四边形学案四边形全章测试

合集下载

四边形单元测试题及答案

四边形单元测试题及答案

四边形单元测试题及答案一、选择题1. 下列哪个图形不是四边形?A. 正方形B. 长方形C. 平行四边形D. 三角形答案:D2. 一个四边形的对角线数量是多少?A. 1B. 2C. 3D. 4答案:B3. 菱形具有以下哪些特性?A. 对角线相等B. 对角线互相垂直C. 四边相等D. 所有选项都正确答案:D二、填空题1. 一个平行四边形的对边_________。

答案:平行且相等2. 正方形是特殊的_________。

答案:平行四边形3. 菱形的对角线_________。

答案:互相垂直且平分三、简答题1. 请简述四边形的基本性质。

答案:四边形是一个平面图形,由四条直线段依次首尾相连组成。

其基本性质包括:对边平行且相等,对角线互相平分。

2. 什么是梯形?请简述其特点。

答案:梯形是一个四边形,其中一组对边平行,另一组对边不平行。

其特点是:非平行的两边称为腰,平行的两边称为底,两底之间的距离称为高。

四、计算题1. 已知一个平行四边形的两邻边长分别为3厘米和5厘米,求其对角线的长度。

答案:由于题目没有给出足够的信息,无法直接计算对角线的长度。

需要知道平行四边形的其他信息,如角度或对角线与边的关系。

2. 如果一个正方形的边长为4厘米,计算其面积。

答案:正方形的面积 = 边长× 边长 = 4厘米× 4厘米 = 16平方厘米。

五、解答题1. 如何证明一个四边形是平行四边形?答案:要证明一个四边形是平行四边形,可以采用以下方法之一:- 两组对边分别平行。

- 两组对边分别相等。

- 对角线互相平分。

2. 已知一个菱形的边长为6厘米,求其面积。

答案:菱形的面积可以通过以下公式计算:面积 = (对角线1 ×对角线2) / 2。

由于题目没有给出对角线的长度,我们可以使用菱形的边长和其特性来求解。

设对角线分别为d1和d2,根据菱形的性质,d1² + d2² = 4 × 边长² = 4 × 6² = 144。

第六章 平行四边形 单元测试(含答案) 2024-2025学年北师大版数学八年级下册

第六章 平行四边形   单元测试(含答案) 2024-2025学年北师大版数学八年级下册

第六章学情评估卷时间:60分钟满分:100分一、选择题(共8小题,每题3分,共计24分)1.正八边形中每个内角的度数为()A.80∘B.100∘C.120∘D.135∘2.在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.∠ABC=∠ADC,∠BAD=∠BCDB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB//DC,AD=BC3.[2024西安长安区期末]如图,在平行四边形ABCD中,AC,BD相交于点O,∠ODA=90∘,AC=20cm,BD=12cm,则BC的长为()(第3题)A.6cm B.8cm C.9cm D.10cm4.一个多边形的内角和比它的外角和的3倍少180∘,则这个多边形的边数是()A.七B.八C.九D.十5.如图,在▱ABCD中,AD=6,∠ADB=30∘ .按以下步骤作图:①以点C为圆心,CD长为半径作弧,交BD于点F;②分别以点D,F为圆心,CD长为半径作弧,两弧相交于点G.作射线CG交BD于点E.则BE的长为()(第5题)(第6题)B.四边形EGFHD.EH⊥BD(第7题)C.3如图,在平行四边形(第8题)C.2s或14s3(第9题)10.如图,若直线m//n,A,D在直线m上,B,C,E在直线n上,AB//CD,A D=5,BE=8,△DCE的面积为6,则直线m与n之间的距离为________.(第10题)11.如图,在▱ABCD中,O为BD的中点,EF过点O且分别交AB,CD于点E,F.如果AE=8,那么CF的长为________.(第11题)12.如图,在▱ABCD中,∠BAD=120∘,连接BD,作AE//BD交CD的延长线于点E,过点E作EF⊥BC交BC的延长线于点F,且AB=2,则EF的长是______.(第12题)13.[2024陕西师大附中期中]如图,在△ABC中,AB>AC,∠A=30∘,AC= 4,点E为AC的中点,点F为边AB上的一个动点,将三角形沿EF折叠,点A的对应点为点A′,当以点E,F,A′,C为顶点的四边形是平行四边形时,线段AF的长为______________.(第13题)三、解答题(共5小题,计61分)14.(10分)A和B分别是两个多边形,阅读A和B的对话,完成下列各小题.(1)嘉嘉说:“因为B的边数比A多,所以B的外角和比A的大.”判断嘉嘉的说法是否正确?并说明理由.(2)设A的边数为n(n>3).①若n=7,求x的值;②淇淇说:“无论n取何值,x的值始终不变.”请用列方程的方法说明理由. 15.[2024榆林月考](10分)如图,▱ABCD的对角线AC,BD相交于点O,EF 过点O且与AB,CD分别相交于点E,F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是16,求▱ABCD的周长.16.(13分)如图,在平行四边形ABCD中,G,H分别是AB,CD的中点,点E,F在对角线AC上,且AE=CF,连接EG,GF,FH,HE.(1)求证:四边形EGFH是平行四边形.(2)连接BD交AC于点O,若BD=14,E为AO的中点,求EG的长.中,点P为BC的中点.延长AB,连接AP,DE,BE,若∠BAC写出你的结论,并加以证明ABC中,D,E分别是边逆向思考,可得以下3则命题:,则E是AC的中点;D,E分别是AB,AC小明通过对命题Ⅰ的思考,发现命题Ⅰ是假命题他的思考方法如下:在图②中使用尺规作图作出满足命题Ⅰ条件的点小明尺规作图的方法步骤如下:于点M.②以点D为圆心,BM的长为半径画弧与边AC交于点E和点E′.请你在图②中完成以上作图.(2)小明通过对命题Ⅱ和命题Ⅲ的思考,发现这两个命题都是真命题,请你从这两个命题中选择一个,并借助图①进行证明.【参考答案】第六章 学情评估卷一、选择题(共8小题,每题3分,共计24分)1.D 2.D 3.B 4.A 5.D 6.D 7.B 8.C二、填空题(共5小题,每题3分,共计15分)9.50∘10.411.812.313.2或23三、解答题(共5小题,计61分)14.(1) 解:嘉嘉的说法不正确.理由:多边形的外角和始终为360∘ ,与多边形的边数无关.(2) ① 由题意,得180∘(7+x−2)−180∘×(7−2)=360∘ ,解得x =2,即x 的值为2.② 由题意,得180∘(n +x−2)−180∘(n−2)=360∘ ,整理得180∘x =360∘ ,解得x =2.所以无论n 取何值,x 的值始终不变.15.(1) 证明:∵ 四边形ABCD 是平行四边形,∴OD =OB ,AB //CD ,∴∠FDO =∠EBO .在△DFO 和△BEO 中,{∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO≌△BEO (ASA),∴OE =OF .(2) 解:∵ 四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,OA =OC .∵EF ⊥AC ,EF 过点O ,∴EF 是AC 的垂直平分线,∴AE =CE .∵△BEC 的周长是16,∴BC +BE +CE =BC +BE +AE =BC +AB =16.=AE,AB交BC边于点M是平行四边形,CM.是平行四边形,选择命题III.证明:如图③,延长ED至点F,使DF=DE,连接BF,∵D是AB边的中点,∴AD=BD.又∵∠ADE=∠BDF,∴△ADE≌△BDF(SAS),∴AE=BF,∠AED=∠BFD,∴AC//BF.∵EF//BC,∴四边形BCEF是平行四边形,∴BF=CE,∴CE=AE,∴E是AC的中点.(选择其中一个即可)。

