高考数学模拟复习试卷试题模拟卷180

合集下载

高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.18.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3 .【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)ex,∴f′(x)=2ex+(2x+1)ex,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,yH),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得yH=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f (x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

2024年上海市高考高三数学模拟试卷试题及答案详解

2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

高考数学模拟试题及答案

高考数学模拟试题及答案

高考数学模拟试题及答案一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x)=x^2-4x+3,下列说法正确的是:A. 函数f(x)的图像开口向上B. 函数f(x)的图像开口向下C. 函数f(x)的图像关于x=2对称D. 函数f(x)的图像关于y轴对称2. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 为:A. {1, 2}B. {2, 3}C. {1, 3}D. {2}3. 若直线l:y=kx+b与圆x^2+y^2=1相切,则k的取值范围是:A. -1≤k≤1B. -√2≤k≤√2C. k=0D. k=±√24. 已知等差数列{an}的前三项为1,2,3,则该数列的通项公式为:A. an=nB. an=n+1C. an=2n-1D. an=3n-25. 若复数z满足|z|=2,且z的实部为1,则z的虚部为:A. 1B. -1C. √3D. -√36. 已知函数f(x)=x^3-3x^2+2,求f'(x):A. f'(x)=3x^2-6xB. f'(x)=x^2-6x+2C. f'(x)=3x-6D. f'(x)=x^3-9x^2+67. 若sinθ=1/2,且θ∈(0, π),则cosθ的值为:A. √3/2B. -√3/2C. 1/2D. -1/28. 已知双曲线C:x^2/a^2-y^2/b^2=1(a>0, b>0)的一条渐近线方程为y=x,则双曲线的离心率为:A. √2B. √3C. 2D. 3二、填空题(本题共4小题,每小题5分,共20分)9. 已知等比数列{bn}的前三项为2,6,18,则该数列的公比q 为______。

10. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为______。

11. 已知向量a=(1, -2),b=(2, 3),则向量a·b的值为______。

高考数学模拟复习试卷试题模拟卷198418

高考数学模拟复习试卷试题模拟卷198418

高考模拟复习试卷试题模拟卷【高频考点解读】1.理解同角三角函数的基本关系式:sin2α+cos2α=1,sin αcos α=tanα;2.能利用单位圆中的三角函数线推导出π2±α,π±α,-α的正弦、余弦、正切的诱导公式. 【热点题型】题型一 同角三角函数基本关系式及应用【例1】 (1)已知tan α=2,则2sin α-3cos α4sin α-9cos α=_______________.(2)已知tan θ=2,则si n2θ+sin θcos θ-2cos2θ=( ) A .-43 B.54C .-34 D.45 【提分秘籍】若已知正切值,求一个关于正弦和余弦的齐次分式的值,则可以通过分子、分母同时除以一个余弦的齐次幂将其转化为一个关于正切的分式,代入正切值就可以求出这个分式的值,这是同角三角函数关系中的一类基本题型.【举一反三】若3sin α+cos α=0,则1cos2α+2sin αcos α的值为( )A.103B.53C.23 D .-2题型二 利用诱导公式化简三角函数式【例2】 (1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°) =________.(2)设f(α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin2α+cos ⎝⎛⎭⎫3π2+α-sin2⎝⎛⎭⎫π2+α(1+2sin α≠0),则 f ⎝⎛⎭⎫-23π6=________. 【提分秘籍】利用诱导公式化简三角函数的基本思路和化简要求:(1)基本思路:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.【举一反三】(1)sin(-1 071°)sin 99°+sin(-171°)sin(-261°)+ tan(-1 089°)tan(-540°)=________.(2)化简:tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)sin (-π-α)=________.题型三利用诱导公式求值【例3】 (1)已知sin ⎝⎛⎭⎫π3-α=12,则cos ⎝⎛⎭⎫π6+α=______. (2)已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫56π+α=________.【提分秘籍】巧用相关角的关系会简化解题过程.常见的互余关系有π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等,常见的互补关系有π3+θ与2π3-θ;π4+θ与3π4-θ等.【举一反三】(1)已知sin ⎝⎛⎭⎫7π12+α=23,则cos ⎝⎛⎭⎫α-11π12=________. (2)若tan(π+α)=-12,则tan(3π-α)=________. 【高考风向标】【高考福建,文6】若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【高考安徽,文16】已知函数2()(sin cos )cos 2f x x x x =++ (Ⅰ)求()f x 最小正周期; (Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.ππ==22T .]45,4[ππ上的图象知, [0,]2π上的【高考四川,文19】已知A 、B 、C 为△ABC 的内角,tanA 、tanB 是关于方程x23px -p +1=0(p ∈R)两个实根.(Ⅰ)求C 的大小(Ⅱ)若AB =1,AC 6,求p 的值(·福建卷) 已知函数f(x)=2cos x(sin x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间. (·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.(·全国卷) 已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513 D.1213(·四川卷) 设sin 2α=-sin α,α∈π2,π,则tan 2α的值是________. 【高考押题】1.1-2sin (π+2)cos (π-2)=( ) A .sin 2-cos 2B .sin 2+cos 2C .±(sin 2-cos 2)D .cos 2-sin 22.已知sin α=55,则sin4α-cos4α的值为( ) A .-15 B .-35 C.15D.353.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) A .-32B.32C .-12D.124.已知sin ⎝⎛⎭⎫π2+α=35,α∈⎝⎛⎭⎫0,π2,则sin(π+α)=( ) A.35B .-35C.45D .-455.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α=( )A.223B .-223C.13D .-13解析 ∵cos ⎝⎛⎭⎫π4+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4-α=-sin ⎝⎛⎭⎫α-π4=-13. 答案 D6.如果sin(π+A)=12,那么cos ⎝⎛⎭⎫32π-A 的值是________.7.sin 43π·cos 56π·tan ⎝⎛⎭⎫-43π的值是________.8.已知cos ⎝⎛⎭⎫π6-θ=a(|a|≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 9.已知sin θ=45,π2<θ<π. (1)求tan θ的值;(2)求sin2θ+2sin θcos θ3sin2θ+cos2θ的值.解 (1)∵sin2θ+cos2θ=1,∴cos2θ=925. 又π2<θ<π,∴cos θ=-35.∴tan θ=sin θcos θ=-43. (2)由(1)知,sin2θ+2sin θcos θ3sin2θ+cos2θ=tan2θ+2tan θ3tan2θ+1 =-857.10.已知在△ABC 中,sin A +cos A =15. (1)求sin Acos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形; (3)求tan A 的值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【重点知识梳理】1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax +By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.应用利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.【高频考点突破】考点一二元一次不等式(组)表示的平面区域例1、(1)若不等式组⎩⎪⎨⎪⎧x≥0,x +3y≥4,3x +y≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34(2)如图阴影部分表示的区域可用二元一次不等式组表示为________.【答案】(1)A (2)⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0【特别提醒】二元一次不等式(组)表示平面区域的判断方法: 直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.【变式探究】(1)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于4,则a 的值为( )A .-5B .3C .5D .7(2)如图所示的平面区域(阴影部分)满足不等式________.【答案】(1)D (2)x +y -1>0 【解析】(1)考点二 求线性目标函数的最值例2 (1)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≤x ,x +y≤1,y≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n 等于( )A .5B .6C .7D .8(2)(·课标全国Ⅱ)已知a>0,x ,y 满足约束条件⎩⎪⎨⎪⎧x≥1,x +y≤3,y≥a x -3,若z =2x +y 的最小值为1,则a =________.【答案】(1)B (2)12 【解析】(1)【特别提醒】线性规划问题的解题步骤:(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线; (2)平移——将l 平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值.【变式探究】 (1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x≤2,y≤2,x ≤2y给定.若M(x ,y)为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .3B .4C .32D .42(2)(·北京)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C.12D .-12 【答案】(1)B (2)D考点三线性规划的实际应用例3、某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?【特别提醒】解线性规划应用问题的一般步骤:(1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答.【变式探究】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得的最大利润是________万元.【答案】27变式四 求非线性目标函数的最值例4、(1)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx 的最大值为________.(2)已知O 是坐标原点,点A(1,0),若点M(x ,y)为平面区域⎩⎪⎨⎪⎧x +y≥2,x≤1,y≤2上的一个动点,则|OA →+OM →|的最小值是________.【答案】(1)32 (2)322【特别提醒】常见代数式的几何意义有 (1)x2+y2表示点(x ,y)与原点(0,0)的距离; (2)x -a 2+y -b 2表示点(x ,y)与点(a ,b)之间的距离;(3)yx 表示点(x ,y)与原点(0,0)连线的斜率; (4)y -b x -a表示点(x ,y)与点(a ,b)连线的斜率. 【变式探究】(1)设不等式组⎩⎪⎨⎪⎧x≥1,x -2y +3≥0,y≥x 所表示的平面区域是Ω1,平面区域Ω2是与Ω1关于直线3x -4y -9=0对称的区域,对于Ω1中的任意一点A 与Ω2中的任意一点B ,|AB|的最小值等于( )A.285B .4C.125D .2(2)设变量x ,y 满足⎩⎪⎨⎪⎧5x +2y -18≤0,2x -y≥0,x +y -3≥0,若直线kx -y +2=0经过该可行域,则k 的最大值为________.【答案】(1)B (2)1考点五、利用线性规划思想求解非线性目标函数的最值 例5、变量x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x≥1,(1)设z =yx ,求z 的最小值; (2)设z =x2+y2,求z 的取值范围;(3)设z =x2+y2+6x -4y +13,求z 的取值范围.