生物统计学第3章几种常见的概率分布律
合集下载
生物统计学第三章 概率和概率分布(2)

的第x 1项,所以有“二项分布”这个名称。
0 0 1 1 x x n n [ (1 )]n Cn (1 )n Cn (1 )n1 Cn (1 )nx Cn (1 )0
x x (2) P(x) Cn (1 )nx [ (1 )]n 1n 1 x 0 x 0
2. 二项分布的常用符号
n :贝努利试验的次数(或 样本含量)
x : 在n次试验中事件A出现的次数,即二项分布变量X 的取值
: 事件A发生的概率 (每次试验都是恒定的 )
1 - : 事件A发生的概率
p(x) : X的概率函数即P(X x)
F( x) P(X x) p(xi )
2014-4-21
二项分布的程序计算方法
二项分布函数Binomdist(k,n,p,false/true) 某数阶乘的计算函数Fact 从给定元素数目m的集合中抽取若干n元素的排 列组合数C n m 计算函数Combin(m,n)
2014-4-21
二、 泊松分布 (Poisson Distribution)
2014-4-21
二项分布
(实例)
【例】已知 100 件产品中有 5 件次品,现从中任取一件,有 放回地抽取3次。求在所抽取的3件产品中恰好有2件次品的 概率 解:设 X 为所抽取的3件产品中的次品数,则根据二项分 布公式有
P X 2 C32 (0.05)2 (0.95)32 0.007125
二项分布变量的一些例子:
(1)连续抛硬币100次,统计总共出现正面的次数。次数X服从二项分布。 (2)调查250名新生婴儿的性别,记男婴的总数为X,则X服从二项分布。 (3)调查n枚种蛋的出雏数,出雏数X服从二项分布。 (4)n头病畜治疗后的治愈数X,X服从二项分布。
几种常见的概率分布律

的概率,其值为 ϕ4
=
⎛ ⎜⎝
1 2
⎞4 ⎟⎠
=1 16
。
ϕ 3 (1 − ϕ ) 表示有三个显性基因和一个隐性基因组合出现的概率。其中
显形基因有三个,隐性基因一个,该项的系数表示这样的组合共有四种。
它们是RRYy,RRyY,RrYY和rRYY。这四种组合的概率均为
•
ϕ
3
(1
−
ϕ
)
=
⎛ ⎜⎝
1 2
⎞3 ⎟⎠
上式正是二项式展开式的第x+1项,因此产生理论分布中“二项分布”这一名 称。故该式称为二项分布的概率函数。
• 二项展开式,
⎡⎣ϕ +(1−ϕ)⎤⎦n =Cn0ϕ0 (1−ϕ)n +Cn1ϕ1 (1−ϕ)n−1 +"+Cnxϕx (1−ϕ)n−x +"+Cnnϕn (1−ϕ)0 = p(0) + p(1) + p(2) +"+ p( x) +"+ p(n)
⎛ ⎜⎝
1 2
⎞10 ⎟⎠
=
2−10
=
0.0009766
( ) p(1)
=
10! ⎛
1!(10 −1)!⎜⎝
1 2
⎞1 ⎟⎠
⎛ ⎜⎝
1 2
⎞9 ⎟⎠
=
10
2−10
= 0.0097656
( ) p(2) =
10! ⎛ 1 ⎞2 ⎛ 1 ⎞8
2!(10 − 2)!⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠
= 45
2−10
(1) 二项分布图形的形状取决于P 和 n 的大小; (2) 当P = 0.5时,无论 n 的大小, 均为对称分布; (3) 当P ≠ 0.5,n 较小时为偏态分 布,n 较大时逼近正态分布。
《生物统计学》课程说明书

第三章 几种常见的概率分布律 第三节 正态分布
4 第四章 抽样分布 第一节一个正态总体中的抽样分布 第二节 两个正态总体中的抽样分布
章后作业 2 号教学楼 416 见课件
2 号教学楼 416,418
章后作业 见课件
第七周 第八周 第九周
第五章 统计假设检验
2
第一节 显著性检验的基本原理
第五章 统计假设检验
先修课程 课程性质
高等数学、概率论等 专业方向课
学时 /学分
45 /3
授课范围
20XX 级 2、3、4 班
授课时间 和地点
周三 5-6 节,2 号教学楼 416 教室 周五(双)5-6 节,2 号教学楼 418 教室
人数 限制
126 人
生物统计学是用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的科
4
第二节适合性检验
第三节独立性检验
第八章 单因素方差分析
2
第一节 单因素方差分析的基本原理
第二节 固定效应模型
第八章 单因素方差分析
第三节 随机效应模型
4
第四节 多重比较
第五节 方差分析应具备的条件
第十三周
2
