填材料成为地下水治理的理想选择,能够有效地解决地下水涌入、地下管道渗漏等问题。

其次,超高水充填材料具有良好的稳定性。

在吸水后,它能够迅速固化成坚固
的胶状物质,不会因外力挤压而变形或破裂。

这种稳定性使得超高水充填材料在地铁隧道施工、地下管道维修等工程中得到广泛应用,能够有效地防止地下水对工程的影响。

此外,超高水充填材料施工方法简单、快捷。

只需将材料撒布在需要处理的地方,然后加水使其吸水固化即可,不需要复杂的设备和工艺。

这大大提高了施工效率,减少了人力和物力成本,是一种非常便捷和实用的地下水治理材料。

总之,超高水充填材料具有极强的吸水性能和稳定性,适用于地下水治理、地
铁隧道施工、地下管道维修等领域。

其施工方法简单、快捷,能够有效地解决地下水渗透问题,是一种非常理想的地下水治理材料。

通过本文的介绍,相信大家对超高水充填材料有了更深入的了解,希望能够在
实际工程中得到更广泛的应用。

超高水充填材料在采矿工程中的应用与展望

超高水充填材料在采矿工程中的应用与展望

超高水充填材料在采矿工程中的应用与展望摘要: 为解决“三下”压煤开采、工作面过空巷和煤炭自然发火等问题,对超高水材料充填开采技术、预充空巷开采技术和注浆防灭火技术进行研究。

基于超高水充填材料的性质,介绍了以上 3 种技术的应用情况,并分别以陶一煤矿、王庄煤矿和金地煤矿为例对其应用效果进行了分析和评价。

结果表明,超高水材料充填开采技术能保证采空区充填率达到 85% 以上; 采用超高水材料预充空巷开采技术后,工作面回采过空巷期间未出现矿压显现剧烈现象; 采用超高水材料注浆防灭火技术后,火区的温度和 CO、NH4 浓度均恢复到正常水平。

今后需在继续完善当前技术相关理论与工艺的同时,进一步拓展超高水材料的应用领域。

关键词:超高水材料; 充填开采; 预充空巷; 防灭火1有关超高水充填材料的详细介绍超高水充填材料主要是由单浆液构成,该单浆液是由甲乙两模块分别配水形成。

其中甲模块中主要组成部分为复合超缓凝剂与铝土矿,乙模块中主要组成部分为复合超缓凝剂与石膏等。

甲乙两类单浆液的体积相同进行混合,然后过一段时间后就能凝固从而变成充填体。

超高水充填材料中水灰比最低是 6.3:1,最高是 11:1,这意味着其水体积可以高达 95%—97%的范围。

甲乙这两类单浆液进行混合后可以在 8—30 分钟内达到初凝状态,其固结体的最终强度能够达到 0.06—1.65MPa,而其七天的抗压强度能够涨到最终强度的 60%—90%。

这两类单浆液具体的抗压强度以及混合后的凝结时间可以依据实际情况来适当做出调整;甲乙两类单浆液可以在 30—40 小时内保持良好的流动性、不凝固,其具有高强度的可灌性流动性,有利于在管路中实现长时间长距离运输。

而在遭受压力的时候该单浆液固结体积应变仅有 0.00075—0.003 之间,由此可知其具有较强的不可压缩性。

2超高水材料注浆防灭火技术及应用超高水材料注浆防灭火技术是一种集注浆、注水、凝胶、阻化剂于一体的新型防灭火技术,具备以上防灭火技术的优点,同时克服了浆液易流失、不凝结、流动性差及工艺复杂、成本高等缺点。