【方法与技巧】1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z=ax+by (ab≠0)的最值,将函数z=ax+by转化为直线的斜截式:y=-a b x+zb,通过求直线的截距zb的最值间接求出z的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题.【真题感悟】1.【高考重庆,文10】若不等式组2022020x yx yx y m+-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m的值为()(A)3 (B) 1 (C) 43(D)3【答案】B,2.【高考四川,文9】设实数x,y满足2102146x yx yx y+≤⎧⎪+≤⎨⎪+≥⎩,则xy的最大值为( )(A)252(B)492(C)12 (D)14【答案】A3.【高考广东,文4】若变量x,y满足约束条件224x yx yx+≤⎧⎪+≥⎨⎪≤⎩,则23z x y=+的最大值为()A.10B.8C.5D.2【答案】C4.【高考新课标1,文15】若x,y满足约束条件20210220x yx yx y+-≤⎧⎪-+≤⎨⎪-+≥⎩,则z=3x+y的最大值为.【答案】45.【高考陕西,文11】某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元.4万元,则该企业每天可获得最大利润为()A .12万元B .16万元C .17万元D .18万元 【答案】D6.【高考湖南,文4】若变量x y ,满足约束条件111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最小值为( )A 、1-B 、0C 、1D 、2 【答案】A7.【高考福建,文10】变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】Cx–1–2–3–41234–1–2–3–4123BOC8.【高考安徽,文5】已知x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则y x z +-=2的最大值是( )(A )1 (B )2 (C )5 (D )1 【答案】A9.【高考山东,文12】 若,x y 满足约束条件13,1y x x y y -≤⎧⎪+≤⎨⎪≥⎩则3z x y =+的最大值为 .【答案】710.【高考浙江,文14】已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是. 【答案】15 【解析】22,2224631034,22x y y xz x y x y x y y x+-≥-⎧=+-+--=⎨--<-⎩11.(·安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为()A.12或-1 B .2或12 C .2或1 D .2或-1 【答案】D 【解析】12.(·北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y≥0,且z =y -x 的最小值为-4,则k 的值为() A .2 B .-2 C.12 D .-12 【答案】D13.(·福建卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x≥0,则z =3x +y 的最小值为________.【答案】114.(·广东卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≤x ,x +y≤1,y≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =()A .5B .6C .7D .8 【答案】B15.(·湖南卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≤x ,x +y≤4,y≥k ,且z =2x +y 的最小值为-6,则k =________.【答案】-216.(·全国卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y≥0,x +2y≤3,x -2y≤1,则z =x +4y 的最大值为________.【答案】517.(·新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y≥1,x -2y≤4的解集记为D ,有下面四个命题:p1:∀(x ,y)∈D ,x +2y≥-2, p2:∃(x ,y)∈D ,x +2y≥2, p3:∀(x ,y)∈D ,x +2y≤3, p4:∃(x ,y)∈D ,x +2y≤-1. 其中的真命题是() A .p2,p3 B .p1,p2 C .p1,p4 D .p1,p3 【答案】B18.(·新课标全国卷Ⅱ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为()A .10B .8C .3D .2 【答案】B19.(·山东卷)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by(a >0,b >0)在该约束条件下取到最小值25时,a2+b2的最小值为()A. 5B. 4C. 5D. 2 【答案】B20.(·陕西卷)在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.21.(·天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y≥1,则目标函数z =x +2y 的最小值为()A .2B .3C .4D .5 【答案】B22.(·浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x≥1时,1≤ax +y≤4恒成立,则实数a 的取值范围是________.【答案】⎣⎡⎦⎤1,3223.(高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为()A .2B .1C .-13D .-12【答案】C24.(高考全国新课标卷Ⅱ)已知a>0,x ,y 满足约束条件⎩⎪⎨⎪⎧x≥1,x +y≤3,y≥a x -3.若z =2x +y 的最小值为1,则a =()A.14 B.12 C .1D .2【答案】B25.(·安徽卷)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是()A .2 2B .2 3C .4 2D .4 3 【答案】D26.(·北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m<0,y -m>0表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求得m 的取值范围是()A.⎝⎛⎭⎫-∞,43B.⎝⎛⎭⎫-∞,13C.⎝⎛⎭⎫-∞,-23D.⎝⎛⎭⎫-∞,-53【答案】C27.(·广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y≥4,x +y≤4,x≥0,令点集T ={(x0,y0)∈D|x0,y0∈Z ,(x0,y0)是z =x +y 在D上取值最大值或最小值的点}.则T 中的点共确定________条不同的直线.【答案】628.(·湖南卷)若变量x ,y 满足结束条件⎩⎪⎨⎪⎧y≤2x ,x +y≤1,y≥-1,则x +2y 的最大值是()A .-52B .0 C.53 D.52 【答案】C29.(·江苏卷)抛物线y =x2在x =1处的切线与两坐标轴围成的三角形区域为D(包含三角形内部与边界).若点P(x ,y)是区域D 内的任意一点,则x +2y 的取值范围是________.【答案】.⎣⎡⎦⎤-2,1230.(·陕西卷)若点(x ,y)位于曲线y =|x -1|与y =2所围成的封闭区域,则2x -y 的最小值为________.【答案】-431.(·天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为()A .-7B .-4C .1D .2 【答案】A32.(·浙江卷)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.【答案】2【押题专练】1.不等式x -2y >0表示的平面区域是( ).【答案】D2.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x≥0,y≥0.若x ,y 为整数,则3x +4y 的最小值是( ).A .14B .16C .17D .19【答案】B 3.若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y≥a ,0≤x≤2表示的平面区域是一个三角形,则a 的取值范围是 ( ). A .(-∞,5) B .[7,+∞) C .[5,7) D .(-∞,5)∪[7,+∞)【答案】C4.设实数x ,y 满足条件⎩⎪⎨⎪⎧4x -y -10≤0,x -2y +8≥0,x≥0,y≥0,若目标函数z =ax +by(a >0,b >0)的最大值为12,则2a +3b 的最小值为( ). A.256B.83C.113D .4【答案】A5.实数x ,y 满足⎩⎪⎨⎪⎧x≥1,y≤a a>1,x -y≤0,若目标函数z =x +y 取得最大值4,则实数a 的值为 ( ).A .4B .3C .2 D.32【答案】C6.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ).A .1 800元B .2 400元C .2 800元D .3 100元【答案】C7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,x +3y -3≥0,则z =3x -y 的最小值为________.【答案】-18.若x ,y 满足约束条件⎝ ⎛x≥0,x +2y≥3,2x +y≤3,则x -y 的取值范围是________.【答案】[-3,0]9.设实数x 、y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx 的最大值是________.【答案】3210.设m>1,在约束条件⎩⎪⎨⎪⎧y≥x ,y≤mx ,x +y≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围为________.【答案】(1,1+2)11.设集合A={(x,y)|x,y,1-x-y是三角形的三边长}.(1)求出x,y所满足的不等式;(2)画出点(x,y)所在的平面区域.12.画出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y≥0,x≤3表示的平面区域,并回答下列问题:(1)指出x 、y 的取值范围; (2)平面区域内有多少个整点?13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥1,x -y≥-1,2x -y≤2,(1)求目标函数z =12x -y +12的最值.(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.14.某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x ,y 分别表示生产甲、乙产品的数量,在(1)的条件下,求x ,y 为何值时,z =xP 甲+yP 乙最大,最大值是多少?项目 用量 产品 工人(名)资金(万元)甲420乙85高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。

