高中物理磁场专题
高中物理 磁场计算专题(附答案详解)

专题:磁场计算题(附答案详解)1、如图所示,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l.不计重力影响和离子间的相互作用.求:(1)磁场的磁感应强度大小;(2)甲、乙两种离子的比荷之比.2、如图所示,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.11H的质量为m,电荷量为q.不计重力.求:(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强大小;(3)21H第一次离开磁场的位置到原点O的距离.3、一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.4、如图所示,竖直放置的平行金属板板间电压为U,质量为m、电荷量为+q的带电粒子在靠近左板的P点,由静止开始经电场加速,从小孔Q射出,从a点进入磁场区域,abde是边长为2L的正方形区域,ab边与竖直方向夹角为45°,cf与ab平行且将正方形区域等分成两部分,abcf中有方向垂直纸面向外的匀强磁场B1,defc中有方向垂直纸面向里的匀强磁场B2,粒子进入磁场B1后又从cf 上的M点垂直cf射入磁场B2中(图中M点未画出),不计粒子重力,求:(1)粒子从小孔Q射出时的速度;(2)磁感应强度B1的大小;(3)磁感应强度B2的取值在什么范围内,粒子能从边界cd间射出.5、如图所示,在真空中xOy平面的第一象限内,分布有沿x轴负方向的匀强电场,场强E=4×104 N/C,第二、三象限内分布有垂直于纸面向里且磁感应强度为B2的匀强磁场,第四象限内分布有垂直纸面向里且磁感应强度为B1=0.2 T的匀强磁场.在x轴上有一个垂直于y轴的平板OM,平板上开有一个小孔P,在y轴负方向上距O点为 3 cm的粒子源S可以向第四象限平面内各个方向发射α粒子,且OS>OP.设发射的α粒子速度大小v均为2×105 m/s,除了垂直于x轴通过P点的α粒子可以进入电场,其余打到平板上的α粒子均被吸收.已知α粒子的比荷为qm=5×107 C/kg,重力不计,试问:(1)P点距O点的距离;(2)α粒子经过P点第一次进入电场,运动后到达y轴的位置与O点的距离;(3)要使离开电场的α粒子能回到粒子源S处,磁感应强度B2应为多大?6、如图25所示,在xOy平面的0≤x≤23a范围内有沿y轴正方向的匀强电场,在x>23a范围内某矩形区域内有一个垂直于xOy平面向里的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为+q的粒子从坐标原点O以速度v0沿x轴正方向射入电场,从M点离开电场,M点坐标为(23a,a).再经时间t=3mqB进入匀强磁场,又从M点正上方的N点沿x轴负方向再次进入匀强电场.不计粒子重力,已知sin 15°=6-24,cos 15°=6+24.求:(1)匀强电场的电场强度;(2)N点的纵坐标;(3)矩形匀强磁场的最小面积.7、如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面的匀强磁场,电场和磁场的范围足够大,电场强度E=40 N/C,磁感应强度B随时间t变化的关系图象如图乙所示,选定磁场垂直于纸面向里为正方向.t=0时刻,一质量m=8×10-4 kg、电荷量q=+2×10-4 C的微粒在O点具有竖直向下的速度v=0.12 m/s,O′是挡板MN上一点,直线OO′与挡板MN垂直,g取10m/s2.求:(1)微粒再次经过直线OO′时与O点的距离;(2)微粒在运动过程中离开直线OO′的最大高度.(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件.8、如图所示,在竖直平面内,水平x轴的上方和下方分别存在方向垂直纸面向外和方向垂直纸面向里的匀强磁场,其中x轴上方的匀强磁场磁感应强度大小为B1,并且在第一象限和第二象限有方向相反、强弱相同的平行于x轴的匀强电场,电场强度大小为E1,已知一质量为m的带电小球从y轴上的A(0,L)位置斜向下与y轴负半轴成60°角射入第一象限,恰能做匀速直线运动。
高中物理 磁场专题!

知识组1磁现象和磁场一.磁现象和电流的磁效应1.磁现象(1)磁性和磁体物体具有吸引铁、钴、镍等物质的性质叫磁性。
具有磁性的物体叫磁体。
(2)磁极磁体的各部分磁性强弱不同,磁性最强的区域叫磁极。
任何磁体都有两个磁极,一个叫南极(又称S极),另一个叫北极(又称N极)。
(3)磁极间的相互作用同名磁极相互排斥,异名磁极相互吸引。
(4)磁化和去退磁使原来没有磁性的物体获得磁性的过程叫做磁化;反过来,磁化后的物体失去磁性的过程叫做退磁或去磁。
(5)磁性材料磁性材料是由铁磁性物质或亚铁磁性物质组成,如铁、钴、镍等.它一般分为两类,即软磁性材料和硬磁性材料。
其中磁化后容易去磁的为软磁性材料,不容易去磁的为硬磁性材料。
【说明】物体磁化后的磁极与使该物体产生磁性的磁体的相邻磁极互为异名磁极。
2.电流的磁效应(1)奥斯特实验①1820年,丹麦物理学家奥斯特发现,沿南北方向放置的导线通电后,其下方与导线平行的小磁针会发生偏转。
②奥斯特实验的意义:发现了电流的磁效应,首次揭示了电与磁的联系。
【注意】在做“奥斯特实验时”,为减弱地磁场的影响,通电导线应南北放置,且放在小磁针的正下方或正上方(不应将小磁针放在通电导线的延长线上)。
因为小磁针静止时指向南北方向,若将导线东西放置,小磁针可能不偏转。
③电流的磁效应:通电导线周围有磁场,即电流的周围有磁场,电流的磁场使放在导线周围的磁针发生偏转,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。
(2)磁铁对通电导线的作用如图所示,磁铁对通电导体棒产生力的作用,使导体棒运动。
(3)电流和电流间的相互作用①如图所示,相互平行而且距离较近的两条导线,当导线中分别通以方向相同或方向相反的电流时,观察到发生的现象是:通同向电流的两根导线会靠近,通异向电流的两根导线会远离。
②结论:同向电流相互吸引,异向电流相互排斥。
二.磁场和地磁场1.磁场(1)磁场的定义磁体或电流周围空间存在的一种特殊物质,磁体与磁体之间、磁体与通电导体之间、通电导体与通电导体之间的相互作用,是通过磁场发生的。
高中物理高考 磁场知识点

高中物理高考磁场知识点高中物理高考:磁场知识点磁场是在高中物理中非常重要的一个章节,它涉及到电磁感应、电动力学等多个领域的内容。
在高考中,磁场知识点通常是考试的重点和难点之一。
本文将对高中物理高考中的磁场知识点进行深入探讨,帮助同学们更好地理解和掌握这方面的内容。
一、磁场的定义和特性磁场是由磁体所固有的磁性所产生的一种物理现象。
磁场具有方向性,其方向可以用一个矢量表示,称为磁感应强度矢量B。
磁感应强度的SI单位是特斯拉(T)。
磁场有势,磁场与电流和电荷均有关系,遵循安培定理和毕奥萨伐尔定律。
磁场的数值可以用磁感应强度、磁感应力等进行度量。