上机 操作 SPSS 软件使用 (平均数的计算、成对 t 检验等)
2 号教学楼 416,418
[1]《生物统计学》(第一版)杜荣骞主编, 高等教育出版社,1999 年。 [2]《生物统计学》 李春喜主编,科学出版社,20XX 年。
教学网站
四、教学信息 教学目标
通过本课程的教学,使学生掌握生物统计学的基本理论和方法,能应用生物 统计的思维和分析方法,结合其它相关学科,正确地阅读文献资料,科学地设计 实验,开展生物科学研究。
生物统计学 几种常见的概率分布律

非此即彼
随机试验有两种互不相容不同结果。 重要条件: 1. 每次试验两个结果(互为对立事件),每一种结果在每次 试验中都有恒定的概率; 2. 试验之间应是独立的。
P(AB)=P(A)P(B)
2.14
二项分布的概率函数
服从二项分布的随机变量的特征数
方差 当以比率表示时
偏斜度
了解
峭度
做题时请先 写公式,代 数字,出结 果,描述结 果的意义。
正态分布表的单侧临界值
上侧临界值
下侧临界值
双侧临界值
§3.5 另外几种连续型概率分布
指数分布(exponential distribution)
了解
Γ分布(gamma distribution)
了解
了解
随着p的增加, Γ分布愈来愈 接近于正态分 布。
§3.6 中心极限定理 (Central Limit Theorem) 假设被研究的随机变量X可以表 示为许多相互独立的随机变量Xi 的和。如果Xi的数量很大,而且 每一个别的Xi对于X所起的作用 又很小,则X可以被认为服从或 近似地服从正态分布。
作业
P51
3.1, 3.2(算出各表现型概率即可); 3.12, 3.18
正态分布的密度函数和分布函数 正态分布(normal distribution) 高斯分布(Gauss distribution) 正态曲线(normal curve) 连续型概率分布律 两头少,中间多,两侧对称
了解
标准正态分布
/fai/
标准正态分布的特性
ቤተ መጻሕፍቲ ባይዱ
正态分布表的使用方法
正态分布标准化
生物统计学
第三章 几种常见的概率 分布律
2010.9
生物统计学:第三章随机变量与概率分布

例:用复合饲料饲养动物,每天增重的kg数及 其相应的概率如下:
每天增重xi /kg 0.5
概率 0.10
1.0
0.20
1.5
0.50
2.0
0.20
问每天增重的数学期望和方差是多少?
解: μ=E(X)=1.40
E(X2 ) =2.15
var=σ2 = E(X2 ) –μ2=2.15-1.42=0.19
15.167
(4)随机变量的方差(variance) - 总体方差
度量随机变量取值的变异程度的指标,其定义式:
Var( X ) 2 ( xi )2 E[( X )2 ]
N
E[( X )2 ] E( X 2 2 X 2 )]
E(X 2) 2E(X ) 2
对于例1:
件的集合)的概率有以下关系:P(A )=1-P(A)
2 )条件概率
➢ 已知事件B发生的条件下,事件A发生的概率 称为条件概率,记为P(A︱B) P(A∣B)=P(AB)/P(B) P(B∣A)=P(AB)/P(A)
例:一周的天气情况如下:
周日
日
一
二
三
四
五
六
预报
晴
阴
雨
雨
雨
晴
雨
实际
晴
雨
阴
雨
雨
晴
晴
设A表示预报有雨的事件,B表示实际下雨的事件
些值的概率p(x1),p(x2),…,p(xn),…,排列起来,构 成了离散型随机变量的概率分布。常用概率分布表或概 率分布图表示(如,p28表与p29图3-1)。
例3.1 掷一次骰子所得点数的概率函数
f (x) 1 , x 1, 2, 3, 4, 5, 6 6
生物统计学03概率和概率分布

e
−λ
(λ = np)
x = 0, 1, 2…, n
第二节 常用的概率分布 二、泊松分布
☆ 参数 参数:
µ= λ
2 = λ σ
☆ 形状
λ=0.5 λ=1.5 λ=2.5
λ→20
泊松分布→正态分布 泊松分布 正态分布
第二节 常用的概率分布 三、正态分布
☆ 是一种连续随机变量的概率分布 ☆ 许多生物现象的计量资料均服从正态分布 ☆ 一般假定试验误差的分布服从正态分布 ☆ 非正态总体统计数的抽样分布近似服从正态分布
☆当 p 值较小且 n 值不
0.25 0.2 0.15 0.1 0.05 0 1 3 5 7
p=0.3
p=0.5
p=0.75
大时, 大时,图形是偏倚的
☆当 p 值趋于 时,分 值趋于0.5时
布趋于对称
9
11
13
15
17
19
21
第二节 常用的概率分布 二、泊松分布
☆ 概率函数
P( x ) =
λ
x
x!