注意事项:1.答题前,请务必填写自己的姓名和考籍号。

2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。

3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,请只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。

山东省潍坊市2024年数学(高考)部编版模拟(评估卷)模拟试卷

山东省潍坊市2024年数学(高考)部编版模拟(评估卷)模拟试卷

山东省潍坊市2024年数学(高考)部编版模拟(评估卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图,在长方体中,底面ABCD为正方形,E,F分别为,CD的中点,直线BE与平面所成角为,给出下列结论:①平面;②;③异面直线BE与所成角为;④三棱锥的体积为长方体体积的.其中,所有正确结论的序号是()A.①②③B.①②④C.②③④D.①②③④第(2)题有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:优秀非优秀甲班10乙班30附:(),0.050.0250.0100.0053.8415.0246.6357.879已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是()A.甲班人数少于乙班人数B.甲班的优秀率高于乙班的优秀率C.表中的值为15,的值为50D.根据表中的数据,若按的可靠性要求,能认为“成绩与班级有关系”第(3)题已知正三棱柱的高等于1.一个球与该正三棱柱的所有棱都相切,则该球的体积为()A.B.C.D.第(4)题设集合,,则()A.B.C.D.第(5)题某商场有四类食品,其中粮食类、植物油类、动物性食品类以及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7第(6)题等差数列中,,则此数列的前项和等于()A.160B.180C.200D.220第(7)题如图在正方体中,点为线段的中点. 设点在线段上,直线与平面所成的角为,则的取值范围是A.B.C.D.第(8)题已知直线经过点,则的最小值为()A.4B.8C.9D.二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)试卷一:基础能力测试一、选择题(每题5分,共50分)1. 若函数 $ f(x) = \sqrt{3x 1} $ 在区间 $[0, 2]$ 上有定义,则 $ x $ 的取值范围是:A. $[0, 1]$B. $[0, 2]$C. $[1, 2]$D. $[1, 3]$2. 已知集合 $ A = \{x | x^2 3x + 2 = 0\} $,则集合 $ A $ 的元素个数是:A. 1B. 2C. 3D. 43. 若 $ a, b $ 是方程 $ x^2 4x + 3 = 0 $ 的两个根,则$ a + b $ 的值是:A. 1B. 2C. 3D. 44. 已知函数 $ f(x) = 2x^3 3x^2 + x $,则 $ f'(1) $ 的值是:A. 2B. 3C. 4D. 55. 若 $ \log_2 8 = x $,则 $ x $ 的值是:A. 2B. 3C. 4D. 56. 已知等差数列 $ \{a_n\} $ 的首项 $ a_1 = 2 $,公差 $ d = 3 $,则第10项 $ a_{10} $ 的值是:A. 29B. 30C. 31D. 327. 若 $ \sin 45^\circ = x $,则 $ x $ 的值是:A. $ \frac{\sqrt{2}}{2} $B. $ \frac{\sqrt{3}}{2} $C. $ \frac{1}{2} $D. $ \frac{1}{\sqrt{2}} $8. 已知函数 $ f(x) = \frac{1}{x} $,则 $ f^{1}(x) $ 的表达式是:A. $ x $B. $ \frac{1}{x} $C. $ x $D. $ \frac{1}{x} $9. 若 $ a^2 = b^2 $,则 $ a $ 和 $ b $ 的关系是:A. $ a = b $B. $ a = b $C. $ a = b $ 或 $ a = b $D. $ a $ 和 $ b $ 无关10. 已知等比数列 $ \{a_n\} $ 的首项 $ a_1 = 1 $,公比 $ q = 2 $,则第5项 $ a_5 $ 的值是:A. 8B. 16C. 32D. 64二、填空题(每题5分,共20分)1. 若 $ x^2 5x + 6 = 0 $,则 $ x $ 的值是 ________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷【高频考点解读】1.了解逻辑联结词“或”、“且”、“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.【热点题型】题型一含有逻辑联结词的命题的真假判断例1、(1)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(p)∨(q)B.p∨(q)C.(p)∧(q) D.p∨q(2)如果命题“非p或非q”是假命题,给出下列四个结论:①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.其中正确的结论是()A.①③ B.②④C.②③ D.①④【提分秘籍】(1)“p∨q”、“p∧q”、“p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:①明确其构成形式;②判断其中命题p、q的真假;③确定“p∨q”、“p∧q”、“p”形式命题的真假.(2)p且q形式是“一假必假,全真才真”,p或q形式是“一真必真,全假才假”,非p则是“与p的真假相反”.【举一反三】已知命题p:∃x0∈R,使sin x0=52;命题q:∀x∈R,都有x2+x+1>0.给出下列结论:①命题“p∧q”是真命题;②命题“p∨q”是真命题;③命题“p∨q”是假命题;④命题“p∧q”是假命题.其中正确的是()A.②③B.②④C.③④ D.①②③题型二全称命题、特称命题的真假判断例2 下列命题中,真命题是()A .∃m0∈R ,使函数f(x)=x2+m0x(x ∈R)是偶函数B .∃m0∈R ,使函数f(x)=x2+m0x(x ∈R)是奇函数C .∀m ∈R ,函数f(x)=x2+mx(x ∈R)都是偶函数D .∀m ∈R ,函数f(x)=x2+mx(x ∈R)都是奇函数 【提分秘籍】(1)①要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p(x)成立.②要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x0,使p(x0)不成立即可.(2)要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x0,使p(x0)成立即可,否则这一特称命题就是假命题.【举一反三】下列命题中是假命题的是( )A .∀x ∈⎝⎛⎭⎫0,π2,x>sin xB .∃x0∈R ,sin x0+cos x0=2C .∀x ∈R,3x>0D .∃x0∈R ,lg x0=0题型三含有一个量词的命题否定例3、命题“对任意x ∈R ,都有x2≥0”的否定为( ) A .对任意x ∈R ,都有x2<0 B .不存在x ∈R ,使得x2<0 C .存在x0∈R ,使得x20≥0 D .