三年级数学上册学案-7.1四边形-人教新课标

三年级数学上册学案-7.1四边形-人教新课标

三年级数学上册学案 7.1 四边形人教新课标教案内容:我是一名教师,今天我要给大家讲解的是人教新课标三年级数学上册的7.1四边形。

教学目标是让学生理解四边形的定义,掌握四边形的性质,能够识别和画出四边形。

在教学过程中,我发现学生们对于四边形的定义和性质理解起来有些困难,所以这将是我们的教学难点。

而能够识别和画出四边形将是我们的教学重点。

为了帮助学生们更好地理解四边形,我将准备一些教具和学具,如四边形的模型和图片,以及一些彩笔和纸张,供学生们画图使用。

在板书设计方面,我会用彩笔在黑板上画出各种四边形的图形,并在旁边标注出四边形的性质和特点。

这样可以帮助学生们更直观地理解和记忆四边形的概念。

对于作业设计,我会布置一些练习题,让学生们自己识别和画出四边形,并运用四边形的性质来解决问题。

作业题目如下:1. 识别下列图形中的四边形,并画出它们。

答案:略2. 判断下列图形是否为四边形,并说明原因。

答案:略课后反思:在课后,我会反思今天的教学效果,看看学生们是否掌握了四边形的定义和性质,以及他们是否能够正确地识别和画出四边形。

如果发现有学生还没有完全掌握,我会针对性地进行辅导和讲解,以帮助他们更好地理解四边形。

同时,我也会考虑如何将四边形的学习与实际生活联系起来,让学生们更好地认识到四边形在日常生活中的应用。

例如,可以让学生们观察和描述一些生活中的四边形物体,如桌面、窗户等,以此来加深他们对四边形的理解。

我还可以通过拓展延伸的方式,让学生们进一步探索四边形的性质和应用。

例如,可以让学生们研究四边形的对角线的长度和交点位置的关系,或者让他们思考如何计算四边形的面积等。

总的来说,我希望通过今天的教学,学生们能够掌握四边形的知识,并在今后的学习中能够灵活运用。

重点和难点解析:在本次教案中,有几个重点和难点是我认为需要特别关注的。

四边形的定义和性质是整个教案的核心内容,学生们对此的理解和掌握是至关重要的。

如何让学生们能够识别和画出四边形,以及如何运用四边形的性质来解决问题,也是教学的重点。

第20章四边形全章学案学案

第20章四边形全章学案学案

19.1.1平行四边形的性质.1执笔:李晓萍一.温故知新:1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD 记作__________。