第二节 常用的概率分布
随机抽取20株小麦 测得平均株高为82.3cm,标准差为 株小麦, cm, 例3.4 随机抽取 株小麦,测得平均株高为 cm 1.7502cm,试计算: cm,试计算: cm 1)株高≥85cm的概率; 的概率; 的概率 的正常值范围。 2)小麦株高的95%的正常值范围。 小麦株高的 的正常值范围
第二节 常用的概率分布 三、正态分布
1. 概率函数
f (x) = 1
− ( x−µ)2 2σ 2
σ 2 π
e
记为x~ 记为 ~N(µ,σ2)
第二节 常用的概率分布
2. 正态曲线的特点
几种常见的概率分布率分解课件

均匀分布的定 义
均匀分布是一种概率分布,其特点是随机变量在一定区间内取值的可能性是等可 能的。
在数学表达上,如果一个随机变量X服从某个区间[a, b]上的均匀分布,则其概率 密度函数f(x)可以表示为f(x)=1b−a,当x∈[a,b]时,f(x)=0,当x∉[a,b]时。
均匀分布的特点
均匀分布的期望值E(X)和方差Var(X) 分别为(a+b)/2和(b-a)^2/12。
泊松分布在生活中的应用
02
01
03
在物理学中,泊松分布用于描述放射性衰变过程中粒 子发射的次数。
在统计学中,泊松分布常用于二项分布的近似,当试 验次数很大而事件发生的概率很小时。
在计算机科学中,泊松分布在处理网络流量和计算机 系统中的任务调度等问题时非常有用。
04
二项分布
二项分布的定义
总结词
二项分布是一种离散概率分布,描述了在n次独立重复的伯努利试 验中成功的次数。
指数分布的期望值和方差是有限的,分别为1/λ和1/λ^2,其中λ是概率密度函数的 参数。
指数分布在生活中的应用
指数分布在可靠性工程中广泛应 用,用于描述产品寿命、故障间
隔时间等。
在排队论中,指数分布用于描述 顾客到达和服务时间等随机变量。
在保险精算中,指数分布用于计 算保费和准备金。
06
均匀分布
几种常见的概率分布率分解课 件
CONTENCT
录
• 概率分布率概述 • 正态分布 • 泊松分布 • 二项分布 • 指数分布 • 均匀分布
01
概率分布率概述
概率分布率的定 义
概率分布率
表示随机变量取值的概率规律。
定义方式
对于离散随机变量,概率分布律为P(X=xi)=pi,i=1,2,3...;对于连续随机变量, 概率分布函数为P(a≤X≤b)=∫[a,b]f(x)dx,其中f(x)为概率密度函数。
生物统计学 第三章 概率分布09

2
2 2
x
= 期望 2 = 方差
X ~ N(, 2)
正态分布
正态分布概率密度函数的几何表示
f (x)
正态曲线
x
曲线下某区间的面积即为随机变量在该区间取值的概率
正态分布
正态分布的特点
➢只有一个峰,峰值在x = 处 ➢曲线关于x = 对称,因而平均数=众数=中
位数 ➢x轴为曲线向左、右延伸的渐进线
P(x≥4)=1-P(x<4)=1-P(0)-P(1)-P(2)-P(3)
1
30!0 e331 1!e3 Nhomakorabea32 2!
e3
33 3!