超高水充填开采技术在煤矿中应用论文

超高水充填开采技术在煤矿中应用论文

超高水充填开采技术在煤矿中应用论文摘要:邢东矿采用超高水材料充填开采技术,现已成功充填回采煤量50万吨(最高月产5.5万吨),利润1.7亿元。

同时节省了巨额拆迁费用,不但置换出来煤,还大量利用了井下污水,减小对环境的污染。

对于解放建下乃至三下压煤都有很好的应用性。

邢东矿剩余煤炭资源的82%以上为村庄压煤,大量建下压煤的存在,对当前及今后矿井合理的生产布局、正常的采掘接续安排与持续稳产均产生了极大影响,严重制约着矿井回采率及可持续发展能力的提升。

为解决这一难题,邢东矿开展了超高水材料充填开采的试验研究,并在现场进行了成功应用。

1 工程概况邢东矿1126工作面,是本矿首个超高水充填工作面。

该工作面主采2#煤层,走向长490 m,倾斜长70 m,煤层平均厚度4.5 m,煤层平均倾角10.3°,可采储量 25万t。

采用单一厚煤层一次采全高倾斜长壁后退式采煤法,用超高水材料充填方法控制采空区顶板。

2 超高水充填材料基本性能2.1 材料简介超高水速凝固结充填材料(简称超高水材料)是指水体积在95%以上,最高可达到97%的超高水材料。

主要由AB两种物料,分别加入8~11倍水组成。

A料主要以铝土矿石膏等独立炼制并复合超缓凝分散剂构成,B料由石膏、石灰和复合速凝剂构成。

两者按一定比例配合使用,强度可根据需要进行调整,满足井下充填要求。

2.2 材料物理力学基本性能(1)材料力学性能。

超高水材料不同水体积固结体的强度随时间变化规律如图1所示。

从中可以看出,早期强度较高,而7 d后强度增长缓慢。

(2)材料变形特性。

超高水充填材料用于采空区充填后,处在较为封闭的状态,其固结体要受到上覆岩层的作用,体积是否会发生收缩或者膨胀,直接影响对上覆岩层的有效控制。

图2所示为超高水充填材料固结体体积应变随时间变化的曲线。

从中可以看出,超高水材料受压后,体积应变较小,位于0.001~0.003之间,表现出良好的不可压缩性。

3 超高水充填采煤工艺3.1 超高水充填支架我矿使用的充填液压支架型号为ZC12400/30/50,是一种新型的超高水充填开采工作面支护设备,做到了采煤与充填作业的分离,避免了采煤与充填的相互干扰。

超高水材料充填技术在陶一矿开采中的应用

超高水材料充填技术在陶一矿开采中的应用

超高水材料充填技术在陶一矿开采中的应用李增波;刘树轮;杨生强【摘要】Aiming at the problem of coal under buildings in Taoyi Coal Mine,the mining technical proposals were discussed,and the subsidence of filling test surface was predicted and analyzed. In order to guarantee the safety mining under buildings,the new filling technology with super high-water materials was applied in the goaf of filling mining face,and the subsidence and deformation laws of ground surface were monitored and studied,which ensured the normal running of railway in process of mining.%针对陶一煤矿建下压煤问题,论述了开采技术方案,对充填试验面进行了沉陷预计分析。

为保证建下压煤工作面的安全生产,采取超高水材料充填新技术对工作面采空区进行充填,并对充填开采地表沉降变形规律进行了监测与研究,以保证铁路在采煤过程中的正常运行。

【期刊名称】《中国煤炭》【年(卷),期】2015(000)010【总页数】4页(P114-117)【关键词】建下压煤;开采技术方案;超高水充填材料;充填工艺;沉陷监测【作者】李增波;刘树轮;杨生强【作者单位】中国矿业大学北京资源与安全工程学院,北京市海淀区,100083; 国家安全生产监督管理总局,北京市东城区,100713;冀中能源邯矿集团,河北省邯郸市,056000;冀中能源邯矿集团陶一煤矿,河北省邯郸市,056000【正文语种】中文【中图分类】TD325.4陶一煤矿历经30余年开采,2007年底原采矿许可证范围内剩余可采储量不足100万t,为合理开采煤炭资源及解决陶一煤矿资源枯竭问题,经申报批准邯矿集团将毗临陶一煤矿九采区的陶二煤矿七采区划归陶一煤矿开采。