存在x0∈R ,使得x20<0 【提分秘籍】全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.【举一反三】设x ∈Z ,集合A 是奇数集,集合B 是偶数集,若命题p :∀x ∈A,2x ∈B ,则() A .p :∀x ∈A,2x ∉B B .p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B【高考风向标】1.【高考山东,文5】设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( ) (A )若方程20x x m +-=有实根,则0m > (B) 若方程20x x m +-=有实根,则0m ≤ (C) 若方程20x x m +-=没有实根,则0m > (D) 若方程20x x m +-=没有实根,则0m ≤2.【高考湖北,文3】命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-1.(·安徽卷) 命题“∀x ∈R ,|x|+x2≥0”的否定是( ) A .∀x ∈R ,|x|+x2<0 B .∀x ∈R ,|x|+x2≤0 C .∃x0∈R ,|x0|+x20<0 D .∃x0∈R ,|x0|+x20≥02.(·福建卷) 命题“∀x ∈[0,+∞),x3+x≥0”的否定是( ) A .∀x ∈(-∞,0),x3+x<0 B .∀x ∈(-∞,0),x3+x≥0 C .∃x0∈[0,+∞),x30+x0<0 D .∃x0∈[0,+∞),x30+x0≥03.(·湖北卷) 命题“∀x ∈R ,x2≠x”的否定是( ) A .∀x ∈/R ,x2≠x B .∀x ∈R ,x2=x C .∃x0∈/R ,x20≠x0 D .∃x0∈R ,x20=x04.(·湖南卷) 设命题p :∀x ∈R ,x2+1>0,则綈p 为( ) A .∃x0∈R ,x20+1>0 B .∃x0∈R ,x20+1≤0 C .∃x0∈R ,x20+1<0 D .∀x ∈R ,x2+1≤05.(·天津卷) 已知命题p :∀x>0,总有(x +1)ex>1,则綈p 为( ) A .∃x0≤0,使得(x0+1)ex0≤1 B. ∃x0>0,使得(x0+1)ex0≤1C. ∀x >0,总有(x +1)ex≤1D. ∀x≤0,总有(x +1)ex≤16.(·新课标全国卷Ⅰ] 已知命题p :x ∈,2x <3x ;命题q :∃x ∈,x3=1-x2,则下列命题中为真命题的是( )A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q7.(·重庆卷) 命题“对任意x ∈R ,都有x2≥0”的否定为( ) A .存在x0∈R ,使得x20<0 B .对任意x ∈R ,都有x2<0 C .存在x0∈R ,使得x20≥0 D .不存在x ∈R ,使得x2<0 【高考押题】1.设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cosx 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .q 为假C .p ∧q 为假D .p ∨q 为真2.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .⌝p ∨qB .p ∧qC .⌝p ∧⌝qD .⌝p ∨⌝q 3.下列命题中的假命题是( ) A .∃x ∈R ,sinx =52B .∃x ∈R ,log2x =1 C .∀x ∈R ,(12)x>0D .∀x ∈R ,x2≥04.已知命题p :所有指数函数都是单调函数,则綈p 为( ) A .所有的指数函数都不是单调函数 B .所有的单调函数都不是指数函数 C .存在一个指数函数,它不是单调函数 D .存在一个单调函数,它不是指数函数5.已知集合M ={x|0<x<1},集合N ={x|-2<x<1},那么“a ∈N”是“a ∈M”的( ) A .充分而不必要条件B .必要而不充分条件 C .充要条件D .既不充分也不必要条件6.下列结论正确的个数是( )①已知复数z =i(1-i),z 在复平面内对应的点位于第四象限; ②若x ,y 是实数,则“x2≠y2”的充要条件是“x≠y 或x≠-y”;③命题p :“∃x0∈R ,x20-x0-1>0”的否定綈p :“∀x ∈R ,x2-x -1≤0”; A .3B .2C .1D .07.已知命题p :∃x ∈R ,x -2>lgx ,命题q :∀x ∈R ,x2>0,则( ) A .p ∨q 是假命题B .p ∧q 是真命题 C .p ∧(⌝q)是真命题D .p ∨(綈q)是假命题 8.下列结论正确的是( )A .若p :∃x ∈R ,x2+x +1<0,则⌝p :∀x ∈R ,x2+x +1<0B .若p ∨q 为真命题,则p ∧q 也为真命题C .“函数f(x)为奇函数”是“f(0)=0”的充分不必要条件D .命题“若x2-3x +2=0,则x =1”的否命题为真命题 9.已知命题p :x2+2x -3>0;命题q :13-x>1,若“⌝q 且p”为真,则x 的取值范围是____________________.10.下列结论:①若命题p :∃x ∈R ,tanx =1;命题q :∀x ∈R ,x2-x +1>0.则命题“p ∧(⌝q)”是假命题; ②已知直线l1:ax +3y -1=0,l2:x +by +1=0,则l1⊥l2的充要条件是ab =-3;③命题“若x2-3x +2=0,则x =1”的逆否命题:“若x≠1,则x2-3x +2≠0”.其中正确结论的序号为________.11.给定两个命题,命题p :对任意实数x 都有ax2>-ax -1恒成立,命题q :关于x 的方程x2-x +a =0有实数根.若“p ∨q”为真命题,“p ∧q”为假命题,则实数a 的取值范围是________.12.已知c>0,且c≠1,设p :函数y =cx 在R 上单调递减;q :函数f(x)=x2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若“p 且q”为假,“p 或q”为真,求实数c 的取值范围.13.已知c>0,设命题p :函数y =cx 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2时,函数f(x)=x +1x >1c 恒成立.如果“p 或q”为真命题,“p 且q”为假命题,求c 的取值范围.高考模拟复习试卷试题模拟卷【高频考点解读】 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【热点题型】题型一 等差数列基本量的运算例1、(1)在数列{an}中,若a1=-2,且对任意的n ∈N*有2an +1=1+2an ,则数列{an}前10项的和为( )A .2B .10C.52D.54(2)(·课标全国Ⅰ)设等差数列{an}的前n 项和为Sn ,Sm -1=-2,Sm =0,Sm +1=3,则m 等于( ) A .3 B .4 C .5 D .6 答案 (1)C (2)C【提分秘籍】(1)等差数列的通项公式及前n 项和公式,共涉及五个量a1,an ,d ,n ,Sn ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【举一反三】(1)若等差数列{an}的前5项和S5=25,且a2=3,则a7等于( ) A .12B .13C .14D .15(2)记等差数列{an}的前n 项和为Sn ,若a1=12,S4=20,则S6等于( ) A .16B .24C .36D .48(3)已知等差数列{an}的前n 项和为Sn ,且满足S33-S22=1,则数列{an}的公差是( ) A.12B .1C .2D .3 答案 (1)B (2)D (3)C 解析 (1)由题意得S5=5a1+a52=5a3=25,故a3=5,公差d =a3-a2=2,a7=a2+5d =3+5×2=13.