小升初数学专项题-第五讲 行程问题通用版
小升初典型奥数:行程问题(讲义)-2023-2024学年六年级下册数学全国通用

3.A,B两地相距540千米.甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么到两车第三次相遇为止,乙车共走了多少千米?
13.上海小学有一长 米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑 米,小胖每秒钟跑 米.
小亚第一次追上小胖时两人各跑了多少米?
小亚第二次追上小胖两人各跑了多少圈?
14.龟兔进行1000米的赛跑,小兔心想:我1分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手.比赛开始后,当小兔跑到全程一半时,发现把乌龟甩得老远,便在路旁睡着了.当乌龟跑到距终点还有40米时,小兔醒了拔腿就跑.当胜利者到达终点时,另一个距终点还有几米?
10.甲乙两车从相距800千米的两地同时相向而行,已知甲车每小时行42千米,乙车每小时行58千米,两车相遇时乙车行了多少千米?
11.一列火车通过一条长1260米的桥梁(车头上桥到车尾离桥)用了60秒,用同样的速度火车穿越2010米的隧道用了90秒,这列火车的车速和车身长度分别是多少?
12.甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?
=54000÷10÷60
=90(分钟)
他们应该是7:30出发的。
答:小明和小红出发时间是7:30。
2024年人教版六年级下册数学小升初专题训练:行程问题(含答案)

2024年人教版六年级下册数学小升初专题训练:行程问题一、单选题1.甲乙两人各走一段路,他们走的时间比是4:5,速度比是5:3,他们走的路程比是( )。
A.12:25B.4:3C.3:4D.25:122.放学了,小明和小红同时从学校回家,小明每分钟行60米,小红每分钟行50米,经过10分钟两人都刚好回到家,小明和小红家的距离不可能是( )米。
A.100B.500C.1100D.12003.一个人从县城骑车去乡办厂。
他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。
又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,则县城到乡办厂之间的总路程为( )。
A.15千米B.18千米C.21千米D.50千米4.甲、乙两地相隔一座山岭,某人从甲地到乙地用6.5小时,从乙地回到甲地用7.5小时,他往返途中上山速度是3千米/时,下山速度是4千米/时,则甲、乙两地间的山岭路程有( )千米。
A.24.5B.24C.49D.485.小猫与小兔从相距1km的两地同时出发,若相向而行,a分钟相遇;若同向而行,b分钟后小猫追上小兔.则小猫与小兔的速度比是( )A.b+ab―a B.a+ba―bC.a―ba+bD.b―ab+a6.正方形ABCD(如图),边长80米,甲从A点,乙从B点,同时沿同方向运动,每分钟的速度甲为135米,乙为120米,每过一个顶点时要多用5秒,出发后,甲与乙相会需要( )A.A B.B C.C D.D二、填空题7.小杰用815小时走完了223千米的路程。
以此速度他1小时可以走 千米。
8.一列动车平均每小时行驶160千米,可以写作 ,这列动车从漳州到福州大约行驶了2小时,漳州到福州大约有 千米。
9.如图,电车从A站经过B站到达C站,然后返回.去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时 千米.10.在比例尺是1:3000000的地图上,量得甲、乙两地间的公路长是4.5cm。
行程问题—专题05《环形跑道问题》2020年通用版小升初数学冲A提高集训(解析版)

2020年通用版小升初数学冲A提高集训行程问题—专题05《环形跑道问题》一.选择题1.(2012•海淀区模拟)如图所示,甲骑车顺时针方向、乙步行逆时针方向沿着正方形的边同时从A点出发,刚好在B点相遇.已知甲骑车8分钟可骑完一圈,那么乙步行()分钟可走完一圈.A.6 B.8 C.24 D.32【分析】由于两人在B点相遇,则相遇时,甲共行了3个边长,乙共行了1个边长,所以甲的速度是乙的3倍,根据行驶相同的距离,所用时间和速度成反比,所以乙行完全程需要8324⨯=分钟.【解答】解:甲的速度是乙的:313÷=倍,则乙行完全程需要8324⨯=(分钟).故选:C.2.(2017秋•朝阳区期末)小红和爷爷一起去圆形街心花园散步.小红走一圈需要6分钟,爷爷走一圈需要8分钟,如果两人同时同地出发,相背而行,12分钟时两人的位置是下图()A.B.C.D.【分析】把圆形街心花园的周长看作单位“1”,小红走一圈需要6分钟,平均每分钟走16圈,爷爷走一圈需要8分钟,平均每分钟走18圈,根据速度和⨯时间=总路程,据此求出12分钟时两人走了多少圈,进而确定两人的位置,据此解答.【解答】解:11 ()12 68+⨯43()122424=+⨯ 71224=⨯132=(圈),因为两人12分钟走了3圈半,所以两人相距半圈的距离.由此可以确定两人的位置在图象C 的位置.故选:C . 3.(2017•长沙)如图,在一圆形跑道上,甲从A 点、乙从B 点同时出发,反向而行,8分后两人相遇,再过6分甲到B 点,又过10分两人再次相遇.甲环行一周需( )分.A .28B .30C .32D .34【分析】设跑道一周长是单位“1”,乙8分的行程甲行了6分,所以甲乙的速度比是:8:64:3=;从第一次相遇到第二次相遇用了:61016+=分,二人共行了一个全程. 所以二人的速度和是:116.即甲的速度是:141164328⨯=+,那么甲跑一周的时间是:112828÷=分钟.【解答】解:甲乙的速度比是:8:64:3=.41[1(610)]34÷÷+⨯+141[]167=÷⨯,1128=÷, 28=(分钟).答:甲环行一周需28分.故选:A .4.(2015秋•漳州期末)爸爸和儿子去2km外的公园,爸爸和儿子同时出发.