简单的随机抽样
【】简单随机抽样

3.抽签法的步骤
(1)将总体中的所有个体编号(号码可以从1到N); (2)将1到N这N个号码写在形状、大小相同的号签上(号签可
以用小球、卡片、纸条等制作); (3)将号签放在同一箱中,并搅拌均匀;
(4)从箱中每次抽出1个号签,并记录其编号,连续抽取n次;
(5)从总体中将与抽到的号签编号相一致的个体取出.
(2)在利用抽签法抽取编号时可视情况而定,若已知编号,如学号、考号等可直接使用.但一定要保证抽样的公平性. (3)从选定的数开始按一定的方向读下去,得到的号码若不在编号中,则跳过;
(2)仓库中有1万支奥运火炬,从中一次性抽取100支 第四步:相应编号的男生参加合唱.
(4)将总体中的个体编号时与抽签法有所不同,须使个体编号位数相同,以便于运用随机数表.
这样就得到一个容量为n的样本.对个体编
号时,也可以利用已有的编号,如从全体学生中 抽取样本时,利用学生的学号作为编号.
4.随机数表法的步骤 (1)对总体的个体进行编号(每个号码位数一致); (2)在随机数表中_任__选__一__个__数__作为开始; (3)从选定的数开始按一定的方向读下去,得到的 号码若不在编号中,则跳过;若在编号中,则取出; 如果得到的号码前面已经取出,也跳过;如此继续 下去,直到取满为止; (4)根据选定的号码抽取样本.
一、课堂引入
, 你准备怎么做?显然,不可能对所有的饼干进 行一一检验,只能从中抽取一定数量的饼干作 为检验的样本.为了使得到的结果更加真实可 靠,我们不能按顺序来抽取,而往往采用随机 抽样的方法来进行抽取.如何获得比较合理的 样本?这就是我们本节课要研究的问题.
(4)根据选定的号码抽取样本.
(3)某连队从200名党员官兵中,挑选出50名最优秀 自我挑战2 学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班
简单随机抽样

一、知识概述1、简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的机会相等,就称这样的抽样为简单随机抽样.注:(1)一般地,用简单随机抽样从含有N个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为;(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.介绍:抽样方法在统计学中很多,如果按照抽取样本时总体中的每个个体被抽取的概率是否相等来进行分类,可分为:等概率抽样和不等概率抽样.在等概率抽样中,又可以分为不放回抽样和放回抽样.在实际应用中,使用较多的是不放回抽样,相对来说,放回抽样在理论研究中显得更为重要.2、简单随机抽样的实施方法:(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.适用范围:总体的个体数不多时.优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:1°.制定随机数表;2°.给总体中各个个体编号;3°.按照一定的规则确定所要抽取的样本的号码.随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码.3、简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样.注:抽签法与随机数表法的比较:共同点:(1)抽签法和随机数表法都是简单随机抽样的方法,并且要求被抽取样本的总体的个数有限;(2)抽签法和随机数表法都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)抽签法相对于随机数表法简单,随机数表法较抽签法稍麻烦一点;(2)随机数表法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个数相对较少的时候,所以当总体中的个数较多时,应当选用随机数表法,这样可以节约大量的人力和制作号签的成本与精力.