2.如图□ABCD 中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。

二.学习新知:1.自学课本P 83~P 84,填空:平行四边形的性质(1)边:_________________________________________________________ (2)角:_________________________________________________________例:□ABCD 中,如果AB ∥CD ,那么AB =______,BC =______,∠A =______,∠B =______. 2.看例1,完成课本P 84的练习. 三.释疑提高:1.□ABCD 中,两邻角之比为1∶2,则它的四个内角的度数分别是____________.2.□ABCD 的周长是28cm ,△ABC 的周长是22cm ,则AC 的长是__________.3.如图,在□ABCD 中,M 、N 是对角线BD 上的两点,BN=DM ,请判断AM 与CN 有怎样的数量关系,并说明理由.它们的位置关系如何呢?NMDCB A4.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60°,BE =2cm ,DF =3cm ,求□ABCD 的周长和面积. 若问题改为CF =2cm ,CE =3cm ,求□ABCD 的周长和面积.FE DCB A5.□ABCD 中,E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,求CF 的长.FED CB A四.小结归纳:五.巩固检测1.课本P90—1、22.课堂作业19.1.1平行四边形性质119.1.1平行四边形的性质.2执笔:李晓萍一.温故知新:1.平行四边形的定义是:_______________________________________________.2.所学平行四边形的性质有:平行四边形的对边______________,平行四边形的对角______________.3.如图,在□ABCD 中,BC=2AB ,M 是AD 的中点,则∠BMC =___________. 二.学习新知:1.自学课本P 85~86内容,填空:平行四边形的又一个性质是:______________________________,当图形中没有平行四边形的对角线时,往往需作出对角线. 由此得到平行四边形的性质有:(1)边:_____________ (2)角:_____________ (3)对角线:_____________ 2.看例2,完成课本P 86的练习. 三.释疑提高:1.在□ABCD 中,AC 、BD 交于点O ,已知AB =8cm ,BC =6cm ,△AOB 的周长是18cm ,那么△AOD 的周长是_____________.2. □ABCD 的对角线交于点O ,S △AOB =2cm 2,则S □ABCD =__________.3. □ABCD 的周长为60cm ,对角线交于点O ,△BOC 的周长比△AOB 的周长小8cm ,则AB =______cm ,BC =_______cm .4. □ABCD 中,对角线AC 和BD 交于点O ,若AC =8,AB =6,BD =m ,那么m 的取值范围是____________.5. □ABCD 中,E 、F 在AC 上,四边形DEBF 是平行四边形.求证:AE=CF .FE D CBA6.如图,田村有一口四边形的池塘,在它的四角A 、B 、C 、D 处均有一棵大桃树.田村准备开挖养鱼,想使池塘的面积扩大一倍,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,画出图形,说明理由.DCBA四.小结归纳:五.巩固检测1.作业精编19.1.12.课堂作业19.1.1平行四边形性质2M D C B A O DCB A19.1.2平行四边形的判定自学路线图1一.温故知新1.如图在平行四边形ABCD 中,DB =DC ,∠A =65°,CE ⊥BD 于E ,则∠BCE = .2.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,已知AE =4,AF =6,□ABCD 的周长为40,试求□ABCD 的面积。

四边形测试题(通用8篇)

四边形测试题(通用8篇)