儿子骑车到公园时,爸爸只走了一半路程.儿子立刻返回,遇到爸爸后又骑向公园,到公园又返回⋯直到爸爸到达公园.儿子从出发开始一共骑了()A.2km B.4km C.6km【分析】爸爸和儿子同时出发.儿子骑车到公园时,爸爸只走了一半路程,即即相同时间内,爸爸走的路程是儿子的一半,所以爸速度是儿子的12,当爸爸到达公园时行了2千米,此时儿子一直在运动,根据分数除法的意义,爸爸到达公园时,儿子行了1242÷=千米.【解答】解:1242÷=(千米)答:儿子一共骑了4千米.故选:B.二.填空题5.(2019春•武侯区月考)如图,A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C第一次相遇,在D点第二次相遇.已知从A点出发逆时针到C点的路程为80米,从B点出发逆时针走到D点的路程为60米,这个圆的周长为360米.【分析】两人在C点第一次相遇,C离A为80米,说明,二人同走半圈,甲走了80米.在D点第二次相遇,说明二人同走一圈半,甲走了803240⨯=(米).D离B为60米,那么半圈是:24060180-=(米),所以,这个圆的周长为:1802360⨯=(米).【解答】解:80360⨯-24060=-180=(米)1802360⨯=(米)答:这个圆的周长为360米.故答案为:360.6.(2011•慈溪市校级自主招生)甲用40秒可绕一环形跑道跑一圈,乙反向跑,每隔15秒与甲相遇1次,乙跑一圈所用的时间是 24 秒. 【分析】两人每相遇一次就共行这个环形跑道的一周,将这条环形跑道的长度当作单位“1”,则甲每秒跑这条环形跑道的140,两每隔15秒相遇一次,即两人每秒跑这条环形跑道的115,所以乙每秒跑这条环形跑道的111540-,则乙跑一周所用时间为:111()1540÷-. 【解答】解:111()1540÷- 1124=÷,24=(秒).答:乙跑一周所用的时间是24秒.故答案为:24.7.有一个200米的环形跑道,甲、乙两个人同时从同一个地点同方向出发.甲以每分钟46米的速度步行,乙以每分钟146米的速度跑步.则乙第二次追上甲用了 4 分钟.【分析】因为甲、乙两人是沿环形跑道同时同地同方向出发,所以当乙第2次追上甲时,乙比甲多跑了2圈,由此求出他们的路程差,再求出它们的速度差,再利用路程÷速度=时间,即可求得结果.【解答】解:(2002)(14646)⨯÷-400100=÷4=(分钟)答:乙第二次追上甲用了 4分钟.故答案为:4.8.如图,笑笑和淘气分别从A 、B 处出发,沿着各自的圆形路线跑回到A 、B 处.(1)笑笑跑一圈的半径是 9 米,他跑一圈的路程是 米;(2)淘气跑一圈的半径是 ,他跑一圈的路程是 米;(3)两人所跑的圆形路程的半径相差 米,各自跑一圈的路程相差 米.【分析】(1)观察图形可知,笑笑跑一圈的半径是9米,他跑一圈的路程等于半径是9米的圆的周长,据此利用圆的周长公式计算即可解答问题.+=米,他跑一圈的路程等于半径是10米的圆的周长,据(2)观察图形可知,淘气跑一圈的半径是9110此利用圆的周长公式计算即可解答问题.(3)用两人所跑的圆形的半径相减,即得相差的半径,用两人走过的路程相减,即得相差的路程,进而得出结论.【解答】解:(1)笑笑跑一圈的半径为:9米,他跑一圈的路程是:⨯⨯3.1492=⨯3.1418=(米)56.52答:笑笑跑一圈的半径是9米,他跑一圈的路程是56.52米.+=(米),(2)淘气跑一圈的半径为:9110他跑一圈的路程是:⨯⨯3.14102=⨯3.1420=(米)62.8答:淘气跑一圈的半径是10米,他跑一圈的路程是62.8米.-=(米)(3)两人所跑的圆形路程的半径相差:1091-=(米)各自跑一圈的路程相差:62.856.52 6.28答:两人所跑的圆形路程的半径相差1米,各自跑一圈的路程相差6.28米.故答案为:9,56.52;10,62.8;1,6.28.9.小明和爸爸在同一圆形跑道上跑步,小明每15分跑一圈,爸爸每10分跑一圈.他们早上7:00从同一地点起跑,那么他们第二次在起点相遇时是7:30.如跑道一圈为400m,相遇时,小明跑了m.【分析】可以通过求15、10的最小公倍数的方法求出再次相遇时间,然后用最小公倍数分别除以他们跑一圈各自用的时间,就可求出它们各自跑的圈数,进而求出小明跑的米数.【解答】解:15、10的最小公倍数是30,所以至,30分钟后两人在起点再次相遇;所以他们第二次在起点相遇时是:7:0030+分7:30=因为小明用三十分钟可以跑30152÷=(圈),所以小明跑了:4002800⨯=(米);答:他们第二次在起点相遇时是7:30.如跑道一圈为400m ,相遇时,小明跑了800m .故答案为:7:30,800.10.正方形操场四周栽了一些树,顶点处的树为每条边上的第1棵树.甲乙二人同时从一个顶点出发,向不同的方向走去(如图),甲的速度是乙的2倍,乙在拐了第一弯之后的第6棵树处与甲相遇.操场四周一共栽了 72 棵树.【分析】由于甲速是乙速的2倍,所以乙在拐了第一弯时,甲正好拐了两个弯,即两个人开始同时沿着最上边走.乙走过了6棵树,也就是走过了6个间隔,所以甲走过了12个间隔,即正方形操场一边上的间隔数是126+,则四周一共有(612)472+⨯=个间隔,根据植树问题中,围成一个封闭的图形植树时,植树棵数=间隔数,所以一共栽了72棵树.【解答】解:根据题干分析可得,四周一共有间隔:(612)472+⨯=(个),所以一共植树672棵.答:操场四周一共栽了72棵树.故答案为:72.11.(2019•重庆)大雪后,小华和爸爸一前一后沿着一个圆形的水池,从同一起点朝同一方向跑步,爸爸每步跑50厘米,小华每步跑30厘米,雪地上脚印有时重合,一圈跑下来,共留下1099个脚印,这个水池一圈有 235.5 米.【分析】因他们的起点和走的方向完全相同,也就是一前一后的走,脚印一定有重合的,即重合在两人步子长度的公倍数上,所以先求出他们步长的最小公倍数,再求出他们脚印重合时的步数,然后再据总步数及最小公倍数即能求出这条路的长度,也就是这个水池一圈的长度.