城郊煤矿超高水材料充填系统设计研究与应用

城郊煤矿超高水材料充填系统设计研究与应用

输 送 ,且 充后 管路 易处理 ;超 高水材料 充 填 开采技 术是 一种 新型 先进 的充填技 术 ,设备 初期投 资
较 低 ,机械 化程 度 高。
关 键词 :超 高水材料 ;充填 采矿 法 ;充填 系统 ;浆液 配制 ;管路 输送
中图分 类 号 :T 8 3 3 D 5.4 文 献标 识码 :B 文 章编 号 :17 0 5 (0 2 0 _0 3I 6 1— 9 9 2 1 ) 4( 1 _3 ) )
送 系 统原 理 如 图 2所 示 。
比较稳定 ,非常 适合超 高水 材料 A、B单 浆 液 的等流 量输
送。
根 据 充 填 硐 室 和 充 填 工 作 面 的 位 置 关 系 , 以 及 制 浆 系
统 的生产能力 ,决定选用 Q 3 B一 5 Z N 6 0三缸单作 用活塞 泵 。 通过更换活塞 ,该泵 的输送 能力 可在 6 0~10 h范 围内 4m /
固,混合后浆液 可快 速发 生反应 并凝 结硬 化 ,最终 凝结 体
的水体积 比和水灰 比分 别可高达 9 %和 1 : ,调 整外加 剂 7 11
配 方 可 改 变 凝 结 时 间 及 材料 性 能 J 。 图 1 工 作 面 与Байду номын сангаас充 填 硐 室 相 对 位 置 及 管 路 布 置 图
1 超 高 水材 料简 介
超高水材料是 一种 新型 充填材 料 ,由两种 主料 和两种
外加剂组 成 ,主 料包 括 A 料、B料 ,外 加 剂 包 括 A A料 、 B B料 。A料 以铝 土矿、石 膏等独立炼制而成 ,B料 由石膏 、 石灰等混磨成 主料 ,A A料 为复合 缓凝 分散 剂 ,B B料为 复 合速凝剂 ] 。超高水材料 A、B单浆液可持续数 小时不凝
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超高水充填材料及其充填开采技术研究与应用我国煤炭资源较为丰富,但其赋存特点是煤矿“三下”压煤比较普遍。

一方面,我国主要产煤省多地处平原,村庄密集,人口众多,村庄压煤比重大;另一方面,随着国内经济不断持续发展,村镇规模不断扩大,新矿区、新井田不断建设,压煤量也持续增加。

解决“三下”压煤问题是我国煤矿可持续发展的关键。

此外,由于煤矿开采造成地表沉陷、建筑物破坏及地下水与土地资源减少等,使矿区生态环境问题越来越突出。

基于上述问题,煤炭绿色开采是实现我国煤炭工业可持续发展的必由之路,充填开采技术是实现上述目标的不二选择。

本文在充分研究我国煤炭资源赋存状况及充填开采现状的基础上,从充分回收煤炭资源、减少矿区环境污染、消除矿区生态破坏的角度出发,提出超高水充填材料用于矿井采空区充填的课题,并对此进行了详细研究。

本文在详细查阅大量国内外文献的基础上,详细研究了超高水材料的生成机理,并通过大量实验,对超高水材料的各组成要素进行了详细研究。

在实验室条件下,经过多年反复试验研究,找出超高水材料合理的组成配方。

所制得的超高水材料由A、B两种主料与少量复合速凝剂和复合缓凝分散剂组成。

该材料可在水体积高达97%时,实现初凝时间在8~90min之间的按需调整。

当水体积在95~97%时,抗压强度可根据外加剂的不同而进行调节,其28天强度可达到0.66~1.5MPa之间。

该材料A、B两主料单浆可持续30~40小时不凝固,混合后材料可快速水化。

调整外加剂配方可以改变材料性能如凝结时间与强度等。

为了考察所制得超高水材料性能,对超高水充填材料的基本性能包括基本力学性能、化学性能及所构成材料的稳定性进行了研究,发现该材料具有早强、快硬的特点,7天抗压强度可达到最终强度的60~90%,后期强度增长趋势较缓慢。