二、例题讲解例1、某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:(1)1000名考生是总体的一个样本;(2)1000名考生数学成绩的平均数是总体平均数;(3)70000名考生是总体;(4)样本容量是1000,其中正确的说法有()A.1种B.2种C.3种D.4种解:(3)(4)对,故选B.例2、现要从20名学生中抽取5名进行阅卷调查,写出抽取样本的过程.解:①先将20名学生进行编号,从1编到20;②把号码写在形状、大小均相同的号签上;③将号签放在一个箱子中进行充分搅拌,力求均匀,然后从箱子中抽取5个号签,这5个号签上的号码对应的学生,即为所求的样本.例3、为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,写出用随机数表法抽取样本的过程.解:第一步,先将40件产品编号,可以编为00,01,02,…,38,39.第二步,利用本节教材中提供的随机数表,任选一个数作为开始,例如从第10行第6列的数字开始.第三步,从选定的数6开始,从左往右读,依次得到样本号码是:24,29,05,28,27,34,32,38,20,00.这10个号码所对应的产品为样本.例4、上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选.选法二将39个白球与1个红球混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.试问这两种选法是否都是抽签法?为什么?这两种选法有何异同?解:选法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的概率都相等,等于.例5、某市通过电话进行民意测验实施某项调查,该市的电话号码有7位,其中首两位为区域代码,只能为2,3,5,7的任意两两组合,后5位取自0~9这10个数字.现在任意选择3个区域,每个区域随机选取5个号码进行调查.请你设计一种抽取方案,选出这15个电话号码.解:首先列出所有由2,3,5,7两两组合而成的区域代码共16个,用抽签法随机选取3个;然后制作一张0~99999的随机数表,方法是用抽签法或计算机生成法产生若干个0~9之间的随机整数,5个一组,构成0~99999之间的随机数表;最后用随机数表法选出15个5位号码,分成3组,第1组前加上用抽签法选出的第1个区域代码,第2,3组前分别加上选出的第2,3个区域代码.。
简单随机抽样(创新设计)

03
创新设计在简单随机抽 样中的应用
利用创新技术提高抽样的效率
01
02
03
自动化技术
利用自动化设备或软件进 行随机抽样,减少人工操 作,提高抽样的速度和准 确性。
大数据技术
利用大数据分析技术,对 大量数据进行快速处理和 分析,提高抽样的效率。
云计算技术
利用云计算平台进行分布 式计算,提高数据处理和 存储的效率,加速抽样过 程。
要点一
总结词
要点二
详细描述
简单随机抽样将拓展到其他领域,为不同领域的研究和实 践提供支持。
简单随机抽样作为一种基础统计方法,不仅在统计学领域 有广泛应用,还将拓展到其他领域,如社会学、经济学、 政治学等。通过与其他领域的结合,简单随机抽样将为各 领域的研究和实践提供有力支持,促进跨学科的发展和应 用。
特点
简单随机抽样具有简单易行、误差小、 代表性强的特点,适用于各种类型的 调查对象,尤其适用于样本量较大、 总体各单位之间差异不大的情况。
简单随机抽样的应用场景
市场调研
在市场调研中,简单随机抽样常 用于了解消费者需求、品牌认知 度、市场份额等方面的情况。
社会调查
在社会调查中,简单随机抽样用 于了解社会现象、人口特征、民 意倾向等方面的情况。
总结词
详细描述
人工智能技术将为简单随机抽样提供更智能、 自动化的方法,提高抽样的效率和精度。
人工智能技术,如机器学习和深度学习,可 以应用于简单随机抽样中,实现自动化抽样 和数据分析。通过训练模型,可以自动识别 和筛选符合条件的样本,减少人为干预和误 差,提高抽样的准确性和可靠性。
简单随机抽样的跨领域应用
总结词
简单随机抽样

证明三:
从规模为N的总体中抽取一个样本量为n的简 单随机样本,对总体中的每个单元 Y,有 i
1, 若Yi 入样 ai 0,若Yi不入样
i 1, 2,
,N
1 N y aiYi n i 1 1 N 1 n N E ( y ) Yi E (ai ) Yi Y n i 1 n N i 1