(2)∵S4=2+6d =20,∴d =3,故S6=3+15d =48. (3)∵Sn =n a1+an 2,∴Sn n =a1+an 2,又S33-S22=1, 得a1+a32-a1+a22=1,即a3-a2=2,∴数列{an}的公差为2.题型二 等差数列的性质及应用例2、(1)设等差数列{an}的前n 项和为Sn ,若S3=9,S6=36,则a7+a8+a9等于( ) A .63B .45C .36D .27(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10(3)已知Sn 是等差数列{an}的前n 项和,若a1=-,S -S=6,则S =________. 答案 (1)B (2)A (3)解析 (1)由{an}是等差数列,得S3,S6-S3,S9-S6为等差数列. 即2(S6-S3)=S3+(S9-S6), 得到S9-S6=2S6-3S3=45,故选B.【提分秘籍】在等差数列{an}中,数列Sm,S2m-Sm,S3m-S2m也成等差数列;{Snn}也是等差数列.等差数列的性质是解题的重要工具.【举一反三】(1)设数列{an}是等差数列,若a3+a4+a5=12,则a1+a2+…+a7等于()A.14B.21C.28D.35(2)已知等差数列{an}的前n项和为Sn,且S10=10,S20=30,则S30=________.答案(1)C(2)60解析(1)∵a3+a4+a5=3a4=12,∴a4=4,∴a1+a2+…+a7=7a4=28.(2)∵S10,S20-S10,S30-S20成等差数列,∴2(S20-S10)=S10+S30-S20,∴40=10+S30-30,∴S30=60.题型三等差数列的判定与证明例3、已知数列{an}中,a1=35,an=2-1an-1(n≥2,n∈N*),数列{bn}满足bn=1an-1(n∈N*).(1)求证:数列{bn}是等差数列;(2)求数列{an}中的最大项和最小项,并说明理由.(1)证明因为an=2-1an-1(n≥2,n∈N*),bn =1an -1(n ∈N*),所以bn +1-bn =1an +1-1-1an -1=12-1an -1-1an -1=an an -1-1an -1=1. 又b1=1a1-1=-52.所以数列{bn}是以-52为首项,1为公差的等差数列. (2)解 由(1)知bn =n -72, 则an =1+1bn =1+22n -7.设f(x)=1+22x -7,则f(x)在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,an 取得最小值-1,当n =4时,an 取得最大值3. 【提分秘籍】等差数列的四个判定方法:(1)定义法:证明对任意正整数n 都有an +1-an 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2an +1=an +an +2后,可递推得出an +2-an +1=an +1-an =an -an -1=an -1-an -2=…=a2-a1,根据定义得出数列{an}为等差数列.(3)通项公式法:得出an =pn +q 后,得an +1-an =p 对任意正整数n 恒成立,根据定义判定数列{an}为等差数列.(4)前n 项和公式法:得出Sn =An2+Bn 后,根据Sn ,an 的关系,得出an ,再使用定义法证明数列{an}为等差数列.【举一反三】(1)若{an}是公差为1的等差数列,则{a2n -1+2a2n}是( ) A .公差为3的等差数列B .公差为4的等差数列 C .公差为6的等差数列D .公差为9的等差数列(2)在数列{an}中,若a1=1,a2=12,2an +1=1an +1an +2(n ∈N*),则该数列的通项为( )A .an =1nB .an =2n +1C .an =2n +2D .an =3n答案 (1)C (2)A【高考风向标】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【答案】B【解析】∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【答案】5【解析】若这组数有21n +个,则11010n a +=,212015n a +=,又12112n n a a a +++=,所以15a =; 若这组数有2n 个,则1101022020n n a a ++=⨯=,22015n a =,又121n n n a a a a ++=+,所以15a =; 故答案为5【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【答案】9【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.【答案】2,13- 【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=. 1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.【答案】1【解析】因为数列{an}是等差数列,所以a1+1,a3+3,a5+5也成等差数列.又 a1+1,a3+3,a5+5构为公比为q 的等比数列,所以a1+1,a3+3,a5+5为常数列,故q =1.2.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.【答案】8【解析】∵a7+a8+a9=3a8>0,a7+a10=a8+a9<0,∴a8>0,a9<0,∴n =8时,数列{an}的前n 项和最大.3.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .14 【答案】C【解析】设等差数列{an}的公差为d ,由等差数列的前n 项和公式,得S3=3×2+3×22d =12,解得d =2,则a6=a1+(6-1)d =2+5×2=12.4.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.【解析】(1)设数列{an}的公差为d , 依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d)2=2(2+4d),化简得d2-4d =0,解得d =0或d =4. 当d =0时,an =2;当d =4时,an =2+(n -1)·4=4n -2.从而得数列{an}的通项公式为an =2或an =4n -2.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 【解析】(1)因为{an}是递增数列,所以an +1-an =|an +1-an|=pn.而a1=1,因此a2=p +1,a3=p2+p +1.又a1,2a2,3a3成等差数列,所以4a2=a1+3a3,因而3p2-p =0,解得p =13或p =0.当p =0时,an +1=an ,这与{an}是递增数列矛盾,故p =13.(2)由于{a2n -1}是递增数列,因而a2n +1-a2n -1>0,于是(a2n +1-a2n)+(a2n -a2n -1)>0.① 因为122n <122n -1,所以|a2n +1-a2n|<|a2n -a2n -1|.