通过调节水固比与外加剂,可根据需要调整其强度性能与凝结时间等指标。

该材料体积应变较小,有利于采空区的充填应用。

该材料抗风化性能较差,火烤效果类同于风化,表明该材料不适于干燥、开放的环境。

在井下潮湿环境中采取一定措施后可方便使用,尤其适合于井下密闭大空间的充填。

对超高水材料固结体进行电镜分析表明,其主要成分为钙矾石。

超高水材料的钙矾石结构为纤细的丝网状结构,同时伴有铝胶及其它凝胶类物质。

同时发现,当水体积大于95%时,钙矾石结构以纤细的丝网状结构占绝对优势,反之材料的钙矾石向粗大的针状结构过渡。

因此,以95%的水体积作为区分高水与超高水材料的界限为宜。

对超高水材料浆体的流变性进行了研究,结果表明:其A、B料浆的粘度较小,与水的粘度相仿,可视为牛顿流体,而混合浆液则属振凝时变性非牛顿流体。

但材料在混合后的初始阶段粘度发展较慢,当达到其凝结时间的约2/3时,粘度开始较快上升,并在接近凝结时间时,出现突变性拐点。

出现拐点时的各浆体表观粘度值随凝结时间的减少呈降低趋势。

研究还结合流体流动基本方程及一些经验模型,对材料的流体力学性能如材料的不淤临界流速进行了研究。

发现浆体的表观粘度、所含固体物料的颗粒组成、制成浆体的浓度等因素均会对材料的流体力学性能产生影响。

公称直径在100~200mm的常规无缝钢管,用来输送超高水材料时,可输送速度以不小于2m/s为宜。

研制的超高水材料用于现场采空区充填时有以下特点:(1)水含量特别高,可通过管路混合后对采空区进行灌注式充填,充填工艺十分简单;(2)超高水充填用水可采用矿井水,可减少大量排水费用,同时减少排水对地面的污染。

通过对超高水充填材料性能及充填开采方法进行详细研究后发现,适宜于超高水材料的充填方法有多种,具代表性的有开放式充填、袋式充填、混合式充填、分段阻隔式充填等。

这些方法可根据现场开采工艺进行选择,其中开放式充填具有系统简单,无须架设充填袋的优点,但袋式充填方法适应性较强。

根据超高水材料特点及采空区充填要求,研制出半连续式制浆充填工艺系统。

该系统由4个子系统组成。

在使用时,多个搅拌器交替工作,使料浆供给呈连续状态,保证采空区充填连续不间断进行。

本文的研究成果已成功在田庄矿薄煤层与陶一矿厚煤层两个不同条件下的采空区进行了实际应用。

作者在对前者煤层地质条件进行详细分析后,借助数值模拟对试验工作面上覆岩层可能出现的变形情况进行了分析,提出合理充填开采方案,对后者则对在采空区充填后的上覆岩层活动状态进行了计算机模拟研究,得出了指导性结论。

目前陶一煤矿已经成功完成两个充填开采工作面,第三个工作面的充填工作正在进行,现已采出煤炭十几万吨,累计创经济效益近七千万元。

田庄煤矿充填开采已经取得可喜成果,工作面推进达120余米,工作面充填工作进展顺利,充填效果良好,已取得超千万元的经济效益。

为考察充填体实验效果,还对陶一、田庄二
煤矿工作面充填后的地表沉陷情况进行了观测研究。

截止到目前,充填工作面对应地表未受任何影响,初步表明超高水材料充填开采具有明显的经济效益、社会及环境效益。

相关文档
最新文档