【解答】解:50552=⨯⨯,30235=⨯⨯50和30的最小公倍数是:2355150⨯⨯⨯=,第一次两人脚印重合时,爸爸走的步数:15053÷=(步),小明走的步数:15035÷=(步),即爸爸3步与小明5步时脚印重合一次,此时有3517+-=个脚印,距离是150厘米,总共有1099个脚印,应重合的次数:10997157÷=(次)所以这条路长是157********⨯=(厘米)23550厘米235.5=米答:这个水池一圈有 235.5米.故答案为:235.5.12.(2019春•武汉月考)有一条环形公路长15千米,甲、乙两人同时同地沿公路骑自行车反向而行,0.5小时后相遇;若他们同时同地同向而行,经过3小时后,甲追上乙.问:乙的速度是 12.5 千米/时.【分析】由于是环形,所以车反向而行,甲、乙两人相遇时正好行了15千米,那么用15除以相遇时间即可求出甲、乙的速度和,即150530÷=(千米/时);而同时同地同向而行,属于追及问题,当甲追上乙时正好比乙多行了15千米,那么用15除以追及时间即可求出甲、乙的速度差,即1535÷=(千米/时);然后根据和差公式(和-差)2÷=较小数解答即可.【解答】解:甲、乙的速度和是:150530÷=(千米/时),速度差是:1535÷=(千米/时),乙的速度是:(305)2-÷252=÷12.5=(千米/时)答:乙的速度是 12.5千米/时.故答案为:12.5.13.(2019春•北京月考)两人在400米的跑道上赛跑,甲每秒跑8米,乙每秒跑5米,问 400 秒后,两人又在起点相遇.【分析】用400米分别除以每个人的速度,求出跑一圈的时间,即400850÷=秒,400580÷=秒,那么两人又在起点相遇的时间就是求50和80的最小公倍数,然后分解质因数解答即可.÷=(秒)【解答】解:400850÷=(秒)400580=⨯⨯50255=⨯⨯⨯⨯802222550和80的最小公倍数:222255400⨯⨯⨯⨯⨯=答:400秒后,两人又在起点相遇.故答案为:400.14.(2018春•天津月考)小明在330米长的环行跑道上跑了一圈,已知他前一半时间每秒跑6米,后一半时间每秒跑5米,那么后一半路程小明跑了32.5秒.【分析】根据时间=路程÷速度和,求出一半的时间,再根据路程=速度⨯时间,求出后一半时间每秒跑5÷=米,减去后一半时间跑的米数,余下的米数是以每秒跑6米跑的,米跑的路程,一半路程为:3302165再由时间=路程÷速度,求出余下的米数用的时间,加上求出的一半时间即可.÷+=(秒)【解答】解:330(65)30÷-⨯÷(3302530)6=-÷(165150)6156=÷=(秒),2.530 2.532.5+=(秒);答:后一半路程小明跑了32.5秒.故答案为:32.5.15.(2018•杭州模拟)已知甲、乙两人在一个200米的环形跑道上练习跑步,现在把跑道分为相等的4段,即两条直跑道和两条弯道的长度相等.甲平均每秒跑4米,乙平均每秒跑6米.若甲、乙两人分别从A、C 处同时出发(如右图),则他们第100次相遇时,在跑道DA上.(填“AB”或“BC”或“DA”或“CD”).【分析】根据题意,先算出甲乙二人第一次和第二次相遇所用时间,然后找出两人相遇所需时间的规律,根据规律做题即可求出第100次相遇所用时间,并求出所在路段.【解答】解:设x秒后两人首次相遇,依题意得到方程:+=46100x xx=10100x=10设y秒后两人再次相遇,依题意得到方程:y y+=46200y=10200y=20所以得出:第1次相遇,总用时10秒,+⨯,即30秒,第2次相遇,总用时10201+⨯,即50秒,第3次相遇,总用时10202⋯⋯+⨯,即1990秒,第100次相遇,总用时102099则此时甲跑的圈数为:⨯÷19904200=÷7960200=(圈)39.8⨯=(米)2000.8160此时甲在DA弯道上.答:他们第100次相遇时,在跑道DA上.故答案为:DA.三.应用题16.甲、乙两人在环形跑道上跑步.甲跑完一圈要4分钟乙跑完一圈要6分钟.(1)如果两人同时同地出发,相背而行,多少分钟后相遇?(2)如果两人同时同地出发,同方向而行,多少分钟后甲第一次追上乙?【分析】(1)把环形跑道的长度看作单位“1”,用1分别除以甲乙的时间,表示出甲乙的速度,然后用1除以两人的速度和就是相遇时间;(2)同理,甲第一次追上乙,就比乙多行一圈,然后用1除以两人的速度差就是追及时间.【解答】解:(1)1(1416)÷÷+÷5112=÷ 2.4=(分钟)答:相背而行,2.4分钟后相遇.(1)1(1416)÷÷-÷1112=÷ 12=(分钟)答:同方向而行,12分钟后甲第一次追上乙.17.甲乙两人沿着400米的环形跑道跑步,他们同时从同一地点出发,甲每分钟跑280米,乙每分钟跑240米.①如果两人同向而行,那么甲多久能够追到乙?②如果两人背向而行,甲和乙第二次相遇需要多长时间?20分钟以内相遇了几次?【分析】①根据题意可知,如果两人同向而行,甲追上乙,甲需要比乙多跑一圈,利用公式:路程差÷速度差=追及时间用算式法列式为:400(280240)÷-,计算即可.②如果两人背向而行,甲和乙第二次相遇二人共行2圈,利用公式:相遇时间=路程和÷速度和,把数代入:4004(280240)⨯÷+进行计算即可.根据二人第一次相遇所需时间,计算多长时间可以相遇,再求20分钟内可以相遇多少次.400(280240)0.77÷+≈(分钟),200.7725÷≈(次).【解答】解:①400(280240)÷-40040=÷10=(分钟)答:甲10分钟能够追到乙.⨯÷+②4002(280240)=÷800520≈(分钟)1.54÷÷+20[400(280240)]=÷÷20[400520]≈÷200.77≈(次)25答:甲和乙第二次相遇需要1.54分钟.20分钟以内相遇了25次.18.甲乙两人环湖同向赛跑,环湖一周是1000米,乙每分钟走50米,甲的速度是乙的3倍.现在甲在乙前面100米,问多少分钟两人相遇?⨯=米.现在现在甲在乙前面100米,那么甲的【分析】甲的速度是乙的3倍,即甲乙的速度差是502100-=米,然后再除以甲乙的速度差可得多少分钟后两人相遇.追及距离是1000100900-÷⨯【解答】解:(1000100)(502)=÷900100=(分钟)9答:9分钟后两人相遇.19.