四边形测试题〔通用8篇〕篇1:数学四边形测试题数学四边形测试题一、选择题(每题3分,共30分)。

1、顺次连结四边形各边的中点,所成的四边形必定是A等腰梯形B直角梯形C矩形D平行四边形2、如图1:等腰梯形ABCD中,AD∥BC,对角线AC、BD 相交于点O,那么图中的全等三角形共有A1对B2对C3对D4对3、如图2,在矩形ABCD中,AD∥BC,AC与BD交于点O,那么图中面积相等的三角形有A4对B5对C6对D8对4、不能断定四边形ABCD为平行四边形的命题是AAB∥CD且AB=CDBAB=AD、BC=CDCAB=CD,AD=BCD∠A=∠C,∠B=∠D5、以下命题中,真命题是A一组对边平行,另一组对边相等的'四边形是平行四边形B有一组对边和一组对角分别相等的四边形是平行四边形C两组对角分别相等的四边形是平行四边形D两条对角线互相垂直且相等的四边形是平行四边形6、正方形具有而菱形不一定具有的性质是A对角线相等B对角线互相垂直且平分C四条边都相等D对角线平分一组对角篇2:初中数学四边形单元测试题参考初中数学四边形单元测试题参考一、精心选一选,相信你一定能选对!(每题3分,共30分)1.如图1,用两个完全一样的直角三角板,不能拼成以下图形的是( ).A.平行四边形B.矩形C.等腰三角形D.梯形2.以下说法中,正确的选项是( ).A.等腰梯形的对角线互相垂直B.菱形的对角线相等C.矩形的对角线互相垂直;D.正方形的对角线互相垂直且相等3.四边形ABCD是平行四边形,以下结论中,错误的选项是( ).A.AB=CD;B.AC=BD;C.当AC⊥BD时,它是菱形;D.当∠ABC =90°时,它是矩形4.如图2,将一张矩形纸片ABCD那样折起,使顶点C落在C′处,其中AB=4,假设∠C ′ED=30°,那么折痕ED的长为( ) .A.4B.4C.5D.85.如图3,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影局部的面积是矩形面积的( ).A. B. C. D.6.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①, ②两局部,将①展开后得到的平面图形是( ).A.三角形B.矩形C.菱形D.梯形7. 等腰梯形ABCD的中位线EF的长为6,腰AD的长为5,那么等腰梯形的周长为(• ).A.11B.16C.17D.228.顺次连结菱形各边中点所围成的四边形是( ).A.一般的平行四边形B.矩形C.菱形D.等腰梯形9.如图4是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,•那么该主板的周长是( ).A.88mmB.96mmC.80mmD.84mm10.如图5,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,那么DN+MN的最小值为( ).A.8B.8C.2D.10二、细心填一填,相信你填得又快又准!(每题2分,共16分)11. ABCD两邻角∠A:∠B=1:2,那么∠C=_ ____度.12.如图6,在 ABCD中,E、F和G、H分别是AD和BC的三等分点,那么图中平行四边形的个数共有______个.13., ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD 于E,那么DE=_____cm.14.如图,在长方形ABCD中,AB=3,BC=2,E为BC的中点,F在AB上,且BF=2AF,那么四边形AFEC的面积为________.15.如图,矩形纸片ABCD中,AB=6cm,AD=9cm,再按以下步骤折叠:①将∠BAD对折,使AB落在AD上,得折痕AF(如图2);②将△AFB沿BF折叠,AF与CD交于点G(如图3),•那么CG的长等于_______c m.16.过边长为1的正方形的中心O引两条互相垂直的射线,分别与正方形的边交于A、B两点,那么线段 AB长的取值范围是_______.17.菱形ABCD的边长为6,∠A=60°,假如点P是菱形内一点,且PB=PD=2 ,那么AP的长为_______.18.下面图1的梯形符合_______条件时,可以经过旋转和翻折成图案三、耐心选一选,千万别漏选!(每题4分,共8分,错选一项得0分,•对而不全酌情给分)19.如图,在等腰梯形ABCD中,AD∥BC,AC与BD相交于点O.下面结论正确的选项是( ).A.AC=BDB.∠DAO=∠DBCC.S△BOC= S梯形ABCDD.△AOB≌△DOC20.如图,把两个边长为3的正方形叠放在一起,假设∠BCF=30°,•那么下面结论正确的选项是( ).A.∠DCG=30°B.∠AHF与∠BCF互余C.DH=FHD.DH=四、用心做一做,展示你的证明才能!21.如图,在矩形ABCD中,点E、F在BC边上,且BE=CF,AF、DE交于点M.求证:AM=DM.(6分)22.如图,等腰梯形ABCD中,AD∥BC,AB =CD,DE⊥BC 于E,AE=BE.BF⊥AE于F,请你判断线段BF与图中的哪条线段相等,先写出你的猜测,再加以证明.(6分)(1)猜测:BF=______.(2)证明:23.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD•为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?•证明你的结论.(8分)五、仔细想一想,相信你一定行!24.如图,以△ABC的各边向同侧作正△ABD,BCF,ACE.(1)求证:四边形AEFD是平行四边形;(2)当△ABC是______三角形时,四边形AEFD是菱形;(3)当∠BAC=_____时,四边形AEFD是矩形;(4)当∠BAC=_______时,以A、E、F、D 为顶点的四边形不存在.(8分)25.矩形,菱形由于其特殊的性质,为拼图提供了方便,因此墙面瓷砖一般设计为矩形,图案也以菱形居多.如图,是一种长30cm,宽20cm的矩形瓷砖,E、F、G、H•分别是矩形各边的中点,阴影局部为淡黄色,中间局部为白色,现有一面长4.2m,宽2.8m的墙壁准备贴瓷砖.问:(1)这面墙壁最少要贴这种瓷砖多少块?(2)全部贴满瓷砖后,这面墙壁最多会出现多少个面积相等的菱形?•其中淡黄色的菱形有多少个?六、动脑想一想,展示你的设计才能!26.在劳技课上,老师请同学们在一张长为17cm,宽为16cm的长方形纸板上,剪下一个腰长为10cm的等腰三角形(•要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边长上).•请你帮助同学们计算剪下的'等腰三角形的面积.(6分)27.蓝天希望学校准备建一个多媒体教室,方案做长120cm,宽30cm的长方形桌面,现只有长80cm,宽45cm的木板,请你为该校设计不同的拼接方案,使拼起来的桌面符合要求.(只要求画出裁剪,拼接图形,并标上尺寸)(6分)七、理论与探究,展示你的创新才能!28.设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…….(1)记正方形ABCD的边长为a1=1,按上述方法所作的正方形的边长依次为a2,a3,a4, ……,an,恳求出a2,a3,a4的值.(2)根据以上规律写出an的表达式.(8分)29.在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后,•用得到的△AEF和四边形EBCF可以拼成平行四边形EBCP,剪切线与拼图如下图1.仿照上述的方法,按要求完成以下操作设计,并在规定位置画出图示.(1)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成矩形,剪切线与拼图画在图示2的位置上.(2)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成菱形,剪切线与拼图画在图示3的位置上.(3)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成正方形,剪切线与拼图画在图示4的位置上.(4)在△ABC中(AB≠AC),一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,•其操作过程(剪切线的作法)是:___________,然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置上.(10分)篇3:四边形四边形有关概念四边形内角和例1十、随堂练习教材P122中1、2、3.篇4:四边形性质探究的测试题(有答案) 一、选择题(每题3分,共30分)1.以下各组图形中有可能不相似的是A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形2.以下说法①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60o的两个直角三角形相似,其中正确的说法是A.①③B.②④C.①②④D.②③④3.△ABC和△DEF满足以下条件,其中使△ABC和△DEF不相似的是A.∠A=∠D=45°,∠C=27°,∠E=108°B.AB=1,AC=1.5,BC=2,DE=12,EF=8,DF=16C.BC=a,AC=b,AB=c,DE=,EF=,DF=D.AB=AC,DE=DF,∠A=∠D=40o,4.如下图,给出以下条件:①; ②;③; ④.其中单独可以断定的个数为A.1B.2C.3D.45.假如一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值A.只有1个B.可以有2个C.有2个以上但有限D.有无数个6.如图,△ABC中,EF∥BC,DG∥AB,EF和DG相交于点H,那么图中与△ABC相似的三角形共有A.1个B.2个C.3个D.4个7.△ABC中,D是AB上一固定点。