1 1 f 1 N 2 2 ( G ) i X n N 1 i 1 1 1 f 1 N 2 2 ( Y RX ) i i X n N 1 i 1
ˆ Ny 的方差 Y 对于简单随机抽样,n较大时, R R 为
N 1 f 1 2 2 ˆ V (YR ) N (Yi RX i ) n N 1 i 1 ˆ y 的方差 对于简单随机抽样,n较大时, Y R R 为
Y NY
N
i 1
Yi
N ˆ Y Ny n
y
i 1
n
i
ˆ ) E ( Ny ) NE ( y ) NY Y E (Y
N (1 f ) 2 2 ˆ V (Y ) N V ( y ) S n
N (1 f ) 2 2 ˆ ˆ V (Y ) 的无偏估计为 v(Y ) N v( y ) s n
因此对总体比例的估计就是对总体均值的估计, 对总体中具有所研究特征单位的总个数A的估计是 对总体总值估计的一个特例。
利用简单随机抽样的方式随机抽取 n 个单位组成 样本,其中 a 个具有某种属性,则样本比例(样本均 值) n yi p a i 1 y n 就是总体比例 P A / N 的简单估计量; ˆ Np A 就是总体中具有某种属性单位的总个数 A 的简单估 计量。
抽样调查简单随机抽样

(三)简单随机抽样是等概率抽样(※※※)
1、从样本来看是等概率抽样
每个可能样本的被抽中的概率:
1
(1)考虑顺序的重复抽样时:N n
1
(2)考虑顺序的不重复抽样时:C
n N
n1
(3)不考虑顺序的重复抽样时:(NN!n)! (4)不考虑顺序的不重复抽样时:1 2、从抽样单元看是等概率抽样 CNn
第一节 抽样方式
一、什么是简单随机抽样 为什么叫“简单”随机抽样? ①估计总体参数时使用简单估计量; ②“单纯”抽样,从总体中直接抽个体;(不是
抽群,不是抽大类,抽前不进行任何处理) ③其他抽样都包含简单随机抽样的成分; ④生活中有时抓“机会”、“归属”时采用,
有“容易操作”的意思。
第一节 抽样方式
抽签法
一次抽n个单位 一次抽1个单位连抽n次
简单随机样本抽取方法
随机数法
随机数字表法() 随机数色子法 摇奖机法 伪随机数法
利用随机数字表抽选简单随机样本
随机数表是一张由0,1,2,…,9这十个数 字组成的,一般常用的是五位数的随机数字表, 10个数字在表中出现的顺序是随机的,每个数 字都有同样的机会被抽中。
一、什么是简单随机抽样
根据抽样单位放回否分为放回简单随机抽样 (Simple Random Sampling with Replacement,SRSWR)和不放回简单随 机抽样(Simple Random Sampling without Replacement,SRSWOR) 。
简单随机抽样
一、估计量的种类
• 根据构造方法不同划分:
• ①简单估计量(直接估计量)
• 直接以调查变量的样本指标作为总体指标的 估计量。如样本均值作为总体均值的估计量。 简单估计量是线性估计量,往往也是无偏估 计量。
简单随机抽样ppt完整版

实现方式
优点与局限性
简单随机抽样具有操作简单、易于理 解等优点;但在总体个体差异较大或 样本量较小时,可能导致抽样误差较 大。
通过随机数生成器或随机表等方式, 从总体中随机抽取一定数量的样本。
02
简单随机抽样方法
有放回简单随机抽样
01
02
03
抽样过程
每次从总体中随机抽取一 个样本,记录后将其放回 总体,再进行下一次抽取。
参数估计 利用样本数据对总体参数进行估计, 包括点估计和区间估计。
假设检验
提出原假设和备择假设,通过计算检 验统计量和P值,判断原假设是否成 立。
方差分析
研究不同因素对因变量的影响程度, 通过计算F值和P值,判断因素对因 变量是否有显著影响。
回归分析
探究自变量和因变量之间的线性关系, 建立回归方程并检验其显著性。
结果可视化呈现技巧
图表类型选择
数据标签使用
根据数据类型和分析目的,选择合适的图表 类型,如柱状图、折线图、散点图等。
在图表中添加数据标签,使观众能够快速了 解数据点的具体数值。
颜色搭配
动画效果运用
运用合适的颜色搭配,突出重要信息,提高 图表的视觉效果。
适当使用动画效果,引导观众关注重点信息, 增强演示的吸引力。
调研目的
了解消费者对某品牌手机的认知度和购买意愿。