一条环形跑道长400米,小强每分钟跑300米,小金每分钟跑250米,两人同时同地同向出发,小强第一次追上小金时比小金多跑了多少米?【分析】小强第一次追上小金时小强比小金多跑了1圈,即400米,由此求解.【解答】解:环形跑道上,小强第一次追上小金时小强比小金多跑了1圈,即400米.答:小强第一次追上小金时小强比小金多跑了400米.20.在300米长的环形跑道上,甲、乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米.两人起跑后的第一次相遇点在起跑线前多少米?-米,又甲、乙二人同时同地同向跑步,【分析】甲每秒跑5米,乙每秒跑4.4米,则甲每秒比乙多跑5 4.4÷-秒,所以两人起跑后的第一次相遇时,甲正好比乙多跑一周即300米,所以两人相遇所用时间是300(5 4.4)此时乙跑了300(5 4.4) 4.4÷-⨯米,除以环形跑道的长度,余数即可得两人起跑后的第一次相遇点在起跑线前多少米.【解答】解:300(5 4.4) 4.4÷-⨯3000.6 4.4=÷⨯2200=(米),22003007÷=(圈)100⋯(米)答:两人起跑后的第一次相遇点在起跑线前100米.21.小红和小丽在环形跑道上跑步,两人从同一地点出发反向而行,小丽每秒跑3米,小红每秒跑5米,经过100秒两人第二次相遇.环形跑道长多少米?【分析】因为两人是反向跑步,第二次相遇就是两人共跑了2圈,每一圈用时100250÷=秒,然后根据“速度和⨯相遇时间=路程”列式可求出跑道长(53)50400+⨯=(米).【解答】解:(53)(1002)+⨯÷850=⨯400=(米)答:跑道长400米.22.(2019春•黄冈期末)夏天到了,壮壮和爸爸一起到遗爱湖环湖游.壮壮环湖一周要2小时,爸爸环湖一周要1.5小时.如果两人同时出发,相背而行,至少多少分钟后相遇?【分析】把环湖一周的路程看作单位“1”,根据路程÷时间=速度,分别表示出壮壮的速度1()120和爸爸的速度1()90,然后根据路程和÷速度和=相遇时间,解答即可.【解答】解:2小时120=分钟,1.5小时90=分钟111()12090÷+71360=÷3607=(分钟) 答:如果两人同时出发,相背而行,至少3607分钟后相遇.23.(2018秋•南康区期末)如图,甲、乙两人分别在圆形跑道的直径两端上.甲跑完一圈要4分钟,乙跑完一圈要6分钟.(1)两人如果同时出发,相向而行,多少分钟后能相遇?(2)两人如果同时出发,同向而行,多少分钟后甲能够追上乙?【分析】(1)把环形跑道的长度看作单位“1”,用1分别除以甲乙的时间,表示出甲乙的速度,两人分别在圆形跑道的直径两端上;然后用12(相遇时的路程)除以两人的速度和就是相遇时间;(2)同理,甲第一次追上乙,就比乙多行12圈(追及距离),然后用12除以两人的速度差就是追及时间.【解答】解:(1)1(1416) 2÷÷+÷15212=÷1.2=(分钟)答:相向而行,1.2分钟后相遇.(2)1(1416) 2÷÷-÷11212=÷6=(分钟)答:同向而行,6分钟后甲能够追上乙.24.(2019春•蓝山县期中)父子俩在长400米的环形跑道上散步,他俩同时从同一地点出发,如果相背而行,4分钟相遇:如果同向而行,8分钟父亲可以追上儿子.在跑道上走一圈,父亲和儿子各需要多少分钟?【分析】同时出发,相背而行,经过4分钟相遇,则两人的速度和是4004÷米;同向而行,经过8分钟父亲可以追上儿子,此时父亲正好比儿子多跑一周,即400米,则两人速度差是每分4008÷米,根据和差问题公式可知,儿子的速度是每分:(40044008)2÷-÷÷米,进而求出父亲的速度,再进一步分别求得在跑道上走一圈,父亲和儿子各需要多少分钟.【解答】解:(40044008)2÷-÷÷(10050)2=-÷502=÷25=(米/分)400425÷-10025=-75=(米/分)16400753÷=(分)4002516÷=(分). 答:在跑道上走一圈,父亲需要163分钟,儿子需要16分钟.25.(2019•湘潭模拟)假期里,依依和妈妈每天早晨在环湖路上跑步锻炼身体.环湖路长840米,依依每分跑108米,妈妈每分跑92米.(1)如果两人同时同地出发,相背而跑,多少分后相遇?(2)如果两人同时同地出发,同向而跑,多少分后依依超出妈妈一整圈?【分析】(1)如果两人同时同地出发,相背而跑,那么相遇的时候正好行了环湖路一圈的长度,然后除以两个人的速度和就是相遇时间.(2)如果两人同时同地出发,同向而跑,属于追及问题,依依超出妈妈一整圈正好是840米,然后除以以两个人的速度差就是追及时间.【解答】解:(1)840(10892)÷+840200=÷4.2=(分钟)答:如果两人同时同地出发,相背而跑,4.2分钟后相遇.(2)840(10892)÷-84016=÷52.5=(分钟)答:如果两人同时同地出发,同向而跑,52.5分钟后依依超出妈妈一整圈.26.(2019春•洪泽区校级期中)甲、乙两人沿着600米的环形跑道跑步,他们同时从同一地点出发,同向而行.甲的速度是270米/分,乙的速度是240米/分.经过多少分钟甲第一次追上乙?【分析】甲第一次追上乙时,甲比乙多跑1圈,即600米,根据路程差÷速度差=追及时间,列式为:÷-.600(270240)÷-【解答】解:600(270240)=÷60030=(分钟)20答:经过20分钟甲第一次追上乙.四.解答题27.小新、小文、小辰三人绕操场跑道练习自行车,他们骑一圈的时间分别是40秒、45秒和1分钟,现在三个小伙伴同时从起点出发,最少要用多长时间才能同时在起点相遇?【分析】首先根据题意,判断出他们骑一圈的时间分别是40秒、45秒和60秒,然后根据求几个数的最小公倍数的方法,求出40、45、60的最小公倍数,即可求出至少经过多长时间才能再次同时在起点相遇.【解答】解:1分钟60=秒因为402225=⨯⨯⨯,=⨯⨯,602235=⨯⨯⨯,45335所以40、45、60的最小公倍数是:⨯⨯⨯⨯⨯=,222335360=分钟因为360秒6所以至少经过6分钟才能再次同时在起点相遇.答:至少经过6分钟才能再次同时在起点相遇.28.