北师大版八年级上第四章 四边形性质探索复习 学案与练案(打印)

北师大版八年级上第四章 四边形性质探索复习 学案与练案(打印)

第四章四边形性质探索复习(3课时)学案与练案一、学习目标1、进一步通过运用图形的变换,探索图形特征与性质的过程,体验数学发现的过程,并得出正确的结论.2、对平行四边形的原有认识基础上,探索并掌握平行四边形的特征与性质,学会一些简单的识别方法.3、探索并掌握几种特殊平行四边形的概念和各自所具有的特殊性质,并学会识别这些特殊的图形.4、进一步了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系.5、在观察、操作、推理、归纳等探索过程中,发展合情推理能力,进一步培养自己的说理习惯与能力.二、学习重点、难点与考点透视1、重点:平行四边形、矩形、菱形、正方形和梯形的概念、性质与判定;掌握其概念、特征与判定,并能应用这些知识是学好本章的关键.2、难点:平行四边形与各种特殊的平行四边形之间的联系与区别.中考热点:本章内容是中考重点之一,如特殊四边形(平行四边形、矩形、菱形、正方形、等腰梯形)的性质和判定,以及运用这些知识解决实际问题.中考中常以选择题、填空题、解答题和证明题等形式呈现,近年的中考中又出现了开放题、应用题、阅读理解题、学科间综合题、动点问题、折叠问题等,这都成了热点题型,应引起同学们高度关注.三、知识总结与梳理(一)四边形的“全家福”(二)知识要点1、平行四边形:(1)平行四边形的定义:__________________。

(2)平行四边形的性质:①平行四边形的邻角________,对角________;②平行四边形的对边____________;③平行四边形的对角线____________;④平行四边形是中心对称图形,______________为对称中心;⑤若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积;(⑥两平行线间的距离处处相等)(3)平行四边形的判定方法:①定义:两组对边___________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边________的四边形是平行四边形;④对角线________的四边形是平行四边形;⑤两组对角_________的四边形是平行四边形.2、矩形:(1)矩形的定义:________________。

初中数学八年级数学《四边形》单元过关达标检测试题(整理含答案)