二、磁场与电流的关系电流是由带电粒子运动所产生的,而电流激发出的磁场可以相互作用。
根据安培定理,电流元在空间中产生的磁场对通过该电流元磁力的总和为零。
利用这个定理,可以推导出电流元周围的磁场分布情况。
三、磁场与导线的相互作用当导线带有电流时,会产生磁场,这个磁场会与外部磁场相互作用。
根据左手定则,我们可以确定导线所受的磁力方向。
同时,根据在导线中的安培力定律,我们可以计算出导线所受的磁力大小。
磁场也会导致导线上感应出电动势,这就是电磁感应。
四、磁场与磁感应强度磁感应强度是磁场强度的一个重要参数,它描述了磁场的空间分布情况。
磁感应强度的方向是垂直于磁场线的方向。
当磁感应强度大小相等的磁场线密集时,说明磁场强度较大。
磁感应强度与磁场的关系可以用安培环路定理来确定。
五、磁场与磁感应力磁场中的磁感应力可以使运动带电粒子受到力的作用。
根据磁感应力的计算公式,我们可以知道力的大小与电流、磁感应强度以及带电粒子速度的关系。
同时,根据洛伦兹力定律,磁场还会对带电粒子产生力矩的作用。
六、磁场与电磁感应电磁感应是指通过磁感应强度的变化而产生的感应电动势。
根据法拉第定律,磁通量的变化率与感应电动势成正比。
利用这条定律,我们可以计算出磁场变化时产生的感应电动势,进而用于解决磁场中的电磁感应问题。
高中物理【磁场】专题分类典型题(带解析)

高中物理磁场专题分类题型一、【磁场的描述 磁场对电流的作用】典型题1.如图所示,带负电的金属环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡时的位置是( )A .N 极竖直向上B .N 极竖直向下C .N 极沿轴线向左D .N 极沿轴线向右解析:选C .负电荷匀速转动,会产生与旋转方向反向的环形电流,由安培定则知,在磁针处磁场的方向沿轴OO ′向左.由于磁针N 极指向为磁场方向,可知选项C 正确.2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小解析:选A .磁感线的疏密程度表示磁感应强度的大小,由a 、b 两处磁感线的疏密程度可判断出B a >B b ,所以A 正确,B 错误;安培力的大小跟该处的磁感应强度的大小B 、电流大小I 、导线长度L 和导线放置的方向与磁感应强度的方向的夹角有关,故C 、D 错误.3.将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左解析:选D .弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.4.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A .3∶1B .3∶2C .1∶1D .1∶2解析:选B .如图所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知:二者在圆心O 处产生的磁感应强度大小都为B 12;当将M 处长直导线移到P 处时,两直导线在圆心O 处产生的磁感应强度大小也为B 12,做平行四边形,由图中的几何关系,可得B 2B 1=B 22B 12=cos 30°=32,故选项B 正确.5.阿明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A .电路中的电源必须是交流电源B .电路中的a 端点须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度解析:选C .电磁铁产生磁性,使玩偶稳定地飘浮起来,电路中的电源必须是直流电源,电路中的a 端点须连接直流电源的正极,选项A 、B 错误;若增加环绕软铁的线圈匝数,电磁铁产生的磁性更强,电磁铁对玩偶的磁力增强,可增加玩偶飘浮的最大高度,选项C 正确;若将可变电阻的电阻值调大,电磁铁中电流减小,产生的磁性变弱,则降低玩偶飘浮的最大高度,选项D 错误.6.一通电直导线与x 轴平行放置,匀强磁场的方向与xOy 坐标平面平行,导线受到的安培力为F .若将该导线做成34圆环,放置在xOy 坐标平面内,如图所示,并保持通电的电流不变,两端点ab 连线也与x 轴平行,则圆环受到的安培力大小为( )A .FB .23πFC .223πFD .32π3F 解析:选C .根据安培力公式,安培力F 与导线长度L 成正比;若将该导线做成34圆环,由L =34×2πR ,解得圆环的半径R =2L 3π,34圆环ab 两点之间的距离L ′=2R =22L 3π.由F L =F ′L ′解得:F ′=223πF ,选项C 正确. 7.在绝缘圆柱体上a 、b 两个位置固定有两个金属圆环,当两环通有如图所示电流时,b 处金属圆环受到的安培力为F 1;若将b 处金属圆环移动到位置c ,则通有电流为I 2的金属圆环受到的安培力为F 2.今保持b 处金属圆环原来位置不变,在位置c 再放置一个同样的金属圆环,并通有与a 处金属圆环同向、大小为I 2的电流,则在a 位置的金属圆环受到的安培力( )A .大小为|F 1-F 2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右解析:选A .c 金属圆环对a 金属圆环的作用力大小为F 2,根据同方向的电流相互吸引,可知方向向右,b金属圆环对a金属圆环的作用力大小为F1,根据反方向的电流相互排斥,可知方向向左,所以a金属圆环所受的安培力大小|F1-F2|,由于a、b间的距离小于a、c 间距离,所以两合力的方向向左.8.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同解析:选C.由安培定则可知,两导线中的电流在O点产生的磁场均竖直向下,合磁感应强度一定不为零,选项A错;由安培定则知,两导线中的电流在a、b两点处产生的磁场的方向均竖直向下,由于对称性,M中电流在a处产生的磁场的磁感应强度等于N中电流在b处产生的磁场的磁感应强度,同时M中电流在b处产生的磁场的磁感应强度等于N 中电流在a处产生的磁场的磁感应强度,所以a、b两点处磁感应强度大小相等,方向相同,选项B错;根据安培定则,两导线中的电流在c、d两点处产生的磁场垂直c、d两点与导线的连线方向向下,且产生的磁场的磁感应强度大小相等,由平行四边形定则可知,c、d 两点处的磁感应强度大小相等,方向相同,选项C正确;a、c两点处磁感应强度的方向均竖直向下,选项D错.9. (多选)如图所示,金属细棒质量为m,用两根相同轻弹簧吊放在水平方向的匀强磁场中,弹簧的劲度系数为k,棒ab中通有恒定电流,棒处于平衡状态,并且弹簧的弹力恰好为零.若电流大小不变而方向反向,则()A .每根弹簧弹力的大小为mgB .每根弹簧弹力的大小为2mgC .弹簧形变量为mg kD .弹簧形变量为2mg k解析:选AC .电流方向改变前,对棒受力分析,根据平衡条件可知,棒受到的安培力竖直向上,大小等于mg ;电流方向改变后,棒受到的安培力竖直向下,大小等于mg ,对棒受力分析,根据平衡条件可知,每根弹簧弹力的大小为mg ,弹簧形变量为mg k,选项A 、C 正确.10.