第五章 车轮与轨道

合集下载

列车车轮与轨道硬度匹配分析

列车车轮与轨道硬度匹配分析

列车车轮与轨道硬度匹配分析摘要:车轮与钢轨的摩擦是最大的,每年投入的轮轨材料费用都是占有比较高的,因此,如果能够减少轮轨磨损,随之减少维修过程中的人力物力投入,具有重要意义。

本文主要对列车车轮与轨道硬度匹配度进行试验研究。

关键词:列车车轮;硬度;匹配前言材料包括金属及非金属材料均有软材料磨损硬材料的现象,但是对某些材料在一定的硬度范围内,耐磨性和硬度之间呈直线关系。

另外硬度的测试是检验轮轨质量及匹配方便易行的手段。

1、试验材料及方法钢轨试验样品取自轨头。

淬火钢轨样品只是在轨头紧靠踏面处取样,以保证试验样品为原有的淬火组织。

车轮样品取自轮箍。

粗加工之后8400C淬火,以不同温度回火获得不同硬度,再加工成所借样品的尺寸。

试验用耐磨轨,普通轨及轮箍的化学成分列于附表。

试验在M一200型摩擦磨损试验机上进行。

按照轮缘和轨侧间的潜滑率(蠕滑率)在1一8%之间。

故耐磨轨试验样品的潜滑率设计为7.7%,接近于最大值。

轮轨间存在潜滑,相当于车轮有少量空转,即车轮样品线速度高,因而装于试验机下轴。

试验机下轴转速为200转/分,上轴转速为181转/分。

试验时所加负荷为75公斤,计算出最大接触应力为510N/mm2,这个应力相当于11.5吨的静载轴重下,轮轨接触面积为300mm2时的平均接触应力的1.4倍(即最大接触应力)。

但是轮缘和轨侧间最大接触应力远高于轮轨踏面间的接触应力,因此又采取减薄试验样品的方法来提高接触应力至730N/mm2。

所以在耐磨轨的试验中,试验了两个应力水平(510及730N/mm2),用以表征钢轨踏面和轨侧相对车轮的磨损。

轮缘轨侧磨损的特点之一是,磨屑脱落到道床上,即磨屑不参与磨损过程,故上、下样品均附加刷子连续不断地清除磨屑。

为了模拟列车运行中蛇形运动造成的横向滑动,轮轨样品间有水平轴向往复运动。

10mm 厚样品的横向往复滑动量为0.70mm,5mm厚样品的为0.35mm,每分钟往复211次。

第五章:城市轨道交通信号系统

第五章:城市轨道交通信号系统

基础设备
三、轨道电路
利用轨道的两根钢轨作导体,在一定长度的钢轨 两端装设钢轨绝缘,中间的轨缝用轨端接续线连接起 来,并用引接线连接电源和接收设备的电路叫轨道电 路。轨道电路是电气集中、自动闭塞,车载信号和调 度集中等信号设备的基础设备。 轨道电路又称轨道空闲及占用的检测装置。轨道 电路由钢轨、钢轨绝缘、钢轨接续线、轨道电源、轨 道电阻器、轨道继电器组成。
闭塞
五、移动闭塞(Moving Block)
在城市轨道交通中,移动闭塞是一种采用先进 的 通 信 技 术 ( Communication ) 、 计 算 机 技 术 ( Computer )、控制技术( Control )(合称为 3C ) 相结合的列车控制技术,所以国际上习惯称之为基于 通 信 的 列 车 控 制 系 统 CBTC(Communication Based Train Control)。
基础设备
四、计轴器
计数比较器主要由计数器、鉴别器、比较器组成。 它将进出两个计轴点之间的车轴电脉冲信号进行计数 和比较,以判断区间(或轨道区段)是否空闲。
计轴器工作原理
基础设备
四、计轴器
在区间始端和末端各有一传感器,当车轮进入始 端轨道传感器作用区时,传感器发出电脉冲信号给计 数器,开始计轴进行加轴运算。当车轮进入末端轨道 传感器作用区时,传感器同样发出电脉冲给计数器, 进行减轴运算。计数器显示如为0,表明此时区间无 车;如不为0,则表明此时区间有车占用。
学习信号系统基础设备学习闭塞联锁学习列车自动运行控制系统概述城市轨道交通信号系统是指挥列车安全运行的关键设备只有在列车运行前方的轨道区段没有列车占用道岔位置正确敌对或相抵触的信号没有建立等条件满足才允许向列车发出允许前行的信号所以列车只要严格遵循信号的指示运行就能够确保安全运行