初中八年级数学《四边形》单元测试题一(时间90分钟 满分100分)一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于º .2.正方形的面积为4,则它的边长为,一条对角线长为. 3.一个多边形,若它的内角和等于外角和的3倍,则它是边形. 4.如果四边形ABCD满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件). 5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形. 8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm .9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 . 12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).1S 2S 第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,Y ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE 等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( )A .等腰三角形B .正三角形C .等腰梯形D .菱形 17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE 的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.初中八年级数学《四边形》单元测试题二(时间90分钟 满分100分)一、填空题(共14小题,每题2分,共28分)1.如图,平行四边形ABCD 中,E ,F 分别为AD ,BC 边上的一点.若再增加一个条件_________,就可得BE =DF . 2.将一矩形纸条,按如图所示折叠,则∠1 = _______度.3.如图,矩形ABCD 中,MN ∥AD ,PQ ∥AB ,则S 1与S 2的大小关系是______.4.已知平行四边形ABCD 的面积为4,O 为两对角线的交点,则△AOB 的面积是.5.菱形的一条对角线长为6cm ,面积为6cm 2,则菱形另一条对角线长为______cm .6.如果梯形的面积为216cm 2,且两底长的比为4:5,高为16cm ,那么两底长分别为_____.7.如图,在菱形ABCD 中,已知AB =10,AC =16,那么菱形ABCD的面积为. 8.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置,若∠EFB =65°,则∠AED′=______.9.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的度数等于______.第1题 第2题 第11题第7题 第8题 第9题10.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a + b ),宽为(a + b )的矩形,则需要A 类卡片张,B 类卡片 张,C 类卡片 张.11. 如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处,若∠CFE =60o ,且DE =1,则边BC 的长为 .12.如图,正方形ABCD 的周长为16cm ,顺次连接正方形ABCD 各边的中点,得到四边形EFGH ,则四边形EFGH 的周长等于 cm ,四边形EFGH 的面积等于 cm 2.13.如图,将一块边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ ,则PQ 的长为_______.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有___ __个.第10题EABHGFE D CBA ABCDEG第11题 第12题 第14题O11 23-3 -2-2 -3 -1 -1 2y x二、选择题(共4小题,每题3分,共12分)15.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a 的取值范围为()A.4<a<16 B.14<a<26 C.12<a<20 D.以上答案都不正确16.在菱形ABCD中,AC与BD相交于点O,则下列说法不正确的是()A.AO⊥BO B.∠ABD=∠CBDC.AO=BO D.AD=CD17.等腰梯形的两底差等于一腰的长,则它的腰与下底的夹角是()A.15°B.30°C.45°D.60°18.如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关三、解答题(共60分)19.(5分)我们学习了四边形和一些特殊的四边形,右图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.RP DCB AEF 第18题20.(5分)已知:如图,E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF .求证:(1)△ADF ≌△CBE ;(2)EB ∥DF .21.(5分)如图,在梯形纸片ABCD 中,AD//BC ,AD>CD ,将纸片沿过点D的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C′E . 求证:四边形CDC′E 是菱形.A DEBCC ′22.(6分)如图,在ABC △中,D 是BC 边的中点,F E ,分别是AD 及其延长线上的点,CF BE ∥. (1)求证:BDE CDF △≌△.(2)请连结BF CE ,,试判断四边形BECF 是何种特殊四边形,并说明理由.23.(6分)如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD延长线上的点,且ACE △是等边三角形. (1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.EDB AO24.(6分)如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.25.(6分)如图8,在四边形ABCD中,点E是线段AD上的任意一点(E与A D,不重合),G F H,,分别是BE BC CE,,的中点.(1)证明四边形EGFH是平行四边形;(2)在(1)的条件下,若EF BC⊥,且12EF BC=,证明平行四边形EGFH是正方形.BGA EFHDC26.(6分)将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D 落到D′ 处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.27.(7分)四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.AB C DE FD′28.(8分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.NB D参考答案一、填空题1.360 ,360 2.2,22 3.84.四边形ABCD 是菱形或四条边都相等或四边形ABCD 是正方形等5.5. 6.206.7.一组邻边相等或对角线互相垂直 8.24+49.5 10.41511.6,7512.② 13.120 14.112n -⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D 三、解答题19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°参考答案一、填空题1.答案不唯一,如AE=CF或BE∥DF等2.52 3.S1=S24.1 5.2 6.12 cm和15cm 7.96 8.50°9.30 10.2,1,3.11.3 12.13.13 14.40二、选择题15.B 16.C 17.D 18.C三、解答题19.③有一个内角为直角;④一组邻边相等;⑤一组邻边相等;⑥有一个内角为直角;⑦两腰相等;⑧一条腰垂直于底边20.略21.略22.(1)略;(2)菱形23.略23.(1)AD=CF;(2)略25.略26.(1)略;(3)四边形AECF是菱形27.(1)略;(2)猜想:AE⊥CG,证明略28.(1)略;(2)AD=1BC等(答案不唯一)2。