e3
=0.3528
连续型随机变量的概率分布
正态分布(normal distribution)
➢具有如下概率密度函数的随机变量称为正态 分布随机变量:
f (x) 1 e[ (x )2 ]
第三章 常用概率分布
二项分布 普哇松分布 正态分布 抽样分布
离散型随机变量的概率分布
二项分布(binomial distribution)
假设:1. 在相同条件下进行了n次试验 2. 每次试验只有两种可能结果(1或0) 3. 结果为1的概率为p,为0的概率为1-p 4. 各次试验彼此间是独立的
在n次试验中,结果为1的次数(X = 0,1,2, ,n)服从二项分布,表示为
较大,顶部略低,尾部略高。自由度小的t 分布,更为明显。 n>30时, t 分布接近于标准正态分布; n>100时,t 分布基本与标准正态分布相同; n→∞时,t 分布与标准正态分布完全一致。 3. t 分布概率求法 可查P302 t 分布的双侧分位表。
例:df=4 双侧 t0.05=2.776 t0.01=4.604 单侧 t0.05=2.132 t0.01=3.747
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 二项分布的概率之和等于1,即
n
Cnk p k q nk (q p)n 1
k 0
3. P( x m) Pn (k m) m Cnk p k q nk (3-2)
4. P( x m) Pn (k m)
nk 0
Cnk p k q nk
(3-3)
5. k m
m2
P(m1 x m2 ) pn (m1 k m2 )
二项分布的应用条件有三:
(1)各观察单位只具有互相对立的一种结果,如阳 性或阴性,生存或死亡等,属于二项分类资料;
(2)已知发生某一结果 (如死亡) 的概率为p,其对立 结果的概率则为1-P=q,实际中要求p 是从大量观察中获 得的比较稳定的数值;
(3)n个观察单位的观察结果互相独立,即每个观察 单位的观察结果不会影响到其它观察单位的观察结果。
一、波松分布的意义
若随机变量x(x=k)只取零和正整数值0,1, 2,…,且其概率分布为
P(x k) k e , k=0,1,…… (3-10)
k!
其中λ>0;e=2.7182… 是自然对数的底数, 则称x服从参数为λ的波松分布(Poisson‘s distribution),记 为 x~P(λ)。
【例3.3】 仔猪黄痢病在常规治疗下死亡率为20 %,求5 头病猪治疗后死亡头数各可能值相应的概 率。
设5头病猪中死亡头数为x,则x服从二项分布 B(5, 0.2),其所有可能取值为0,1,…,5,按(3-1) 式计算概率,用分布列表示如下:
0 1 23 4 5
0.3277 0.4096 0.2048 0.0512 0.0064 0.0003
npq 5 0.2 0.8 0.894 (头)
3.2 波松分布
波松分布是一种可以用来描述和分析随机地发生 在单位空间或时间里的稀有事件的概率分布。要观察 到这类事件,样本含量 n 必须很大 。
在生物、医学研究中,服从波松分布的随机变量 是常见的。如,一定畜群中某种患病率很低的非传染 性疾病患病数或死亡数,畜群中遗传的畸形怪胎数, 每升饮水中大肠杆菌数,计数器小方格中血球数,单 位空间中某些野生动物或昆虫数等,都是服从波松分 布的。
对于n次独立的试验,如果每次试验结果出现且
只出现对立事件A与 A之一,在每次试验中出现A的概 率是常数p(0<p<1) ,因而出现对立事件 A的概率是
1-p=q,则称这一串重复的独立试验为n重贝努利试验,
简称贝努利试验(Berቤተ መጻሕፍቲ ባይዱoulli trials)。
在生物学研究中,我们经常碰到的一类离
散型随机变量,如孵n枚种蛋的出雏数、n头病 畜治疗后的治愈数、n 尾鱼苗的成活数等,可用
此外,在n较大,np、nq 较接近时,二项分布 接近于正态分布;当n→∞时,二项分布的极限分
布是正态分布。
三、二项分布的概率计算及应用条件
【例3.1】 纯种白猪与纯种黑猪杂交,根据孟德尔遗 传理论 , 子二代中白猪与黑猪的比率为3∶1。求窝产仔 10头,有7头白猪的概率。
根据题意,n=10,p=3/4=0.75,q=1/4=0.25。设10 头仔猪中白色的为x头,则x为服从二项分布B(10,0.75) 的随机变量。于是窝产10头仔猪中有7头是白色的概率 为:
Pn (k ) Cnk pk qnk k=0,1,2…,n 其中p>0,q>0,p+q=1,则称随机变量x 服从参数为n和p的二项分布 (binomial distribution),记为 x~B(n, p)。
二项分布具有概率分布的一切性质,即:
1. P(x=k)= Pn(k) (k=0,1,…,n)
假设疫苗A完全无效,那么注射后的家畜感染的概率仍为20 %,则15 头家畜中染病头数x=0的概率为
p(x 0) C105 0.2000.8015 0.0352
同理,如果疫苗B完全无效,则15头家畜中最多有1头感染的 概率为:
p(x 1) C1050.200.815 C1150.210.814 0.1671
第三章 几种常见的概率分布律
3.1 二项分布 3.2 泊松分布 3.3 另外几种离散型概率分布 3.4 正态分布 3.5另外几种连续型概率分布 3.6 中心极限定理
3.1 二项分布
一、贝努利试验及其概率公式
将某随机试验重复进行n次,若各次试验结果互
不影响,即每次试验结果出现的概率都不依赖于其它
各次试验的结果,则称这n次试验是独立的。
P(x
7)
C170 0.7570.253
10! 0.757 7!3!