火车车轮与铁轨原理

火车车轮与铁轨原理

火车车轮与铁轨原理近几十年来,火车一直是人类重要的运输工具,特别是在工业发达的国家,火车给予了此前没有的快速准确的运输、工业化发展的推动力。

火车由车轮与铁轨组成,而车轮与铁轨原理也是火车运行的基础。

因此,本文将探讨火车车轮与铁轨的原理。

火车车轮的原理很简单,就是利用车轮和铁轨组合,使火车产生应力便能移动,而且在有铁轨的路线上推进。

火车车轮的特点是具有较大的摩擦力,具有较大的承载力,车轮的内部有两个部分,分别是轮胎和轮辋。

轮胎是靠金属制成的铸造或冲压型车轮轮胎,比较耐磨,具有较强的抗撞击能力,而轮辋是由多层钢板缠绕,结实牢固,可以承受强大的推力,能够保证火车的安全运行;而车轮上还有特殊的凸轮,它在铁轨与车轮接触时,会使火车得以顺利前进。

火车的车轮在不同的轨道上会发生什么样的变化呢?当火车运行在横轨道上时,车轮会因为横向非常小而摩擦力都会降低,从而影响火车的运行速度和动力,相反,当火车运行在纵轨道时,车轮会因为其横向的空间较大,摩擦力高,形成较大的抗拒力,这时,火车运行速度会降低,但动力会增加,因此,火车在不同的轨道上会发生不同的变化。

此外,火车运行还受制于铁轨的影响。

铁轨是火车运行的基础,它由多种铁质钢制而成,可以抗冲击、抗腐蚀,还可以抗老化,能够确保火车的稳定性。

在火车与铁轨的结合中,先有车轮与铁轨的交接,然后车轮会把动力传递给铁轨,铁轨的变形能够在轨道上滚动着火车,所以铁轨的强度对火车的运行也至关重要。

最后,当火车在轨道上行驶时,车轮和铁轨会发生相互作用,形成推进力,这样才能有效地把火车推动起来,所以火车车轮与铁轨原理对火车的运行有着重要的影响。

总之,火车车轮与铁轨原理是火车运行的重要组成部分,也是火车发展的基础,在火车的运行稳定性方面起着至关重要的作用。

动车车轮与铁轨原理

动车车轮与铁轨原理

动车车轮与铁轨原理
火车,是现在世界上最先进的交通工具之一。

而火车的发明,却是一个极其偶然的事件。

19世纪80年代初,有一个叫查尔斯·威克姆的英国人,在
英国伦敦附近的铁路沿线,发现了一个奇特的现象:在铁轨上跑着一列“不动”的火车。

他感到十分奇怪:为什么铁轨上会跑着一列“不动”的火车呢?难道是轨道出了什么问题?为了弄清真相,威克姆对铁轨进行了仔细观察和研究。

他发现,每当列车跑过这条铁轨时,列车外侧的轮子就会向内侧转动,而内侧轮子却不动。

威克姆感到十分奇怪,于是便仔细地进行了观察。

于是威克姆推测:由于火车在行驶过程中,车轮与轨道之间会产生相对运动。

当列车通过时,车轮就会与轨道发生磨擦,从而产生热量。

当热量积累到一定程度时,车轮就会熔化、熔化再熔化……这样循环往复地转动下去。

他认为这是由
于车轮与轨道之间产生了磨擦而造成的。

—— 1 —1 —。

高速列车车轮与轨道的接触力分析与优化

高速列车车轮与轨道的接触力分析与优化

高速列车车轮与轨道的接触力分析与优化随着科技的进步和交通运输的发展,高速列车成为现代社会中不可或缺的交通工具之一。

而高速列车的安全与舒适性在很大程度上取决于车轮与轨道之间的接触力。

因此,对高速列车车轮与轨道的接触力进行分析与优化是至关重要的。

一、高速列车车轮与轨道接触力分析1. 轮轨接触模型高速列车车轮与轨道的接触力可以使用轮轨接触模型来描述。

该模型考虑了轮轨间的压缩变形、弹性回复以及滑移等因素,从而可以计算出接触力的大小和方向。

2. 接触力的组成接触力通常分为垂直力和水平力两个分量。

垂直力是指车轮与轨道的垂直压力,其大小取决于列车的重量和轮轨之间的弹性变形;水平力是指车轮与轨道之间的摩擦力,其大小与列车的行驶速度以及轮轨之间的滑移有关。

3. 影响接触力的因素接触力的大小受到多种因素的影响,包括列车质量、列车速度、轮轨间的几何形状和材料特性等。

合理地分析这些因素对接触力的影响,可以帮助我们优化列车的设计和轨道的维护。

二、高速列车车轮与轨道接触力的优化1. 车轮与轨道的几何形状优化通过优化车轮和轨道的几何形状,可以改变接触力的分布,减小轮轨间的滑移,从而提高列车行驶的平稳性和舒适性。