如图所示,两平行光滑金属导轨CD 、EF 间距为L ,与电动势为E 0的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab 棒静止,需在空间施加的匀强磁场磁感应强度的最小值及其方向分别为( )A .mgR E 0L,水平向右 B .mgR cos θE 0L,垂直于回路平面向上 C .mgR tan θE 0L,竖直向下 D .mgR sin θE 0L,垂直于回路平面向下 解析:选D .对金属棒受力分析,受重力、支持力和安培力,如图所示;从图可以看出,当安培力沿斜面向上时,安培力最小,故安培力的最小值为:F A =mg sin θ,故磁感应强度的最小值为B =F A IL =mg sin θIL ,根据欧姆定律,有E 0=IR ,故B =mgR sin θE 0L,故D 正确.11.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比.现有平行放置的三根长直通电导线,分别通过一个直角三角形△ABC的三个顶点且与三角形所在平面垂直,如图所示,∠ACB=60°,O为斜边的中点.已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是()A.大小为2B,方向垂直AB向左B.大小为23B,方向垂直AB向左C.大小为2B,方向垂直AB向右D.大小为23B,方向垂直AB向右解析:选B.导线周围的磁场的磁感线,是围绕导线形成的同心圆,空间某点的磁场沿该点的切线方向,即与该点和导线的连线垂直,根据右手螺旋定则,可知三根导线在O点的磁感应强度的方向如图所示.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比,已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,O点到三根导线的距离相等,可知B3=B2=B,B1=2B,由几何关系可知三根导线在平行于AB方向的合磁场为零,垂直于AB方向的合磁场为23B.综上可得,O点的磁感应强度大小为23B,方向垂直于AB向左.故B正确,A、C、D 错误.12.(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2,则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J解析:选AB.导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A项正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL·L sin θ-mgL(1-cos θ)=0,代入数值得导体棒中的电流为I=3 A,由E=IR得电源电动势E=3.0 V,B项正确;由F=BIL得导体棒在摆动过程中所受安培力F=0.3 N,C项错误;由能量守恒定律知电源提供的电能W等于电路中产生的焦耳热Q和导体棒重力势能的增加量ΔE的和,即W=Q+ΔE,而ΔE=mgL(1-cos θ)=0.048 J,D项错误.13.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析:选AD.若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B 错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C 错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D 正确.14.光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道由静止开始向右运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N解析:选D .金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12m v 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=m v 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.二、【磁场对运动电荷的作用】典型题1.如图所示,a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:选B .根据安培定则及磁感应强度的矢量叠加,可得O 点处的磁场方向水平向左,再根据左手定则判断可知,带电粒子受到的洛伦兹力方向向下,B 正确.2.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.甲电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出.乙电子以速率v 3从B 点沿BA 方向射入磁场,从D 点(图中未画出)射出,则( )A .C 、D 两点间的距离为2RB .C 、D 两点间的距离为3RC .甲在磁场中运动的时间是乙的2倍D .甲在磁场中运动的时间是乙的3倍解析:选B .洛伦兹力提供向心力,q v B =m v 2r 得r =m v qB,由几何关系求得r 1=R tan 60°=3R ,由于质子乙的速度是v 3,其轨道半径r 2=r 13=33R ,它们在磁场中的偏转角分别为60°和120°,根据几何知识可得BC =R ,BD =2r 2tan 60°=R ,所以CD =2R sin 60°=3R ,故A 错误,B 正确;粒子在磁场中运动的时间为t =θ2πT =θ2π·2πm qB,所以两粒子的运动时间之比等于偏转角之比,即为1∶2,即甲在磁场中运动的时间是乙的12倍,故C 、D 错误. 3. (多选)如图所示,一轨道由两等长的光滑斜面AB 和BC 组成,两斜面在B 处用一光滑小圆弧相连接,P 是BC 的中点,竖直线BD 右侧存在垂直纸面向里的匀强磁场,B 处可认为处在磁场中,一带电小球从A 点由静止释放后能沿轨道来回运动,C 点为小球在BD 右侧运动的最高点,则下列说法正确的是( )A .C 点与A 点在同一水平线上B .小球向右或向左滑过B 点时,对轨道压力相等C .小球向上或向下滑过P 点时,其所受洛伦兹力相同D .小球从A 到B 的时间是从C 到P 时间的2倍解析:选AD .小球在运动过程中受重力、洛伦兹力和轨道支持力作用,因洛伦兹力永不做功,支持力始终与小球运动方向垂直,也不做功,即只有重力做功,满足机械能守恒,因此C 点与A 点等高,在同一水平线上,选项A 正确;小球向右或向左滑过B 点时速度等大反向,即洛伦兹力等大反向,小球对轨道的压力不等,选项B 错误;同理小球向上或向下滑过P 点时,洛伦兹力也等大反向,选项C 错误;因洛伦兹力始终垂直BC ,小球在AB 段和BC 段(设斜面倾角均为θ)的加速度均由重力沿斜面的分力产生,大小为g sin θ,由x =12at 2得小球从A 到B 的时间是从C 到P 的时间的2倍,选项D 正确. 4.