四边形测试题及答案

四边形测试题及答案# 四边形测试题及答案题目1:定义题题目:请定义什么是四边形,并列举出四边形的三种基本类型。

答案:四边形是由四条直线段依次首尾相连围成的平面图形。

四边形的三种基本类型包括:平行四边形、矩形和梯形。

题目2:计算题题目:给定一个平行四边形,其两组对边分别长为10cm和6cm,求其周长。

答案:平行四边形的周长等于两组对边之和的两倍。

因此,周长= 2 ×(10cm + 6cm) = 32cm。

题目3:判断题题目:所有的矩形都是平行四边形。

答案:正确。

矩形是特殊的平行四边形,其四个角都是直角。

题目4:应用题题目:一个梯形的上底长为3cm,下底长为7cm,高为4cm,求其面积。

答案:梯形的面积 = (上底 + 下底) × 高÷ 2面积= (3cm + 7cm) × 4cm ÷ 2 = 20cm²。

题目5:选择题题目:下列哪个选项不是四边形的特性?A. 内角和为360度B. 对边平行C. 对角线相等D. 有四条边答案:C. 对角线相等。

不是所有四边形的对角线都相等,只有矩形和正方形的对角线相等。

题目6:解析题题目:解释为什么正方形既是矩形也是菱形。

答案:正方形是特殊的四边形,其四条边都相等,且四个角都是直角。

由于四个角都是直角,它满足矩形的定义;由于四条边相等,它也满足菱形的定义。

因此,正方形既是矩形也是菱形。

题目7:证明题题目:证明平行四边形的对角线互相平分。

答案:在平行四边形ABCD中,设对角线AC和BD相交于点E。

由于AB平行于CD,根据平行线的性质,三角形ABC与三角形ADC全等(SAS),因此BE = EC。

同理,三角形ABD与三角形CBD全等,因此AE = ED。

这证明了平行四边形的对角线互相平分。

题目8:填空题题目:如果一个四边形的对角线互相垂直且相等,那么这个四边形是________。

答案:正方形。

当四边形的对角线互相垂直且相等时,它是一个正方形。

18四边形复习学案 -2022-2023学年八年级数学下册

18四边形复习学案 -2022-2023学年八年级数学下册一、基本概念回顾1. 四边形的定义四边形是由四条线段组成的平面图形,其中相邻线段之间没有交点。

2. 四边形的性质四边形的性质包括:角的性质、边的性质、对角线的性质等。

•内角和:四边形的四个内角和为360度。

•对角线:四边形的对角线是相邻非共线顶点之间的线段。

•对角线的交点:四边形对角线的交点叫做四边形的对角线交点。

3. 特殊四边形典型的特殊四边形包括:矩形、正方形、平行四边形和菱形。

•矩形:矩形的对角线相等且互相平分,内角为90度。

•正方形:正方形是具有矩形性质的菱形,等边且角为90度。

•平行四边形:具有相对边平行的四边形。

•菱形:具有矩形和平行四边形性质的四边形,对角线相等且互相平分。

二、四边形的分类1. 硬规定分类四边形根据边长和角度的特点可以分为以下几类:•等边四边形:四边形的四边边长相等。

•等角四边形:四边形的四个内角相等。

•两对角相等四边形:四边形的两对内角相等。

2. 平行四边形分类根据平行四边形的性质,平行四边形可以分为以下几类:•矩形:具有平行四边形性质的四边形,所有内角都是90度。

•正方形:具有矩形和菱形性质的四边形,等边且所有内角都是90度。

•长方形:具有平行四边形性质的四边形,但不一定所有内角都是90度。

•等腰梯形:上底和下底平行的四边形,对角线相等且平行。

•等边梯形:上底和下底平行的四边形,对角线相等。

三、四边形的性质运用1. 证明四边形性质在证明四边形性质时,我们可以利用数学推理和几何运算进行证明。

例如,要证明一个四边形是平行四边形,我们可以利用平行线的性质、角平分线的性质以及三角形的性质进行推导。

2. 计算四边形的相关属性在计算四边形的相关属性时,我们可以利用已知条件和相关性质进行计算。

例如,已知一个平行四边形的一边长和对角线的长度,我们可以利用平行四边形的性质计算其他未知属性,如另一边长和对角线的长度等。

3. 利用四边形设计问题在实际问题中,我们可以利用四边形的性质来设计和解决问题。

第11讲 四边形综合复习_教案讲义及测试题(含答案)【精品】

教学过程一、课堂导入二、复习预习三、知识讲解考点/易错点1平行四边形的性质:考点/易错点2平行四边形的判定:.ABDOCABDOC考点/易错点3矩形的性质:考点/易错点4 矩形的判定:考点/易错点5 菱形的性质:考点/易错点6菱形的判定:考点/易错点7正方形的性质:考点/易错点8CDBAO正方形的判定:考点/易错点9四、例题精析【例题1】【题干】甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿卷尺帮助检测一个窗框的形状是否是矩形,他们各自做了如下检测,你认为最有说服力的是( )A .甲量得窗框的一组邻边相等B .乙量得窗框两组对边分别相等C .丙量得窗框的对角线长相等D .丁量得窗框的两组对边分别相等且两条对角线也相等CDAB【答案】A 、两组对边相等可以为正方形,平行四边形,菱形,矩形等,所以甲错误;B 、对角线相等的图形有正方形,菱形,矩形等,所以乙错误;C 、邻边相等的图形有正方形,菱形,所以丙错误;D 、根据矩形的判定(矩形的对角线平分且相等),故D 正确. 故选D .【解析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形; (2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.据此判断.【例题2】【题干】正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图4所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为:( )(A)10 (B)12 (C)14 (D)16DABRP FCGK图4E【答案】连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△GDB=S△EDB(同底等高),∴S△GDB-公共三角形=S△EDB-公共三角形,即∴S△DGE=S△GEB,S△GKE=S△GFE,同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE,=S△GEB+S△GEF,=S正方形GBEF,=42=16故选D.【解析】连DB,GE,FK,则DB∥GE∥FK,再根据G为BC的三等分点,R 为EF中点,正方形BEFG的边长为4可求出S△DGE=S△GEB,S△GKE=S△GFE,再由S阴影=S正方形GBEF即可求出答案.【例题3】【题干】如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于.【答案】直角三角形的短边为x,有勾股定理得:222)52()2(=++x x524422=+++x x x0)4)(6(=-+x x X=-6(舍去)x=4 所以:直角边的和为:4+4+2=10【解析】因为小正方形的面积为4,所以小正方形的边长为2因为大正方形的面积为52,所以大正方形的边长为52【例题4】【题干】如图,在□ABCD 中,FA E BCDAE =EB ,AF =2,则FC 等于_____.【答案】∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠CDE=∠AED ,∠DCA=∠CAB , ∴△AEF ∽△CDF , ∴AF CF =AECD, ∵AE=EB ,∴AE=12AB , ∴AE=12CD ,即AE CD =12,∵AF=2, ∴2CF =12, 即CF=4.【解析】要求FC 的长,只要能证明△AEF ∽△CDF 利用线段比就可以求出其长,▱ABCD 中,DC ∥AB ,问题就得以解决.【例题5】【题干】从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚.现有一平行四边形纸片ABCD ﹙如图③﹚,已知∠A =45°,AB =6,AD =4.若图 ②图 ①a A图 ③B C将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为 .【答案】【解析】因为等腰梯形的上底和下底构成了平行四边形较长的一组对边,所以可得6a b += ①由图①可知等腰梯形的高为2a b-,由图②可知平行四边形较长边上的高是等腰梯形高的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四边形学案16-四边形全章测试04
班级_____ 姓名___ _____学号________ 成绩________
一.填空题(每小题3分,共30分)
1.平行四边形ABCD中,∠A=500,AB=30cm,则∠B=____,DC=____ cm。