小华和小军沿着一个半径是500米的圆形湖边同时从同一点相背而行,小华每分钟行81米.小军每分钟行76米.如果两人同向而行.多少分钟后小华追上小军比小军多行了一整圈?⨯⨯=米,然【分析】如果两人同向而行,小华追上小军比小军多行了一整圈,即追及距离是2 3.145003140后再除以速度差就是追及时间;据此解答即可.⨯⨯÷-【解答】解:2 3.14500(8176)=÷31405=(分钟)628答:628分钟后小华追上小军比小军多行了一整圈.29.甲、乙两人在400米的环形跑道上跑步.两人同时同地出发朝相反的方向跑.第一次相遇后.经过2分钟两人第二次相遇,已知甲平均每分钟跑105米.乙平均每分钟跑多少米?【分析】根据题意,第一次和第二次相隔2分钟,即第一次相遇到第二次相遇,他们相遇时间是2分钟,合走了一圈即400米,用相遇路程除以相遇时间可以求出他们的速度和,然后再减去甲的速度即可.【解答】解:根据题意可得:他们的速度和是:4002200÷=(米/分);乙的速度是:20010595-=(米/秒).答:乙平均每分钟跑95米.30.如图,甲、乙两人分别位于周长400米的正方形水池相邻的两个顶点上,同时开始按逆时针方向沿池边行走.甲每分钟走50m,乙每分钟走44米,求甲乙两人出发后几分钟才能走在正方形的同一条边上(不含甲、乙两人在正方形相邻顶点的情形)【分析】由于甲的速度大于乙的速度,且乙在甲后,则甲与乙的路程差不小于200且不大于300时,甲与乙在同一边上,据此列出不等式组,求解即可.【解答】解:设x分钟后,甲乙在同一条边上,由题意,有2005044300x x-2006300x解得:133503x.答:甲乙两人出发后1333分钟才能走在正方形的同一条边上.31.小倩和小语两人在一条800米长的环形跑道上,她们两人同时同地背向而行,4分钟后相遇.若两人同时同地同向而行,则两人25分钟才相遇.已知小倩比小语跑得快,她们两人每分钟各行多少米?【分析】她们两人同时同地背向而行,4分钟后相遇,即4分钟合行了800米,所以速度和是:8004200÷=(米).若两人同时同地同向而行,则两人25分钟才相遇,即25分钟小倩比小语多跑了800米,所以÷=(米),然后根据和差公式:(和+差)2÷=较大数,进一步解答即可求出她们速度差是:8002532两人每分钟各行多少米.÷=(米)【解答】解:8004200÷=(米)8002532+÷(20032)2=÷2322=(米)116-=(米)1163284答:小倩每分钟行116米,小语每分钟行84米.32.甲、乙两人在长为400米的环形跑道上跑步,已知甲每秒跑6米,乙每秒跑4米.(1)若两人同时同地背向而行,经过多少秒两人首次相遇?(2)若两人同时同地同向而行,经过多少秒两人首次相遇?【分析】(1)此题可以看作相遇问题来解答.第一次相遇时,他俩跑过的路程和是一圈,所以求相遇时间,用400米除以速度和即可;(2)由题意两人同时同地同向而行,看作追及问题,两人首次相遇,即甲比乙多跑一圈正好是400米,再-=米,再用甲比乙多跑一圈的路程除以速度差,就是需要的时根据甲乙各自的速度求出速度差是642间.÷+【解答】解:(1)400(46)=÷40010=(秒)40答:经过40秒两人第一次相遇.÷-(2)400(64)=÷4002200=(秒)答:经过200秒钟两人首次相遇.33.(2018秋•成都期末)(1)爸爸和妈妈同时从起点出发,他们几分钟后可以在起点第一次相遇?(2)请你提出一个数学问题,并尝试解答.【分析】(1)可以通过求2、4、6的最小公倍数的方法求出在起点第一次相遇的时间;(2)提出合理问题,根据速度⨯时间=路程,即可解答.【解答】解:(1)422=⨯,623=⨯2、4、6的最小公倍数是22312⨯⨯=,答:爸爸和妈妈同时从起点出发,他们12分钟后可以在起点第一次相遇.(2)爸爸每分钟跑200米,他们第一次相遇时爸爸一共跑了多少米?122002400⨯=(米)答:第一次相遇时爸爸一共跑了2400米.34.(2019春•北京月考)在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次.若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次.两人跑一圈各要几分钟?【分析】哥哥每追上妹妹一次就比妹妹多行一圈,根据追及路程÷追及时间=速度差可求出哥哥和妹妹的速度差为6001250÷=米;由每隔4分钟就相遇一次可知两个的速度和为6004150÷=米,则哥哥的速度为:(50150)2+÷,由此计算出哥哥的速度后,即能求出妹妹的速度,进而求出两人跑一圈各需几分钟.【解答】解:两人的速度差为:6001250÷=(米);速度和为:6004150÷=(米);则哥哥的速度为:(50150)2+÷2002=÷=(米)100-=(米)则妹妹的速度为:15010050÷=(分钟)哥哥跑一圈需要:6001006÷=(分钟)妹妹跑一圈需要:6005012答:哥哥跑一圈需要6分钟,妹妹跑一圈需要12分钟.35.(2019•湖南模拟)如图,在长为400公尺的环形跑道上,A、B两点之间的跑道长100公尺.甲从A 点、乙从B点同时出发相背而跑.两人相遇后,乙即转身与甲同向而跑,当甲跑到A时乙恰好跑到B.继续跑若甲追上乙时,甲从出发开始算起共跑了多少公尺?【分析】根据在相同的时间内,乙从B跑到C,甲可以从A跑到C(相向而行),乙如果按原路返回(从CAC=÷=跑到)B,甲又可以同向从C经过B跑到A,可知甲前后跑的两段路程是相等的,则4002200-=米,即甲的速度是乙的米.又因A、B两点间的距离是100米,所以乙每次跑的路程是200100100⨯=米可以追上乙,原来乙跑了400米,速度的2倍.现在乙在前300米,甲在后追及,甲跑3002600+-⨯=米.所以甲从出发开始共跑的路程是400(400100)21000+-÷-⨯【解答】解:400[400(4002100)]2=+--400[400(200100)]400[400100]2=+-⨯=+4006001000=(米)答:当甲追上乙时,甲共跑了1000米.36.(2018•西安模拟)甲、乙、丙三人环湖跑步锻炼,同时从湖边一固定点出发,乙、丙二人同向,甲与乙、丙反向,在甲第一次遇上乙后1.25分钟第一次遇上丙,再经过3.75分钟第二次遇上乙.已知甲速与乙速的比是3:2,湖的周长是1800米.求甲、乙、丙三人的速度每分钟各是多少米?【分析】在甲第一次遇上乙后1.25分钟第一次遇上丙,再经过3.75分钟第二次遇乙,则甲乙二人相时间为。