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M 点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B 1、B 2,则B 1与B 2的比值为( )A .2cos θB .sin θC .cos θD .tan θ解析:选C .设有界磁场Ⅰ宽度为d ,则粒子在磁场Ⅰ和磁场Ⅱ中的运动轨迹分别如图1、图2所示,由洛伦兹力提供向心力知Bq v =m v 2r ,得B =m v rq,由几何关系知d =r 1sin θ,d =r 2tan θ,联立得B 1B 2=cos θ,选项C 正确.5.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C .由左手定则知,粒子带负电,A 错.由于洛伦兹力不做功,粒子速率不变,B 错.由R =m vqB , 若仅减小磁感应强度B ,R 变大,则粒子可能从b 点右侧射出,C 对.由R =m v qB ,若仅减小入射速率v, 则R 变小,粒子在磁场中的偏转角θ变大.由t =θ2πT ,T =2πm qB 知,运动时间变长,D 错.6.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m 、带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图甲所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r3又q v 1B =m v 21R 1得v 1=3Bqr3m.(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr 4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案:(1)3Bqr 3m (2)3Bqr4m7. (多选)如图所示为一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v 0,在以后的运动过程中,圆环运动的v -t 图象可能是下图中的( )解析:选BC .当q v B =mg 时,圆环做匀速直线运动,此时图象为B ,故B 正确;当q v B >mg 时,F N =q v B -mg ,此时:μF N =ma ,所以圆环做加速度逐渐减小的减速运动,直到q v B =mg 时,圆环开始做匀速运动,故C 正确;当q v B <mg 时,F N =mg -q v B ,此时:μF N =ma ,所以圆环做加速度逐渐增大的减速运动,直至停止,所以其v -t 图象的斜率应该逐渐增大,故A 、D 错误.8.如图所示,水平放置的平行板长度为L 、两板间距也为L ,两板之间存在垂直纸面向里、磁感应强度大小为B 的匀强磁场,在两板正中央P 点有一个不计重力的电子(质量为m 、电荷量为-e ),现在给电子一水平向右的瞬时初速度v 0,欲使电子不与平行板相碰撞,则( )A .v 0>eBL 2m 或v 0<eBL4mB .eBL 4m <v 0< eBL2mC .v 0>eBL2mD .v 0<eBL4m解析:选A .此题疑难点在于确定“不与平行板相碰撞”的临界条件.电子在磁场中做匀速圆周运动,半径为R =m v 0eB ,如图所示.当R 1=L 4时,电子恰好与下板相切;当R 2=L2时,电子恰好从下板边缘飞出两平行板(即飞出磁场).由R 1=m v 1eB ,解得v 1=eBL4m ,由R 2=m v 2eB ,解得v 2=eBL 2m ,所以欲使电子不与平行板相碰撞,电子初速度v 0应满足v 0>eBL 2m 或v 0<eBL4m ,故选项A 正确.9.如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P (不在原点)沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间一定为5 πm 3qBC .粒子在磁场中运动所经历的时间可能为πmqBD .粒子在磁场中运动所经历的时间可能为πm6qB解析:选C .利用“放缩圆法”:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 项错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于2πm 3qB ,故D 项错误;对应轨迹①时,t 1=T 2=πm qB ,C 项正确,另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 项错误.10.如图所示,OM 的左侧存在范围足够大、磁感应强度大小为B 的匀强磁场,磁场方向垂直纸面向外,OM 左侧到OM 距离为L 的P 处有一个粒子源,可沿纸面向各个方向射出质量为m 、电荷量为q 的带正电粒子(重力不计),速率均为v =qBLm,则粒子在磁场中运动的最短时间为( )A .πm 2qBB .πm 3qBC .πm 4qBD .πm 6qB解析:选B .粒子进入磁场中做匀速圆周运动,洛伦兹力提供向心力,则有:q v B =m v 2r ,将题设的v 值代入得:r =L ,粒子在磁场中运动的时间最短,则粒子运动轨迹对应的弦最短,最短弦为L ,等于圆周运动的半径,根据几何关系,粒子转过的圆心角为60°,运动时间为T 6,故t min =T 6=16×2πm qB =πm 3qB,故B 正确,A 、C 、D 错误.11.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm6qBC .11πm 6qBD .13πm6qB解析:选B .带电粒子在不同磁场中做圆周运动,其速度大小不变,由r =m vqB 知,第一象限内的圆半径是第二象限内圆半径的2倍,如图所示.粒子在第二象限内运动的时间:t 1=T 14=2πm 4qB =πm 2qB ;粒子在第一象限内运动的时间:t 2=T 26=2πm ×26qB =2πm 3qB ,则粒子在磁场中运动的时间t =t 1+t 2=7πm 6qB,选项B 正确.12.如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求:(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.解析: (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2.④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33.⑦ 答案:(1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33三、【带电粒子在组合场中的运动】典型题1.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径解析:选BD .回旋加速器利用电场加速和磁场偏转来加速粒子,粒子射出时的轨道半径恰好等于D 形盒的半径,根据q v B =m v 2R 可得,v =qBR m ,因此离开回旋加速器时的动能E k =12m v 2=q 2B 2R 22m 可知,与加速电压无关,与狭缝距离无关,A 、C 错误;磁感应强度越大,D 形盒的半径越大,动能越大,B 、D 正确.2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的比荷为(粒子的重力忽略不计)( )。