0.253
0.2503
【例3.2】 设在家畜中感染某种疾病的概率为20%,现有两 种疫苗,用疫苗A 注射了15头家畜后无一感染,用疫苗B 注射 15头家畜后有1头感染。设各头家畜没有相互传染疾病的可能, 问:应该如何评价这两种疫苗?
波松分布重要的特征:
平均数和方差相等,都等于常数λ,即
μ=σ2=λ 【例3.5】 调查某种猪场闭锁育种群仔猪畸 形数,共记录200窝, 畸形仔猪数的分布情况 如表3-1所示。试判断畸形仔猪数是否服从波 松分布。
Cnk p k q nk
k m1
(m1<m2) (3-4)
二项分布由n和p两个参数决定: 1. 当p值较小且n不大时,分布是偏倚的。但随
着n的增大,分布逐渐趋于对称; 2. 当 p 值 趋于 0.5 时,分布趋于对称; 3. 对于固定的n及p,当k增加时,Pn(k)先随之
增加并达到其极大值,以后又下降。
贝努利试验来概括。
在n重贝努利试验中,事件 A 可能发生0,1, 2,…,n次,现在我们来求事件A恰好发生 k(0≤k≤n)次的概率Pn(k)。
Pn (k ) Cnk pk qnk , k 0,1, 2,n
二、二项分布的意义及性质 二项分布定义如下:
设随机变量x所有可能取的值为零和正整数: 0,1,2,…,n,且有
四、二项分布的平均数与标准差
统计学证明,服从二项分布B(n,p)的随机变
量之平均数μ、标准差σ与参数n、p有如下关系:
当试验结果以事件A发生次数k表示时
μ=np
(3-5)
npq (3-6)
【例3.4】求【例3.3】平均死亡猪数及死 亡数的标准差。
以p=0.2,n=5代入 (3-5)和(3-6) 式得: 平均死亡猪数 μ=5×0.20=1.0(头) 标准差
n
Cnk p k q nk (q p)n 1
k 0
3. P( x m) Pn (k m) m Cnk p k q nk (3-2)
4. P( x m) Pn (k m)
nk 0
Cnk p k q nk
(3-3)
5. k m
m2
P(m1 x m2 ) pn (m1 k m2 )
二项分布的应用条件有三:
(1)各观察单位只具有互相对立的一种结果,如阳 性或阴性,生存或死亡等,属于二项分类资料;
(2)已知发生某一结果 (如死亡) 的概率为p,其对立 结果的概率则为1-P=q,实际中要求p 是从大量观察中获 得的比较稳定的数值;
(3)n个观察单位的观察结果互相独立,即每个观察 单位的观察结果不会影响到其它观察单位的观察结果。
一、波松分布的意义
若随机变量x(x=k)只取零和正整数值0,1, 2,…,且其概率分布为
P(x k) k e , k=0,1,…… (3-10)
k!