小升初数学专项题-第五讲 行程问题通用版

第五讲行程问题【基础概念】:行程问题是反映物体匀速运动的应用题,有"相向运动"(相遇问题)、"同向运动"(追及问题)和"相背运动"(相离问题)三种情况。
但它们反映出的数量关系是相同的,都可以归纳为速度×时间=路程。
【典型例题1】:甲、乙两车同时从相距960千米的两地相对而行,甲车每小时行90千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?【思路分析】:途中因汽车故障甲车停了1小时,5小时后两车相遇,则甲车实际行了5-1=4小时,行驶的路程为:90×4=360千米.已知全程为960千米,根据路程÷时间=速度可知乙的速度为:(960-360)÷5.综合算式为:[960-90×(5-1)]÷5。
解答::[960-90×(5-1)]÷5=[960-360]÷5=600÷5=120(千米);答:乙车每小时行120千米.【方法总结】:解决此类问题首先要弄清楚数量关系:乙车行驶的路程=两地的距离-甲车行驶的路程;还要明白由于故障,甲车停了1小时,实际上甲车少行驶了1小时,也就是说两车行驶的时间是不相等的,这是解决问题的关键;可以先根据“路程=速度×时间”计算出甲车行驶的路程,再根据“乙车行驶的路程=两地的距离-甲车行驶的路程”计算出乙车行驶的路程,最后利用“速度=路程÷实际”就可以计算出乙车的速度。
【巩固练习】1. 甲、乙两车同时从两地相对开出,两地相距480千米,5小时后相遇.甲车每小时行45千米,乙车每小时行多少千米?2.甲乙两车同时从AB两地相对开出,甲车每小时行42千米,乙车每小时行50千米,途中甲车因故障停驶48分钟,乙车开出5.3小时后两车在途中相遇.甲乙两地相距多少千米?3.甲、乙两列火车从相距1070千米的两地同时相对开出,甲车每小时行90千米,5小时后两车还要共行160千米才能相遇.乙车每小时行多少千米?【典型例题2】:甲、乙两车分别从A、B两地同时开出,相向而行,经过6小时,甲车行了全程的75%,乙车超过中点16千米。
小升初数学专项 应用题练习:行程问题

1.甲、乙两车同时从A、B两城出发相向而行.甲每小时行60千米,乙每小时行50千米,出发2小时后乙车行了全程的37,A、B两城相距多少千米?50×2=100(千米)100÷37=7003(千米)答:A、B两城相距7003千米2.甲乙两地相距405千米,一辆汽车从甲地开往乙地,4小时行驶了180千米.照这样的速度,再行驶多少小时,这辆汽车就可以到达乙地?180÷4=45(千米)405﹣180=225(千米)225÷45=5(小时)答:再行驶5小时,这辆汽车就可以到达乙地3.甲、乙两车同时从A地开往B地,乙车6小时达到,甲车每小时比乙车慢8千米,因此比乙车迟到一小时达到.A、B两地间的路程是多少千米?8÷(16﹣17)=8÷142=336(千米)答:A、B两地间的路程是336千米4.甲乙两港相距120千米,一艘轮船从甲港驶往乙港用了5.5小时,返回时因为顺水比去时少用了1小时,求这艘轮船往返的平均速度.120×2÷(5.5+5.5﹣1)=24(千米);答:这艘轮船往返的平均速度是24千米5.甲乙两人从东西两地同时出发,相向而行,甲每分钟行75米,乙每分钟行的是甲的23,经过123小时相遇,求东西两地的距离是多少?123小时=100分钟 75×23=50(米) 75×100+50×100=7500+5000=12500(米).答:东西两地的距离是12500米.6.甲、乙两站相距620千米,一列客车从甲站开往乙站,同时一列货车从乙站开往甲站,经过5小时在途中相遇,已知货车每小时行55千米,客车每小时行多少千米?(列方程解)设客车每小时行x 千米,根据题意列方程得,55×5+5x=620275+5x=6205x=620﹣2755x=345x=69答:客车每小时行69千米7.在一幅比例尺为1:9000000的地图上量得A、B两地的距离是5厘米,如果有两辆汽车同时从A、B两地相对开出,速度分别为每小时行30千米和45千米,问两辆汽车经过几小时后相遇?A、B两地相距:5÷19000000=45000000厘米=450(千米),两车相遇时间:450÷(30+45)=6(小时).答:两辆汽车经过6小时后相遇.8.甲车从A地开往B地要10小时,乙车从B地开往A地要15小时,某日两车分别从两地同时相向开出,结果在距中点120千米处相遇.A、B两地相距多少千米?甲乙速度比(也就是路程比):15:10=3:2,相遇时甲车比乙车多行了全程的:35-25=15,相遇时甲车比乙车多行:120×2=240(千米),AB两地路程是:240÷15=1200(千米).答:A、B两地相距1200千米.9.龟兔赛跑,全程2000米,龟每分钟爬25米,兔每分钟跑320米.兔自以为速度快,在途中睡了一觉,结果龟到终点时,兔离终点还有400米,兔在途中睡了几分钟?2000÷25﹣(2000﹣400)÷320=80﹣1600÷320,=80﹣5,=75(分钟).答:兔子在途中睡了75分钟。
专题05追击问题(一)-2022-2023学年小升初数学行程问题高频常考易错真题专项汇编(通用版)