高中物理磁场知识点大全

高中物理磁场知识点大全高中物理磁场知识点总结一、磁现象的电本质1.罗兰实验正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。
2.安培分子电流假说法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。
安培是最早揭示磁现象的电本质的。
一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。
3.磁现象的电本质运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。
二、磁场的方向规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。
三、磁场磁极和磁极之间的相互作用是通过磁场发生的。
电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。
磁极和电流之间的相互作用也是通过磁场发生的。
电流和电流之间的相互作用也是通过磁场产生的磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。
四、磁感线1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。
2.磁感线的特点(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极(2)磁感线是闭合曲线(3)磁感线不相交(4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强3.几种典型磁场的磁感线(1)条形磁铁(2)通电直导线a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;b.其磁感线是内密外疏的同心圆(3)环形电流磁场:a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。
高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐含答案)高中物理《磁场》典型题(经典推荐)一、单项选择题1.下列说法中正确的是:A。
在静电场中电场强度为零的位置,电势也一定为零。
B。
放在静电场中某点的检验电荷所带的电荷量 q 发生变化时,该检验电荷所受电场力 F 与其电荷量 q 的比值保持不变。
C。
在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零。
D。
磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定。
2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。
如关系式 U=IR,既反映了电压、电流和电阻之间的关系,也确定了 V(伏)与 A(安)和Ω(欧)的乘积等效。
现有物理量单位:m(米)、s(秒)、N(牛)、J (焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和 T(特),由他们组合成的单位都与电压单位 V(伏)等效的是:A。
J/C 和 N/CB。
C/F 和 T·m2/sC。
W/A 和 C·T·m/sD。
W·Ω 和 T·A·m3.如图所示,重力均为 G 的两条形磁铁分别用细线 A 和B 悬挂在水平的天花板上,静止时,A 线的张力为 F1,B 线的张力为 F2,则:A。
F1=2G,F2=GB。
F1=2G,F2>GC。
F1GD。
F1>2G,F2>G4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在 1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在 1s时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为:A。
1/2B。
1C。
2D。
45.如图所示,矩形 MNPQ 区域内有方向垂直于纸面的匀强磁场,有 5 个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中 a、b、c 处进入的粒子对应表中的编号分别为:A。
磁场课件(高中物理)

安培环路定理揭示了磁场与电流之间的内在联系 ,可用于求解复杂电流分布产生的磁场。
3
带电粒子在复合场中的运动分析
当带电粒子同时处于电场和磁场中时,其运动情 况变得复杂,需综合考虑电场力、洛伦兹力等因 素进行分析。
高考命题趋势预测和备考建议
命题趋势预测
结合实际问题考查磁场的基本概念和性质。
磁场课件(高中物理)
contents
目录
• 磁场基本概念与性质 • 洛伦兹力与安培定律 • 带电粒子在匀强磁场中运动规律 • 电磁感应现象及其规律 • 交流电产生、描述和应用 • 总结回顾与拓展延伸
01
磁场基本概念与性质
磁场定义及来源
磁场定义
存在于磁体周围的特殊物质,对 放入其中的磁体产生磁力作用。
规定小磁针静止时N极所指的方向为 该点的磁场方向。
磁场强度
用磁感应强度B表示,单位特斯拉(T) ,描述磁场强弱和方向的物理量。
常见磁场类型及特点
01
02
03
04
匀强磁场
磁场强弱和方向处处相同的磁 场,如长直导线周围的磁场。
点电荷的磁场
由静止点电荷产生的磁场,呈 放射状分布。
电流元周围的磁场
由电流元(即短直线电流)产 生的磁场,可用毕奥-萨伐尔
典型例题解析
01
02
03
04
05
例题一:一质量为m、 电荷量为q的带正电粒子 以速度v从O点沿垂直于 磁场方向射入磁感强度 为B的匀强磁场中,已知 它运动过程中受到的阻 力大小恒为f,若测得它 离开磁场时的动能为刚 射入时的4/5倍.求
(1) 粒子在磁场中运动的 半径r;
(2) 阻力f对粒子做的功 ;
人教版高中物理选修31磁场专项练习和解析