②由①②知,a2n -a2n -1>0,因此a2n -a2n -1=⎝⎛⎭⎫122n -1=(-1)2n22n -1.③因为{a2n}是递减数列,同理可得,a2n +1-a2n<0,故a2n +1-a2n =-⎝⎛⎭⎫122n=(-1)2n +122n.④ 由③④可知,an +1-an =(-1)n +12n. 于是an =a1+(a2-a1)+(a3-a2)+…+(an -an -1)=1+12-122+…+(-1)n 2n -1=1+12·1-⎝⎛⎭⎫-12n -11+12=43+13·(-1)n2n -1.故数列{an}的通项公式为an =43+13·(-1)n2n -1.6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则( ) A .d<0 B .d>0 C .a1d<0 D .a1d>0 【答案】C【解析】令bn =2a1an ,因为数列{2a1an}为递减数列,所以bn +1bn =2a1an +12a1an =2a1(an +1-an)=2a1d<1,所得a1d<0.7.(·全国卷)等差数列{an}的前n 项和为Sn.已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式;(2)设bn =1anan +1,求数列{bn}的前n 项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.【解析】 (1)因为S1=a1,S2=2a1+2×12×2=2a1+2, S4=4a1+4×32×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1, 所以an =2n -1. (2)由题意可知, bn =(-1)n -14nanan +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,Tn =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛12n -3+⎭⎫12n -1-⎝⎛⎭⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,Tn =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以Tn =⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或Tn =2n +1+(-1)n -12n +1 10.(·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.【答案】-12【解析】∵S2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,S1,S2,S4成等比数列, ∴(2a1-1)2=a1(4a1-6),解得a1=-12.12.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论. 【解析】(1)方法一:a2=2,a3=2+1. 再由题设条件知(an +1-1)2=(an -1)2+1.从而{(an -1)2}是首项为0,公差为1的等差数列, 故(an -1)2=n -1,即an =n -1+1(n ∈N*). 方法二:a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想an =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即ak =k -1+1,则ak +1=(ak -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以an =n -1+1(n ∈N*).(2)方法一:设f(x)=(x -1)2+1-1,则an +1=f(an). 令c =f(c),即c =(c -1)2+1-1,解得c =14. 下面用数学归纳法证明命题 a2n<c<a2n +1<1.当n =1时,a2=f(1)=0,a3=f(0)=2-1,所以a2<14<a3<1,结论成立. 假设n =k 时结论成立,即a2k<c<a2k +1<1. 易知f(x)在(-∞,1]上为减函数,从而 c =f(c)>f(a2k +1)>f(1)=a2,即 1>c>a2k +2>a2.再由f(x)在(-∞,1]上为减函数,得c =f(c)<f(a2k +2)<f(a2)=a3<1,故c<a2k +3<1,因此a2(k +1)<c<a2(k +1)+1<1,这就是说,当n =k +1时结论成立. 综上,存在 c =14使a2n<C<a2a +1对所有n ∈N*成立. 方法二:设f(x)=(x -1)2+1-1,则an +1=f(an). 先证:0≤an≤1(n ∈N*). ① 当n =1时,结论明显成立. 假设n =k 时结论成立,即0≤ak≤1. 易知f(x)在(-∞,1]上为减函数,从而 0=f(1)≤f(ak)≤f(0)=2-1<1.即0≤ak +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a2n<a2n +1(n ∈N*). ②当n =1时,a2=f(1)=0,a3=f(a2)=f(0)=2-1,所以a2<a3,即n =1时②成立. 假设n =k 时,结论成立,即a2k<a2k +1. 由①及f(x)在(-∞,1]上为减函数,得 a2k +1=f(a2k)>f(a2k +1)=a2k +2, a2(k +1)=f(a2k +1)<f(a2k +2)=a2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N*成立. 由②得a2n<a22n -2a2n +2-1, 即(a2n +1)2<a22n -2a2n +2, 因此a2n<14.③又由①②及f(x)在(-∞,1]上为减函数,得f(a2n)>f(a2n +1),即a2n +1>a2n +2. 所以a2n +1>a22n +1-2a2n +1+2-1,解得a2n +1>14.④ 综上,由②③④知存在c =14使a2n<c<a2n +1对一切n ∈N*成立.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为( )图1-3A.16+8π B.8+8πC.16+16π D.8+16π【答案】A【解析】由三视图可知该组合体下半部分是一个半圆柱,上半部分是一个长方体,故体积为V=2×2×4+12×π×22×4=16+8π.14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3 B.4 C.5 D.6【答案】C15.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.【答案】20【解析】方法一:a3+a8=2a1+9d=10,而3a5+a7=3(a1+4d)+a1+6d=2(2a1+9d)=20.方法二:3a5+a7=2a5+(a5+a7)=2a5+2a6=2(a5+a6)=2(a3+a8)=20.16.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.【解析】(1)d1=d2=1,d3=d4=3.(2)(充分性)因为{an}是公差为d的等差数列,且d≥0,所以a1≤a2≤…≤an≤….因此An=an,Bn=an+1,dn=an-an+1=-d(n=1,2,3,…).(必要性)因为dn=-d≤0(n=1,2,3,…).