例如,采用倒角设计可以减小接触力的峰值,降低磨损和噪音。

2. 轮轨材料的选择与处理选择适当的轮轨材料可以改善接触力的性能。

例如,采用高硬度和低摩擦系数的材料可以减少摩擦力,提高列车的能效;对轨道表面进行涂层处理可以降低摩擦系数和磨损。

3. 接触力的在线检测和监测为了有效地进行接触力的优化,我们需要实时地监测列车的运行状况和接触力的变化。

通过安装传感器和监测系统,可以收集列车行驶过程中的数据,帮助我们及时发现问题并采取相应的措施进行调整和优化。

4. 轨道的维护与保养良好的轨道维护和保养可以保持轨道的平整度和轮轨几何形状的一致性,减小接触力的波动和不均匀性。

定期检查轨道的磨损情况,及时修复和更换损坏的轨道部件,对于减少接触力的变化和提高列车运行的稳定性具有重要意义。

城市轨道交通车辆构造05制动系统

城市轨道交通车辆构造05制动系统

制动系统分类图
1.摩擦制动
图5-1 闸瓦制动示意图 1—制动缸 2—基础制动装置 3—闸瓦 4—车轮 5—钢轨
(1)闸瓦制动 动方式。 (2)盘形制动 所示。
闸瓦制动又称踏面制动,是最常用的一种制 盘形制动可分为轴盘式和轮盘式,如图5-2
图5-2 盘形制动 a)轴盘式 b)轮盘式
图5-3 盘形制动结构 1—轮对 2—单元制动缸 3—吊杆 4—制动夹钳
2) 具有足够的制动力,保证车组在规定的制动距离内停车。 3)对新型的城市轨道交通车辆,一般要求具有动力制动能力,并且 在正常制动过程中,应尽量充分发挥动力制动能力,以减少对城市 环境的污染和降低运行成本。 4)制动系统应保证车组在较长、较陡下坡道上运行时,其制动力不 会衰减。 5)电动车组各工况下的制动能力应尽可能一致。 6)具有紧急制动性能。
三通阀内形成以下两条通路: 制动管——充气沟7——滑阀室——副风缸; 制动缸——滑阀座r孔——滑阀底面n槽——三通阀EX口——大气。
第一条通路为充气通路,第二条通路为缓解通路,即所谓充气是指向 副风缸充气,缓解是指制动缸缓解,副风缸内压力可一直充至与制动管的 压力相等,即达到制动管定压,制动缸缓解后的最终压力为零。
空气压缩机1将压缩空气储入总风缸2内,经总风缸管3至制动阀4 。制动阀有3个不同位置:缓解位、保压位和制动位。 在缓解位时,制动管5内的压缩空气经11制动阀EX(Exhaust)排
气口排向大气; 在保压位时,制动阀保持总风缸管、制动管和EX口各不相通; 在制动位时,总风缸管压缩空气经制动阀流向制动管。
直通自动空气制动机与自动空气制动机在制动机的组成上基本相同, 只增加一个定压风缸13。但其三通阀的结构和原理与自动空气制动机的 三通阀有较大的区别。

列车车轮与轨道的接触的滚动摩擦系数

列车车轮与轨道的接触的滚动摩擦系数

列车车轮与轨道的接触的滚动摩擦系数下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!列车车轮与轨道的接触的滚动摩擦系数滚动摩擦系数是描述列车车轮与轨道接触过程中重要的物理量,直接影响列车的运行安全和能效。