选修3-1磁场专项练习2一.选择题(共7小题)1.(2019•上海)如图,通电导线MN及单匝矩形线圈abcd共面,位置靠近ab且相互绝缘.当MN中电流突然减小时,线圈所受安培力的合力方向()A.向左B.向右C.垂直纸面向外D.垂直纸面向里解:金属线框abcd放在导线MN上,导线中电流产生磁场,根据安培定则判断可知,线框abcd左右两侧磁场方向相反,线框左侧的磁通量小于线框右侧的磁通量,磁通量存在抵消的情况.若MN中电流突然减小时,穿过线框的磁通量将减小.根据楞次定律可知,感应电流的磁场要阻碍磁通量的变化,则线框abcd感应电流方向为顺时针,再由左手定则可知,左边受到的安培力水平向右,而左边的安培力方向也水平向右,故安培力的合力向右.故B正确,ACD错误.故选B 2.(2009•广东)表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B的匀强磁场中.质量为m、带电量为+Q的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是()A.滑块受到的摩擦力不变B.滑块到达地面时的动能及B的大小无关C.滑块受到的洛伦兹力方向垂直斜面向下D.B很大时,滑块可能静止于斜面上解答:解:小滑块受力如图所示;A、F洛=QVB,滑动摩擦力F=μFN=μ(mgcosθ+QvB),随速度增加而变大,A错误.B、若滑块滑到底端已达到匀速运动状态,摩擦力F=mgsinθ=μ(mgcos θ+QvB),则v=(﹣cosθ),可看v随B的增大而减小,B越大滑块动能越小;若在滑块滑到底端时还处于加速运动状态,则B越大时,滑动摩擦力F越大,滑块克服阻力做功越多,由动能定理可知,滑块到达斜面底端的速度越小,动能越小,B错误.C、滑块沿斜面向下运动,由左手定则可知,洛伦兹力垂直于斜面向下,故C正确;D、滑块之所以开始能动,是因为重力的沿斜面的分力大于摩擦力,B 很大时,一旦运动,不会停止,最终做匀速直线运动,故D错误.故选C.3.(2019•西城区模拟)如图所示,正确标明了通电导线所受安培力F方向的是( B )A.B.C.D.4.(2009•金山区二模)如图所示,矩形线框abcd,及条形磁铁的中轴线位于同一平面内,线框内通有电流I,则线框受磁场力的情况()A.ab和cd受力,其它二边不受力B.ab和cd受到的力大小相等方向相反C.ad和bc受到的力大小相等,方向相反D.以上说法都不对解:A、各边都处在磁场中,各边电流方向都及磁场方向不平行,都受到安培力的作用,故A错误;B、ab边所处位置磁感应强度大,cd 边所处位置磁感应强度小,而两边电流大小相等,由F=BILsinθ可知两边所受安培力不相等,故B错误;C、ad边及bc边关于条形磁铁对称,它们所处的磁场强度大小相等,两边长度及电流大小相等,由F=BILsinθ可知,两边所受安培力大小相等,由左手定则可知安培力的方向相同,故C错误;D、由上可知,故D正确,5.(2019•宿州一模)如图所示,两匀强磁场方向相同,以虚线MN为理想边界,磁感应强度分别为B1、B2.今有一个质量为m、电荷量为e的电子从MN上的P点沿垂直于磁场的方向射入匀强磁场B1中,其运动轨迹为如图虚线所示的“心”形图线.则以下说法正确的是()A.电子的运行轨迹为PDMCNEP B.电子运行一周回到P用时为T=C.B1=4B2 D.B1=2B2解:A、根据左手定则可知:电子从P点沿垂直于磁场的方向射入匀强磁场B1时,受到的洛伦兹力方向向上,所以电子的运行轨迹为PDMCNEP,故A正确;B、电子在整个过程中,在匀强磁场B1中运动两个半圆,即运动一个周期,在匀强磁场B2中运动半个周期,所以T=+,故B错误;C、由图象可知,电子在匀强磁场B1中运动半径是匀强磁场B2中运动半径的一半,根据r=可知,B1=2B2,故C错误,D正确.故选:AD.6.(2019•海南)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大解:A、入射速度不同的粒子,若它们入射速度方向相同,则它们的运动也一定相同,虽然轨迹不一样,但圆心角却相同.故A错误;B、在磁场中半径,运动圆弧对应的半径及速率成正比,故B正确;C、在磁场中运动时间:(θ为转过圆心角),虽圆心角可能相同,但半径可能不同,所以运动轨迹也不同,故C错误;D、由于它们的周期相同的,在磁场中运动时间越长的粒子,其轨迹所对的圆心角也一定越大.故D正确;故选:BD二.解答题(共5小题)7.(2019•南充一模)如图所示,一根足够长的光滑绝缘杆MN,及水平面夹角为37°,固定在竖直平面内,垂直纸面向里的匀强磁场B充满杆所在的空间,杆及B垂直,质量为m的带电小环沿杆下滑到图中的P处时,对杆有垂直杆向上的拉力作用,拉力大小为0.4mg,已知小环的带电荷量为q,问(sin37°≈0.6;cos37°≈0.8)(1)小环带什么电?(2)小环滑到P处时的速度多大?解:(1)环所受洛伦兹力及杆垂直,只有洛伦兹力垂直于杆向上时,才能使环向上拉杆,由左手定则可知环带负电.(2)设杆拉住环的力为T,由题可知:T=0.4mg在垂直杆的方向上对环有:qvB=T+mgcos37°即qvB=0.4mg+0.8mg解得:答:(1)小环带负电;(2)小环滑到P处时的速度为:.8.(2019•西城区模拟)如图,一根绝缘细杆固定在磁感应强度为B 的水平匀强磁场中,杆和磁场垂直,及水平方向成θ角.杆上套一个质量为m、电量为+q的小球.小球及杆之间的动摩擦因数为μ.从A点开始由静止释放小球,使小球沿杆向下运动.设磁场区域很大,杆很长.已知重力加速度为g.求:(1)定性分析小球运动的加速度和速度的变化情况;(2)小球在运动过程中最大加速度的大小;(3)小球在运动过程中最大速度的大小.解:(1)由于洛伦兹力作用下,导致压力减小,则滑动摩擦力也减小,所以加速度增加,当洛伦兹力大于重力的垂直于杆的分力时,导致滑动摩擦力增大,从而出现加速度减小,直到处于受力平衡,达到匀速直线运动.因此小球先做加速度增大的加速运动,再做加速度减小的加速运动,最后做匀速直线运动.(2)当杆对小球的弹力为零时,小球加速度最大.小球受力如图1所示根据牛顿第二定律mgsinθ=ma解得:a=gsinθ(3)当小球所受合力为零时,速度最大,设最大速度为vm小球受力如图2所示根据平衡条件qvmB=N+mgcosθmgsinθ=f滑动摩擦力f=μN解得:答:(1)先做加速度增大的加速运动,再做加速度减小的加速运动,最后做匀速直线运动;(2)小球在运动过程中最大加速度的大小gsinθ;(3)小球在运动过程中最大速度的大小为.9.质量m=1.0×10﹣4kg的小物体,带有q=5×10﹣4C的电荷,放在倾角为37°绝缘光滑斜面上,整个斜面置于B=0.5T的匀强磁场中,磁场方向如图所示,物块由静止下滑,滑到某一位置时,开始离开斜面,斜面足够长,g=10m/s2,sin37°=0.6,cos37°=0.8求:(1)物块带何种电荷;(2)物块离开斜面时的速度;(3)物块在斜面上滑行的最大距离.解:(1)由题意可知:小滑块受到的安培力垂直斜面向上.根据左手定则可得:小滑块带负电.(2)当物体离开斜面时,弹力为零,因此有:Bqv=mgcosα,故.故物块离开斜面时的速度为3.2m/s.