其中λ>0;e=2.7182… 是自然对数的底数, 则称x服从参数为λ的波松分布(Poisson‘s distribution),记 为 x~P(λ)。
【例3.3】 仔猪黄痢病在常规治疗下死亡率为20 %,求5 头病猪治疗后死亡头数各可能值相应的概 率。
设5头病猪中死亡头数为x,则x服从二项分布 B(5, 0.2),其所有可能取值为0,1,…,5,按(3-1) 式计算概率,用分布列表示如下:
0 1 23 4 5
0.3277 0.4096 0.2048 0.0512 0.0064 0.0003
npq 5 0.2 0.8 0.894 (头)
3.2 波松分布
波松分布是一种可以用来描述和分析随机地发生 在单位空间或时间里的稀有事件的概率分布。要观察 到这类事件,样本含量 n 必须很大 。
在生物、医学研究中,服从波松分布的随机变量 是常见的。如,一定畜群中某种患病率很低的非传染 性疾病患病数或死亡数,畜群中遗传的畸形怪胎数, 每升饮水中大肠杆菌数,计数器小方格中血球数,单 位空间中某些野生动物或昆虫数等,都是服从波松分 布的。
对于n次独立的试验,如果每次试验结果出现且
只出现对立事件A与 A之一,在每次试验中出现A的概 率是常数p(0<p<1) ,因而出现对立事件 A的概率是
1-p=q,则称这一串重复的独立试验为n重贝努利试验,
简称贝努利试验(Berቤተ መጻሕፍቲ ባይዱoulli trials)。
在生物学研究中,我们经常碰到的一类离
散型随机变量,如孵n枚种蛋的出雏数、n头病 畜治疗后的治愈数、n 尾鱼苗的成活数等,可用
此外,在n较大,np、nq 较接近时,二项分布 接近于正态分布;当n→∞时,二项分布的极限分
布是正态分布。
三、二项分布的概率计算及应用条件
【例3.1】 纯种白猪与纯种黑猪杂交,根据孟德尔遗 传理论 , 子二代中白猪与黑猪的比率为3∶1。求窝产仔 10头,有7头白猪的概率。
根据题意,n=10,p=3/4=0.75,q=1/4=0.25。设10 头仔猪中白色的为x头,则x为服从二项分布B(10,0.75) 的随机变量。于是窝产10头仔猪中有7头是白色的概率 为:
Pn (k ) Cnk pk qnk k=0,1,2…,n 其中p>0,q>0,p+q=1,则称随机变量x 服从参数为n和p的二项分布 (binomial distribution),记为 x~B(n, p)。
二项分布具有概率分布的一切性质,即:
1. P(x=k)= Pn(k) (k=0,1,…,n)
假设疫苗A完全无效,那么注射后的家畜感染的概率仍为20 %,则15 头家畜中染病头数x=0的概率为
p(x 0) C105 0.2000.8015 0.0352
同理,如果疫苗B完全无效,则15头家畜中最多有1头感染的 概率为:
p(x 1) C1050.200.815 C1150.210.814 0.1671
第三章 几种常见的概率分布律
3.1 二项分布 3.2 泊松分布 3.3 另外几种离散型概率分布 3.4 正态分布 3.5另外几种连续型概率分布 3.6 中心极限定理
3.1 二项分布
一、贝努利试验及其概率公式
将某随机试验重复进行n次,若各次试验结果互
不影响,即每次试验结果出现的概率都不依赖于其它
各次试验的结果,则称这n次试验是独立的。
P(x
7)
C170 0.7570.253
10! 0.757 7!3!
0.253
0.2503
【例3.2】 设在家畜中感染某种疾病的概率为20%,现有两 种疫苗,用疫苗A 注射了15头家畜后无一感染,用疫苗B 注射 15头家畜后有1头感染。设各头家畜没有相互传染疾病的可能, 问:应该如何评价这两种疫苗?
波松分布重要的特征:
平均数和方差相等,都等于常数λ,即
μ=σ2=λ 【例3.5】 调查某种猪场闭锁育种群仔猪畸 形数,共记录200窝, 畸形仔猪数的分布情况 如表3-1所示。试判断畸形仔猪数是否服从波 松分布。
Cnk p k q nk
k m1
(m1<m2) (3-4)
二项分布由n和p两个参数决定: 1. 当p值较小且n不大时,分布是偏倚的。但随
着n的增大,分布逐渐趋于对称; 2. 当 p 值 趋于 0.5 时,分布趋于对称; 3. 对于固定的n及p,当k增加时,Pn(k)先随之
增加并达到其极大值,以后又下降。
贝努利试验来概括。
在n重贝努利试验中,事件 A 可能发生0,1, 2,…,n次,现在我们来求事件A恰好发生 k(0≤k≤n)次的概率Pn(k)。
Pn (k ) Cnk pk qnk , k 0,1, 2,n
二、二项分布的意义及性质 二项分布定义如下:
设随机变量x所有可能取的值为零和正整数: 0,1,2,…,n,且有
四、二项分布的平均数与标准差
统计学证明,服从二项分布B(n,p)的随机变
量之平均数μ、标准差σ与参数n、p有如下关系:
当试验结果以事件A发生次数k表示时
μ=np
(3-5)
npq (3-6)
【例3.4】求【例3.3】平均死亡猪数及死 亡数的标准差。
以p=0.2,n=5代入 (3-5)和(3-6) 式得: 平均死亡猪数 μ=5×0.20=1.0(头) 标准差