专题05 追击问题(一)2022-2023学年小升初数学行程问题高频常考易错真题专项汇编一.解答题1.甲、乙两人骑车出外旅游.甲先出发,平均每分钟行200米,甲出发5分钟后,乙带一条狗出发,以每分钟250米的速度追去,狗每分钟跑300米,追上甲后,立即返回;见到乙后又立即向甲追去,直到乙追上甲.这时狗跑了多少米?2.小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?3.甲每小时走4km,先走30min后,乙从甲的出发地沿同一条路追赶甲,乙每小时最快能走6km,乙至少需要多少时间才能赶上甲?4.两辆卡车从甲城开往乙城,第一辆卡车每小时行30千米,第二辆卡车比第一辆卡车迟开2小时,结果两辆卡车同时到达乙城,已知甲城到乙城的路程是180千米,求第二辆卡车的速度?5.一辆摩托车以每小时75千米的速度追赶先出发的汽车,已知汽车每小时行50千米,摩托车用4小时追上汽车,问汽车比摩托车早出发几小时?6.儿子早上步行去上学,每分钟行100米,6分钟后爸爸发现儿子没有带文具盒,马上骑车去追儿子,爸爸骑车每分钟行400米,求多少分钟后爸爸追上儿子?7.妈妈买了个数同样多的苹果和梨,一家人每天吃3个苹果和2个梨,过了几天,小芳发现家里的梨还有6个,可是苹果却没有了.已经吃了几天?8.甲、乙两汽车的速度比为4:3,两车同时分别从A、B两地出发,相向而行,10分钟后相遇.那么同向而行(乙在前、甲在后),几分钟后甲追上乙?9.一只狗追赶一只兔,狗跳6次的时间与兔跳5次的时间相等,狗跳4次的距离与兔跳7次的距离相等.兔在狗前面5.5千米处,问:狗跳多远才能追上兔?10.一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?11.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,小强骑自行车的速度是多少?12.少先队员响应“绿化祖国”的号召,开展植树活动.五(1)中队每小时植树53棵,植了14棵后,五(2)中队才开始植树,每小时植树60棵,五(2)中队植了几小时后,两个中队植树的棵数相等?13.小明爱好美术,时常外出写生.星期天上午8时,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车送写生纸,在离家4千米的地方追上了他.然后,爸爸立即回家,但到家后又马上回头追小明,送写生笔.再追上他的时候,距离小明家恰好8千米.此时时钟钟面上的时间是多少?14.甲、乙两车同时从A站开往B站,到达B站时,已知甲车所用时间的34正好是乙车所用时间的56,甲车速度是乙车的几分之几?乙车速度是甲车的几分之几?15.小明和小红沿着400米长的环形跑道跑步,两人同时从同一地点出发,同向而行,小明每分钟跑100米,小红每分钟跑80米,经过多少分钟,小明第一次追上小红?16.一艘汽艇和一艘轮船同时从同一码头朝着同一方向航行,汽艇每小时行24千米,轮船每小时行15千米,汽艇航行3小时后,机器发生故障,抛锚修理,修好后汽艇航行7小时追上了轮船.汽艇修了多少时间?17.哥哥和弟弟进行100米赛跑,当哥哥跑到终点时,弟弟离终点还有10米。
六年级下册数学试题-小升初专题训练:第05讲-行程问题2(无答案)人教版

第五讲行程问题例1.当甲在60 m赛跑中冲到终点时,比乙领先10 m,比丙领先20 m,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先多少?例2.甲、乙两车分别从A、B两地出发,相向而行。
出发时,甲、乙的速度比是5:4;相遇后,甲的速度减少20%,这样当甲到达B地时,乙离4地还有15千米。
问A、B两地相距多少千米?例3.①一辆汽车从甲地到乙地,如果把车速提高20%可比原来时间提早1小时到达;若以原速行驶120千米后,再将车速提高25%,则可提前40分钟到达。
问甲、乙两地相距多少千米?②一辆汽车从甲地运货去乙地,原计划8小时到达,当行驶了360千米时,由于路况不好,速度比原计划减慢了20%,结果比原计划推迟了半小时到达。
问甲、乙两地相距多少千米?例4. 一辆大货车与一辆小轿车同时从甲地开往乙地,小轿车到达乙地后立即返回,返回时速度提高50%,出发2小时后,小轿车与大货车第一次相遇,当大货车到达乙地时,小轿车刚好行驶到甲、乙两地的中点。
问小轿车在甲、乙两地往返一次需要多长时间?例5.米老鼠和唐老鸭进行越野赛跑,按原定的速度,它们目时出发以后,米老鼠将比唐老鸭早到终点1分钟,在比赛前,米老鼠喝兴奋剂使自己的速度提高了20%,唐老鸭穿上了一种特殊的魔力鞋使自己的速度提高了25%,在比赛中魔力鞋发生故障原地修理了2分钟,最后比赛结果为:唐老鸭比米老鼠早到1分钟,那么唐老鸭跑完全程实际一共用了多少分钟?例6.从甲市到乙市有一条公路,它分成三段,在第一段路上,汽车速度是40千米/时;在第二段路上,汽车速度是90千米/时;在第三段路上,汽车速度是50千米/时。
已知第一段路的长恰好是第三段路的2倍,现有两辆汽车分别从甲、乙两市同时出发,相向而行,l小时20分后,在第二段路的13处(从甲到乙方向的13处)相遇。
那么甲、乙两市相距多少千米?例7.小明和小亮分别从甲、乙两地同时出发,相向而行,小明速度是小亮的56,两人分别到达乙地与甲地后,立刻返回各自的出发地。
(完整版)小升初数学行程问题应用题(附答案)

小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4。
5千米,乙行了5小时。
求AB两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB 两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。
5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米? 12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲行程问题
【基础概念】:行程问题是反映物体匀速运动的应用题,有"相向运动"(相遇问题)、"同向运动"(追及问题)和"相背运动"(相离问题)三种情况。
但它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程。
【典型例题1】:甲、乙两车同时从相距960千米的两地相对而行,甲车每小时行90千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?