(3)由于斜面光滑,物体在离开斜面之前一直做匀加速直线运动,故有:v2=2al mgsinθ=ma所以代人数据解得:l≈0.85m.故物块在斜面上滑行的最大距离为:l≈0.85m.10.(2019•天津)在平面直角坐标系xOy中,第I象限存在沿y轴负方向的匀强电场,第IV象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点及x轴正方向成60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求(1)M、N两点间的电势差U MN;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.解:(1)粒子在第一象限内做类平抛运动,进入第四象限做匀速圆周运动.设粒子过N点的速度为v,有得:v=2v0粒子从M点到N 点的过程,由动能定理有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动(如图所示),半径为O′N,有:解得:(3)由几何关系得:ON=rsinθ设粒子在电场中运动的时间为t1,则有:ON=v0t1粒子在磁场中做匀速圆周运动的周期为:设粒子在磁场中运动的时间为t2,有:得:运动的总时间为:t=t1+t2即:11.(2019•资阳模拟)如图,xOy平面的第Ⅱ象限的某一区域有垂直于纸面的匀强磁场B1,磁场磁感应强度B1=1T,磁场区域的边界为矩形,其边分别平行于x、y轴.有一质量m=10﹣12kg、带正电q=10﹣7C 的a粒子从O点以速度v0=105m/s,沿及y轴正向成θ=30°的方向射入第Ⅱ象限,经磁场偏转后,从y轴上的P点垂直于y轴射入第Ⅰ象限,P点纵坐标为y P=3m,y轴右侧和垂直于x轴的虚线左侧间有平行于y轴的匀强电场,a粒子将从虚线及x轴交点Q进入第Ⅳ象限,Q 点横坐标x Q=6m,虚线右侧有垂直纸面向里的匀强磁场B2,其磁感应强度大小仍为1T.不计粒子的重力,求:(1)磁场B1的方向及a粒子在磁场B1的运动半径r1;(2)矩形磁场B1的最小面积S和电场强度大小E;(3)如在a粒子刚进入磁场B1的同时,有另一带电量为﹣q的b粒子,从y轴上的M点以速度v0垂直于y轴射入电场,a、b粒子将发生迎面正碰,求M点纵坐标y M以及相碰点N的横坐标x N.12(2009•天津)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴.一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向及x轴的方向夹角为θ.不计空气阻力,重力加速度为g,求(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h.解答:解:(1)小球在电场、磁场中恰能做匀速圆周运动,说明电场力和重力平衡,有qE=mg,得到E=重力的方向竖直向下,则电场力方向竖直向上,由于小球带正电,故场强度方向竖直向上.(2)小球做匀速圆周运动,设其设半径为r,由几何关系知 r==小球做匀速圆周运动的向心力由洛仑兹力提供,设小球做圆周运动的速为v,有qvB=m得v==由速度分解知v0=vcosθ代入得到 v0=(3)根据机械守恒定律,有mgh+= h=将v0,v代入得到h=答:(1)电场强度E的大小为,方向竖直向上;(2)小球从A点抛出时初速度v0=;(3)A点到x轴的高度h=.第 11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理磁场专题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]磁场一.知识点梳理考试要点基本概念一、磁场和磁感线(三合一)1、磁场的来源:磁铁和电流、变化的电场2、磁场的基本性质:对放入其中的磁铁和电流有力的作用3、磁场的方向(矢量)方向的规定:磁针北极的受力方向,磁针静止时N极指向。
4、磁感线:切线~~磁针北极~~磁场方向5、典型磁场——磁铁磁场和电流磁场(安培定则(右手螺旋定则))6、磁感线特点:① 客观不存在、② 外部N极出发到S,内部S极到N 极③ 闭合、不相交、④ 描述磁场的方向和强弱二.磁通量(Φ 韦伯 Wb 标量)通过磁场中某一面积的磁感线的条数,称为磁通量,或磁通二.磁通密度(磁感应强度B 特斯拉T 矢量)大小:通过垂直于磁感线方向的单位面积的磁感线的条数叫磁通密度。
SBΦ= 1 T = 1 Wb / m2通电直导线周围磁场方向:B 的方向即为磁感线的切线方向意义:1、描述磁场的方向和强弱 2、由场的本身性质决定 三.匀强磁场1、定义:B2、来源:①距离很近的异名磁极之间 ②通电螺线管或条形磁铁的内部,边缘除外 四.了解一些磁场的强弱永磁铁―10-3 T ,电机和变压器的铁芯中―~ T 超导材料的电流产生的磁场―1000T,地球表面附近―3×10-5~7×10-5 T比较两个面的磁通的大小关系。
如果将底面绕轴L 旋转,则磁通量如何变化Ⅱ 磁场对电流的作用——安培力一.安培力的方向 ——(左手定则)伸开左手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿入手心,使四指指向电流的流向,这时大拇指的方向就是导线所受安培力的方向。
(向里和向外的表示方法(类比射箭))规律:(1)左手定则(2)F⊥B ,F⊥I,F 垂直于B 和I 所决定的平面。
但B 、I 不一定垂直安培力的大小与磁场的方向和电流的方向有关,两者夹角为900时,力最大,夹角为00时,力=0。
猜想由90度到0度力的大小是怎样变化的 二.安培力的大小:匀强磁场,当B ⊥ I 时,F = B I L在匀强磁场中,当通电导线与磁场方向垂直时,电流所受的安培力等于磁感应将度B 、电流I 和导线的长度L 三者的乘积在非匀强磁场中,公式F =BIL 近似适用于很短的一段通电导线 三.磁感应强度的另一种定义 匀强磁场,当B ⊥ I 时,ILF B 练习有磁场就有安培力(×)磁场强的地方安培力一定大(×)I不受力磁感线越密的地方,安培力越大(×) 判断安培力的方向Ⅲ电流间的相互作用和等效长度 一.电流间的相互作用总结:通电导线有转向电流同向的趋势二.等效长度 推导:水平方向:向左=F 1 sinα = BIL 1 sin α = B I h 向右=F 2 sinβ = BIL 2 sin β = B I h 水平方向平衡 F 同向吸引F同向排斥F转向同向,转向同向,αβL竖直方向:左导 F 1 cos α = BIL 1 cos α 右导 F 2 cos β = BIL 2 cos βF = B I L推广:等效长度为导线两端连线的长度 一 .洛伦兹力的方向——左手定则:四指指向正电荷的运动方向或负电荷运动的反方向 大拇指指向洛伦兹力的方向 f ⊥ B f ⊥ v4、q 、v 、B 三者有一个或三个“反向”,则f 变向若有两个“反向”则f 反向不变(1)电荷静止,f =0(2)v∥B,f =0(3)v⊥B,f 最大 Sv FFv力向里二.洛伦兹力的大小已知:I ⊥ B 匀强、导线截面积s 、 电荷电量q 、电荷定向移动速率v 单位体积内电荷数n 、导线长度L有:nqsv I =BIL F =三.洛伦兹力不做功 1、判断三种粒子电荷的正负2、三个完全相同的金属带电球,同一高度,同时下落(1)落地速度V 1 = V 3 < V 2 (2)下落时间 t 1 = t 2 < t 3四、带 电 粒 子 的 圆 周 运 动 1、运动状态v ⊥ 匀强B ,忽略重力v qvB f nsLFf B条件=⇒=⇒ve2f =⊥EBA匀速圆周运f ⊥ v,洛伦兹力不做功,速率不变 f = q v B ,充当向心力 2.轨道半径和周期半径qBmvr r mv qvB =⇒=2 周期qBm T qB mvr vr T ππ22=⇒== 周期与速率无关,对于确定的磁场,周期取决于荷质比。