所以An=Bn+dn≤Bn.又因为an≤An,an+1≥Bn,所以an≤an+1.于是,An=an,Bn=an+1.因此an+1-an=Bn-An=-dn=d,即{an}是公差为d的等差数列.17.(·全国卷)等差数列{an}前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.【解析】设{an}的公差为d.由S3=a22,得3a2=a22,故a2=0或a2=3. 由S1,S2,S4成等比数列得S22=S1S4. 又S1=a2-d ,S2=2a2-d ,S4=4a2+2d , 故(2a2-d)2=(a2-d)(4a2+2d). 若a2=0,则d2=-2d2,所以d =0, 此时Sn =0,不合题意;若a2=3,则(6-d)2=(3-d)(12+2d), 解得d =0或d =2.因此{an}的通项公式为an =3或an =2n -1.18.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1. (1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.【解析】(1)设等差数列{an}的首项为a1,公差为d. 由S4=4S2,a2n =2an +1得⎩⎪⎨⎪⎧4a1+6d =8a1+4d ,a1+(2n -1)d =2a1+2(n -1)d +1, 解得a1=1,d =2,因此an =2n -1,n ∈N*.(2)由题意知Tn =λ-n 2n -1,所以n≥2时,bn =Tn -Tn -1=-n 2n -1+n -12n -2=n -22n -1.故cn =b2n =2n -222n -1=(n -1)⎝⎛⎭⎫14n -1,n ∈N*.所以Rn =0×⎝⎛⎭⎫140+1×⎝⎛⎭⎫141+2×⎝⎛⎭⎫142+3×⎝⎛⎭⎫143+…+(n -1)×⎝⎛⎭⎫14n -1,则14Rn =0×⎝⎛⎭⎫141+1×⎝⎛⎭⎫142+2×⎝⎛⎭⎫143+…+(n -2)×⎝⎛⎭⎫14n -1+(n -1)×⎝⎛⎭⎫14n , 两式相减得34Rn =⎝⎛⎭⎫141+⎝⎛⎭⎫142+⎝⎛⎭⎫143+…+⎝⎛⎭⎫14n -1-(n -1)×⎝⎛⎭⎫14n =14-⎝⎛⎭⎫14n1-14-(n -1)×⎝⎛⎭⎫14n=13-1+3n 3⎝⎛⎭⎫14n, 整理得Rn =194-3n +14n -1. 所以数列{cn}的前n 项和Rn =194-3n +14n -1. 19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.【解析】设该数列公差为d ,前n 项和为Sn ,由已知可得2a1+2d =8,(a1+3d)2=(a1+d)(a1+8d),所以a1+d =4,d(d -3a1)=0.解得a1=4,d =0或a1=1,d =3.即数列{an}的首项为4,公差为0,或首项为1,公差为3.所以,数列的前n 项和Sn =4n 或Sn =3n2-n 2.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.【答案】-49【解析】由已知,a1+a10=0,a1+a15=103d =23,a1=-3,∴nSn =n3-10n23,易得n =6或n =7时,nSn 出现最小值.当n =6时,nSn =-48;n =7时,nSn =-49.故nSn 的最小值为-49.21.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【答案】64【解析】设数列{an}的公差为d ,由a1,a2,a5成等比数列,得(1+d)2=1·(1+4d),解得d =2或d =0(舍去),所以S8=8×1+8(8-1)2×2=64. 【高考押题】1.已知数列{an}是等差数列,a1+a7=-8,a2=2,则数列{an}的公差d 等于( )A .-1B .-2C .-3D .-4答案 C解析 方法一 由题意可得⎩⎪⎨⎪⎧a1+a1+6d =-8,a1+d =2, 解得a1=5,d =-3.方法二 a1+a7=2a4=-8,∴a4=-4,∴a4-a2=-4-2=2d ,∴d =-3.2.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )A .a1+a101>0B .a2+a100<0C .a3+a99=0D .a51=51答案 C解析 由题意,得a1+a2+a3+…+a101 =a1+a1012×101=0. 所以a1+a101=a2+a100=a3+a99=0.3.设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于( )A .0B .37C .100D .-37答案 C4.等差数列{an}中,已知a5>0,a4+a7<0,则{an}的前n 项和Sn 的最大值为( )A .S4B .S5C .S6D .S7答案 B解析 ∵⎩⎪⎨⎪⎧ a4+a7=a5+a6<0,a5>0,∴⎩⎪⎨⎪⎧a5>0,a6<0, ∴Sn 的最大值为S5.5.在等差数列{an}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|an|}的前18项和T18的值是( )A .24B .48C .60D .84答案C解析由a1>0,a10·a11<0可知d<0,a10>0,a11<0,∴T18=a1+…+a10-a11-…-a18=S10-(S18-S10)=60.6.已知递增的等差数列{an}满足a1=1,a3=a22-4,则an=________.答案2n-1解析设等差数列的公差为d,∵a3=a22-4,∴1+2d=(1+d)2-4,解得d2=4,即d=±2.由于该数列为递增数列,故d=2.∴an=1+(n-1)×2=2n-1.7.等差数列{an}的前n项和为Sn,已知a5+a7=4,a6+a8=-2,则当Sn取最大值时,n的值是________.答案6解析依题意得2a6=4,2a7=-2,a6=2>0,a7=-1<0;又数列{an}是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当Sn取最大值时,n=6.8.已知数列{an}中,a1=1且1an+1=1an+13(n∈N*),则a10=________.答案1 4解析由已知1a10=1a1+(10-1)×13=1+3=4,∴a10=14.9.在等差数列{an}中,a1=1,a3=-3.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=-35,求k的值.10.设等差数列{an}的前n 项和为Sn ,若a1<0,S =0.(1)求Sn 的最小值及此时n 的值;(2)求n 的取值集合,使其满足an≥Sn.解 (1)设公差为d ,则由S =0⇒a1+×2d =0⇒a1+1007d =0,d =-11007a1,a1+an =-n 1007a1,∴Sn =n 2(a1+an)=n 2·-n 1007a1=a1(n -n2).∵a1<0,n ∈N*,∴当n =1 007或1 008时,Sn 取最小值504a1.(2)an =1 008-n 1 007a1,Sn≤an ⇔a12 014(2 015n -n2)≤1 008-n 1 007a1.∵a1<0,∴n2-2 017n +2 016≤0,即(n -1)(n -2 016)≤0,解得1≤n≤.故所求n 的取值集合为{n|1≤n≤,n ∈N*}.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

相关文档
最新文档