2.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= cm。

3.若边长为4cm的菱形的两邻角度数之比为1∶2,则该菱形的面积为 cm2。

4.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的
中点,若BC=8cm,那么EF= cm,MN= cm;
5.若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积
为 cm2。

6.如右图,若梯形的两底长分别为4cm和9cm,两条对角线长分别为5cm和12cm,
则该梯形的面积为 cm2。

7.在□ABCD 中,若添加一个条件________,则四边形ABCD是矩形;若添加
一个条件_______,则四边形ABCD是菱形.
8.菱形的两条对角线分别是6cm,8cm,则菱形的边长为_____ cm,面积为______
cm2.
9.在等腰梯形ABCD中,AD∥BC,•AD=•6cm,•BC=•8cm,•∠B=•60•°,•则AB=_______cm.
10.梯形的上底长为2,下底长为5,一腰为4,则另一腰m的范围是。

二.单选题(每小题3分,共30分)
11.菱形具有而矩形不具有的性质是()
A.对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补
12.关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()。

(A) 1个(B)2个(C)3个(D)4个
13.能够判定一个四边形是菱形的条件是()。

(A)对角线相等且互相平分(B)对角线互相垂直且互相平分
(C)对角线相等且互相垂直(D)对角线互相垂直
14.矩形、菱形、正方形都具有的性质是()
A、对角线相等
B、对角线互相平分
C、对角线互相垂直
D、对角线平分对角
15.三角形的重心是三角形三条()的交点
A.中线 B.高 C.角平分线D.垂直平分线
16.若顺次连结四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()
A、菱形
B、对角线相互垂直的四边形
C、正方形
D、对角线相等的四边形
17.下列命题中,真命题是()
A、有两边相等的平行四边形是菱形
B、有一个角是直角的四边形是矩形
C、四个角相等的菱形是正方形
D、两条对角线互相垂直且相等的四边形是正方形
18.如右图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BD平分∠ABC.如果这个梯形的周长为30,则AB的长为().
(A)4 (B)5 (C)6 (D)7
19.下列说法中,不正确的是().
(A)有三个角是直角的四边形是矩形;(B)对角线相等的四边形是矩形
(C)对角线互相垂直的矩形是正方形;(D)对角线互相垂直的平行四边形是菱形
20.如图,矩形ABCD中,DE⊥AC于E,且
∠ADE:∠EDC=3:2,则∠BDE的度数为()
A、36o
B、9o
C、27o
D、18o
三.解答题:(21、22每小题5分,23、24、25每小题6分共28分)
21.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,
DF∥AB交AC于F,求证:DE+DF=AC
22. 已知:如图,□ABCD各角的平分线分别相交于点E,F,G,•H,
•求证:•四边形EFGH是矩形.
23.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是48cm.求:
(1)两条对角线的长度;(2)菱形的面积.
A D
O
第23题图
24.如图,梯形ABCD中,AD∥BC,M、N、P、Q分别为AD、BC、BD、AC的中点。

求证:MN和PQ互相平分。

25.已知:梯形ABCD 中,AB ∥CD ,E 为DA 的中点,且BC=DC+AB 。

求证:BE ⊥EC 。

四.综合题:(12分)
26.如图,梯形OABC 中,O 为直角坐标系的原点,A 、B 、C 的坐标分别为(14,0)、(14,3)、(4,3)。

点P 、Q 同时从原点出发,分别作匀速运动,点P 沿OA 以每秒1个单位向终点A 运动,点Q 沿OC 、CB 以每秒2个单位向终点B 运动。

当这两点中有一点到达自己的终点时,另一点也停止运动。

(1) 设从出发起运动了x 秒,且x ﹥2.5时,Q 点的坐标;
(2) 当x 等于多少时,四边形OPQC 为平行四边形?
(3) 四边形OPQC 能否成为等腰梯形?说明理由。

(4) 设四边形OPQC 的面积为y,求出当 x ﹥2.5时y 与x 的函数关系式;并求出y 的最大值;
新人教版八年级下期第十九章《四边形》测试题参考答案 N M Q P D C B A P O y
C(4,3) Q B(14,3A(14,0) x
一.
1.130,30
2.4
3.83
4.4,6
5.163
6.30
7.略
8.5,24
9.2
10.1﹤m ﹤7
二.11-15 BCBBA ,16-20 BCCBD
三.略
四.
(1).(2x-1,3)
(2) x=5
(3) 不能,
(4) y=5.75.42)
52(3-=+-x x x
当x=7.5时,y 有最大值4105。

相关文档
最新文档