五、电流表构造:蹄形磁铁和铁芯间的磁场是均匀地福向分布的.(2)铝框上绕有线囵,铝框转轴上装有两个螺旋弹簧和一个指针. 六、安培分子电流假说导体中的电流是由大量的自由电子的定向移动而形成的,而电流的周国又有磁场,所以电流的磁场应该是由于电荷的运动产生的.那么,磁铁的磁场是否也是由电荷的运动产生的呢安培提出在磁铁中分子、原于存在着一种环形电流一一分子电流,分子电流使每个物质微粒都成为微小的磁体.磁铁的分子电流的取向大致相同时,对外显磁性;磁铁的分子电流取向杂乱无章时,对外不显磁性。
近代的原子结构理论证实了分子电流的存在.根据物质的微观结构理论,微粒原子由原子核和核外电子组成,原子核带正电,核外电子带负电,电子在库仑力的作用下,绕核高速旋转,形成分子电流.可见,磁铁和电流的磁场本质上都是运动电荷产生的三种场力的特点1、重力的特点:其大小为mg,方向竖直向下;做功与路径无关,与带电粒子的质量及起、讫点的高度差有关2、电场力的特点:大小为qE,方向与E的方向及电荷的种类有关;做功与路径无关,与带电粒子的带电量及起、终点的电势差有关3、洛伦兹力的特点:大小与带电粒子的速度、磁感应强度、带电量及速度与磁感应强度间的夹角有关,方向垂直于B和V决定的平面;无论带电粒子在磁场中做什么运动,洛伦兹力都不做功一、速度选择器的原理1、原理图2、带电粒子的受力特点:电场力F与洛仑兹力f方向相反加速电3、带电粒子匀速通过速度选择器的条件:带电粒子匀速通过速度选择器是指粒子从S 1水平射入,沿直线匀速通过叠加场区,并从S 2水平射出。
从力的角度看,电场力F 与洛仑兹力f 平衡,即BqV qE = 推出BE V =二.质谱仪——分离同位素测定荷质比的仪器经速度选择器的各种带电粒子,射入偏转磁场(B′),不同电性,不同荷质比的粒子就会沉积在不同的地方.由qE=qvB ,Rv m B qv 2=' s=2R ,联立,得不同粒子的荷质比即与沉积处离出口的距离s 成反比.三、磁流体发电机磁流体发电——高速的等离子流射入平行板中间的匀强磁场区域,在洛仑兹力作用下使正、负电荷分别聚集在A 、B 两板,于是在板间形成电场.当板间电场对电荷的作用力等于电荷所受的洛仑兹力时,两板间形成一定的电势差.合上电键S后,就能对负载供电.由 qvB=qE 和 U=Ed ,得两板间的电势差(电源电动势)为ε=U=vBd .即决定于两板间距,板间磁感强度和入射离子的速度.四、电磁流量计如图所示为电磁流量计的示意图,直径为d 的非磁性材料制成的圆形导管内,有可以导电的液体流动,磁感应强度为B 的匀强磁场垂直液体流动方向而穿过一段圆形管道。
若测得管壁内a 、b 两点的电势差为U ,试求管中液体的流量Q 为多少m 3/s 解qVB d U q =; V d Q 241π= 得 B dU Q 4π= 五、霍尔效应如图所示,厚度为h ,宽度为d 的导体板放在垂直于它的磁感应强度为B 的匀强磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A’会产生电势差。
这种现象称为霍尔效应。
实验表明,当磁场不太强时,电势差U 、电流I 的B 的关系为:dIB KU =式中的比例系数K 称为霍尔系数。
霍尔效应可解释如下:外部磁场的洛仑兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成横向电场。
横向电场对电子施加与洛仑兹力方向相反的静电力。
当静电力与洛仑兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差。
b ×× × × ×A六、测定电子的比荷在实验中,汤姆生采用了如图Array所示的阴极射线管,从电子枪C出来的电子经过A、B间的电场加速后,水平射入长度为L的-D、E平行板间,接着在荧光屏F中心出现荧光斑。
若在D、E间加上方向向下、场强为E的匀强电场,电子将向上偏转;如果再利用通电线圈在D、E电场区加上一垂直纸面的磁感应强度为B的匀强磁场(图中未画出)荧光斑恰好回到荧光屏中心。
接着再去掉电场,电子向下偏转,偏转角为θ。
七、回旋加速器(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。
A0处带正电的粒子源发出带正电的粒子以速度v0垂直进入匀强磁场,在磁场中匀速转动半个周期,到达A1时,在A1A1/处造成向上的电场,粒子被加速,速率由v0增加到v1,然后粒子以v1在磁场中匀速转动半个周期,到达A2/时,在A2/A2处造成向下的电场,粒子又一次被加速,速率由v1增加到v2,如此继续下去,每当粒子经过A A/的交界面时都是它被加速,从而速度不断地增加。
带电粒子在磁场中作匀速圆周运动的周期为qB T mπ2=,为达到不断加速的目的,只要在A A /上加上周期也为T 的交变电压就可以了。
即T 电=qB T mπ2=实际应用中,回旋加速是用两个D 形金属盒做外壳,两个D 形金属盒分别充当交流电源的两极,同时金属盒对带电粒子可起到静电屏蔽作用,金属盒可以屏蔽外界电场,盒内电场很弱,这样才能保证粒子在盒内只受磁场力作用而做匀速圆周运动。
(2)带电粒子在D 形金属盒内运动的轨道半径是不等距分布的设粒子的质量为m ,电荷量为q ,两D 形金属盒间的加速电压为U ,匀强磁场的磁感应强度为B ,粒子第一次进入D 形金属盒Ⅱ,被电场加速1次,以后每次进入D 形金属盒Ⅱ都要被电场加速2次。
粒子第n 次进入D形金属盒Ⅱ时,已经被加速(2n -1)次。
由动能定理得(2n -1)qU =21Mv n 2。
……①第n 次进入D 形金属盒Ⅱ后,由牛顿第二定律得qv n B =m n n r v 2 …… ②由①②两式得rn =qB qU n m )12(2- ……③同理可得第n +1次进入D 形金属盒Ⅱ时的轨道半径r n+1=qB qU n m )12(2+ ……④所以带电粒子在D 形金属盒内任意两个相邻的圆形轨道半径之比为12121+-=+n n r r n n ,可见带电粒子在D 形金属盒内运动时,轨道是不等距分布的,越靠近D 形金属盒的边缘,相邻两轨道的间距越小。
(3)带电粒子在回旋加速器内运动,决定其最终能量的因素由于D 形金属盒的大小一定,所以不管粒子的大小及带电量如何,粒子最终从加速器内设出时应具有相同的旋转半径。