【思路分析】:途中因汽车故障甲车停了1小时,5小时后两车相遇,则甲车实际行了5-1=4小时,行驶的路程为:90×4=360千米.已知全程为960千米,根据路程÷时间=速度可知乙的速度为:(960-360)÷5.综合算式为:[960-90×(5-1)]÷5。
解答::[960-90×(5-1)]÷5
=[960-360]÷5
=600÷5
=120(千米);
答:乙车每小时行120千米.
【方法总结】:解决此类问题首先要弄清楚数量关系:乙车行驶的路程=两地的距离-甲车行驶的路程;还要明白由于故障,甲车停了1小时,实际上甲车少行驶了1小时,也就是说两车行驶的时间是不相等的,这是解决问题的关键;可以先根据“路程=速度×时间”计算出甲车行驶的路程,再根据“乙车行驶的路程=两地的距离-甲车行驶的路程”计算出乙车行驶的路程,最后利用“速度=路程÷实际”就可以计算出乙车的速度。
【巩固练习】
1. 甲、乙两车同时从两地相对开出,两地相距480千米,5小时后相遇.甲车每小时行45千米,乙车每小时行多少千米?
2.甲乙两车同时从AB两地相对开出,甲车每小时行42千米,乙车每小时行50
千米,途中甲车因故障停驶48分钟,乙车开出5.3小时后两车在途中相遇.甲乙两地相距多少千米?
3.甲、乙两列火车从相距1070千米的两地同时相对开出,甲车每小时行90千米,5小时后两车还要共行160千米才能相遇.乙车每小时行多少千米?
【典型例题2】:甲、乙两车分别从A、B两地同时开出,相向而行,经过6小时,甲车行了全程的75%,乙车超过中点16千米。
已知甲车比乙车每小时多行4千米。
求A、B两地相距多少千米?
【思路分析】:甲车行了全程的75%,乙车超过中点16千米,即乙车行了全程的50%加上16千米,而6小时内,甲比乙多行6×4=24(千米),根据上述分析,全程的75%减去全程的50%,就等于(16+24)千米,或者:全程的50%加上16千米,再加上24千米,等于全程的75%。
解答:(16+4×6)÷(75%-50%),
=(16+24)÷25%,
=40÷0.25,
=160(千米);
答:A、B两地相距160千米。
【方法总结】:解决此类问题首先求出甲车比乙车多行驶的距离,再求出行驶6小时后两车相距的距离,最后找出两车相距的距离对应的百分比,即可解决。
【巩固练习】
4. 甲、乙两车分别从A、B两地同时出发相向而行,5小时后,甲车行了全程的60%,乙车还差10km到达两地的中点.已知甲车每小时比乙车多行15km,A、B两地相距多少千米?
5.甲乙两车分别从A、B两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点13千米,已知甲车比乙车每小时多行3千米,A、B两城相距多少千米?
6.甲、已两辆汽车同时从A、B两地相向开出.两地相距280千米,2小时后相遇.已知甲、乙两辆车的速度比是3:4,甲、乙两辆车每小时各行多少千米?
答案及解析:
1.【解析】可以先用“路程÷相遇时间=速度和”求出速度和,再减去甲车的速度得到乙车的速度;也可以先用“乙车行驶的路程=总路程-甲车行驶的路程”求出乙车行驶的路程,再用“速度=路程÷时间”得到乙车的速度。
【答案】480÷5-45=51(千米)
也可以:(480-45×5)÷5=51(千米)
答:乙车每小时行51千米。
2.【解析】化48分钟=0.8小时,先求出相遇时甲车行驶的时间,再根据路程=速度×时间,分别求出两车行驶的路程,再根据总路程=甲车行驶路程+乙车行驶路程解答。
【答案】48分钟=0.8小时
42×(5.3-0.8)+50×5.3
=42×4.5+265
=189+265
=454(千米)
答:甲乙两地相距454千米。
3.【解析】先求出5小时两车共行了路程,即(1070-160)千米,再求出两车速度和,即(1070-160)÷5千米,最后就可以求出乙车每小时行驶的路程,即(1070-160)÷5-90。
【答案】:(1070-160)÷5-90
=910÷5-90
=182-90
=92(千米)
答:乙车每小时行92千米。
4.【解析】甲车行了全程的60%,乙车还差10km到达两地的中点,即乙车行了还差10千米到达全程的50%,而5小时内,甲比乙多行5×15=75(千米),根据上述分析,全程的50%减去10千米,再加上75千米,等于全程的60%。
【答案】:解:设A、B两地相距x千米,
50%x-10+5×15=60%x
50%x-10+75=60%x
10%x=65
x=650
答:A、B两地相距650千米.
5.【解析】甲每小时多行3km,4个小时多走4×3=12千米,乙车超过中点13
千米甲车行80%,甲车比乙车多走了(80%-1
2)=30%的路程少13千米;设
两地的路程为x千米,根据题意可得方程,(80%-1
2)x-13=12,解出即可。
【答案】:解:设A、B两城相距x千米,
(80%-1
2)x-13=12
x=
250
3
答:A、B两城相距250
3千米。
6. 【解析】先利用“路程÷时间=速度”求出速度和,再利用“按比例分配”的方法计算即可。
【答案】:280÷2=140(千米)
140÷(3+4)×3=60(千米)
140-60=80(千米)
答:甲车每小时小时60千米,乙车每小时行驶80千米。