火车车轮的力学特性与轨道磨损分析

火车车轮的力学特性与轨道磨损分析

火车车轮的力学特性与轨道磨损分析火车作为一种重要的交通工具,其车轮的力学特性和轨道磨损问题一直备受研究者的关注。

本文将从车轮的力学特性和轨道磨损分析两个方面,探讨火车车轮与轨道之间的相互作用以及对轨道磨损的影响。

一、车轮的力学特性在研究火车车轮的力学特性之前,我们首先需要了解车轮结构以及车轮与轨道之间的接触方式。

1. 车轮结构火车车轮一般由轮缘、轮辋、车轮中心孔和车轮轴组成。

轮缘是车轮与轨道接触的部分,起到支撑和传递载荷的作用;轮缘与轮轴连接的部分称为轮缘座,其结构通常采用散热式结构,能有效减小轮缘应力。

2. 车轮与轨道的接触方式车轮与轨道之间存在着滚动接触,即车轮在轨道上滚动运动。

由于滚动接触的特性,车轮在与轨道接触的区域会产生接触应力和法向力。

在火车行驶过程中,车轮与轨道的接触面会受到动、静载荷的共同作用,从而引起一系列力学特性。

3. 车轮的力学特性车轮的力学特性主要包括负荷分布、应力和变形。

由于车轮的轮缘高度相对较小,车轮表面受到的载荷并不均匀分布。

通常情况下,车轮的内边缘承受的压力要大于外边缘,因此车轮的接触应力也存在这种差异。

车轮的应力和变形会直接影响到轨道的磨损情况。

二、轨道磨损分析火车行驶在轨道上,车轮与轨道接触会产生摩擦,导致轨道表面的磨损。

轨道磨损是一种不可避免的现象,但我们可以通过分析其机理和影响因素,寻找减轻磨损的方法。

1. 轨道磨损机理轨道磨损主要包括磨耗、剥离和压伤三种形式。

磨耗指的是轨道表面的擦磨现象,是最常见的磨损形式;剥离是指轨道表面的一层材料剥落;压伤指的是轨道表面的塑性变形。

2. 轨道磨损影响因素轨道磨损受到多个因素的影响,主要包括车轮负荷、车速、车轮轮径和轨道材料等。

车轮负荷是影响轨道磨损的主要因素之一,负荷过大会加剧轨道表面的磨损。

车速也对轨道磨损有一定的影响,高速行驶会加剧轨道表面的摩擦。

此外,车轮轮径的大小以及轨道的材料和维护状况也会对轨道磨损产生影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c 1 1 2
k1 __ 与材料有关的许用线接触应力常数 N / mm2 ,表 5-2 l ___ 车轮与轨道有效接触长度 C1—— 转速系数,表 5-3 C2 ——工作级别系数,表 5-4
2.车轮与轨道的为点接触:
R2 pc k2 3 C1C2 m
k2 __ 与材料有关的许用点接触应力常数 N / mm2 R ___曲率半径(车轮与轨道曲率半径较大者) m ___由轨道顶的曲率半径与车轮曲率半径之比 r 所确定的系数。 R
第五章
车轮与轨道
§1
车 轮
分 类: 按轮缘形式: A 双轮缘 B 单轮缘 C 无轮缘 轮缘的作用是导向和防 止脱轨。 通常,大车车轮多采用 双轮缘,小车车轮多采 用单轮缘,安装时,把 轮缘安置在轨道外侧。
车轮踏面: 1.圆柱型 2.圆锥型 3.鼓 型 大多数起重机采用前两种。对于桥式起重机,集中 驱动的大车主动车轮踏面为圆锥型,从动轮采用圆柱 型的;单独驱动的大车主、从动轮都采用圆柱型的踏 面。所有小车车轮都采用圆柱型的踏面。
铸铁车轮 HB 180—240 不低于ZG55的铸铁 HB 320—350
§2轨Βιβλιοθήκη 道轨道用来承受起重机车轮传来的集中压力,并引导 车轮运行,所有起重机用的轨道都采用标准或特殊的 轧制型钢或钢轨。 小型轨道---P型铁路钢轨(或方钢) 大型轨道---P或U型起重机专用钢轨
§3
车轮与轨道的选择计算
车轮多为疲劳破坏,按赫兹公式计算车轮与轨道的接触 疲劳强度 车轮的计算载荷按下式计算:
车轮轴和轴承的计算:(略)
2 Pmax Pmin Pc 3 Pmax : 设备正常工作时的最大轮压(N) Pmin : 设备正常工作时的最小轮压(N) 在计算Pmax、Pmin时,所有载荷系数均取为1
车轮踏面疲劳接触应力的计算 车轮踏面接触应力与车轮直径有关,可根据计算的最 大轮压、运行机构的工作级别等因素从标准规范中选 定车轮直径和轨道型号,然后依不同的接触情况验算 接触强度。 1、车轮与轨道为线接触: 此时,r=D/2, 轨道曲率半径=∞ 验算公式为: p k DlC C
车轮组 : 1.车轮装 在固定 的心轴 上。 用定轴件 把车轮固 定在机架上, 车轮在轴上 可以自由转 动。
2.车轮装在转轴或转心轴上。
参 数
1.直径和数量:车轮大小主要根据轮压决定,P D 当D不能再增大时,应增加数量来使每个车轮的轮压降低。
2.车轮材料: V小于30m/min V大于30m/min
相关文档
最新文档