调研对象
该品牌手机的目标消费群体,即18-35岁的年轻人。
调研方法
采用简单随机抽样的方法,在目标消费群体中抽 取一定数量的样本进行调查。
调研过程回顾
样本抽取 根据目标消费群体的特征,确定抽样框,并按照一定的抽 样比例进行简单随机抽样,最终抽取了500个样本。
分层抽样等。
简单随机抽样的方法
简单随机抽样的方法
简单随机抽样是一种抽样方式,它是指从总体中以任意的、等概率的方式随机抽取n个样本,使得每个个体都有相同的被抽取概率。
以下是简单随机抽样的方法:
1.概率抽样法:将所有个体从总体中标号为1、2、3、…、N。
使用计算机或随机数字表等随机数生成器生成n个随机数,每个随机数对应一个个体,就是样本。
2.抽签法:将所有个体的编号写在同样大小的纸片上,放进一个容器中,摇匀后抽取n个纸片,就是样本。
3.数表抽样法:将所有个体从总体中标号为1、2、3、…、N。
按照取样比例计算出要取多少个样本,然后从以1~N为首项的数列中隔行抽样取得样本。
4.等距抽样法:将总体中每个个体按照一定的顺序排列,然后按照一定的间隔(例如每隔k个个体抽取一个样本)抽取样本。
需要注意的是,简单随机抽样的方法不适用于总体变异系数较大的情形,因为此时抽样可能会出现偏差;对于总体变异系数较小的总体,简单随机抽样是比较可
靠的抽样方法。
简单随机抽样
简单随机抽样简答题:结合实例,简述什么是简单随机抽样。
【参考答案】(1)简单随机抽样:一般地,设一个总体含有N(N为正整数)个个体,从中逐个抽取n\;(1≤n<N)个个休作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等。
我们把这样的抽样方法叫做放回简单随机抽样;如果抽取是不放回的,目每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫作不放回简单随机抽样。
放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样。
特点:每个个体被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其他各种抽样方法的基础。
通常当总体内的个体之间差异程度较小和数目较少时,采用这种抽样方法。
简言之,其特点是:①总体个数有限;②逐个抽取;③等可能抽样。
例如:高一三班52名学生的学号分别是01,52,从中随机挑选2名学生参加演讲表演,这种抽样方法就是简单随机抽样。
(2)分层随机抽样:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层。
适用特征:①总体由差异明显的几部分组成;②分成的各层互不重叠;③各层抽取的比例等于样本在总体中的比例 \frac{n}{N}例如:初级中学有学生270人,其中初一年级108人,初二、初三年级各81人,现要抽取10人参加项调查,使用分层抽样时,将学生按初一、初二、初三年级依次统一编号为1,2,…,270,则抽取比例为\frac{10}{27}=\frac{1}{27} ,所以应分别从初一、初二、初三年级抽取4人,3人,3人。
重点概念补充说明:总体:目标总体与抽样总体目标总体也简称为总体,是指所有研究对象的全体,或是研究人员希望从中获取信息的总体,它研究对象中所有性质相同的个体所组。
简单随机抽样.ppt
这种抽取方法是一种系统抽样。
22
①采用随机的方式将总体中的个体编号 为简便起见,有时可直接采用 新疆 王新敞 奎屯
个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等
②为将整个的编号分段(即分成几个部分),要确定分段的间隔 k 当 N 新疆 王新敞 奎屯 n
Page 31
小结
1.系统抽样及其步骤 2.分层抽样及其步骤
32
统计
实际生活
抽样方法
抽签法
简单随机抽样
随机数表法
分层抽样
系统抽样
33
34
k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用
简单随机抽样方法得到的数,因此只有选项B满足要
求,故选B.
24
探究
分层抽样
假设某地区有高中生2400人,初中生10900人, 小学生11000人.此地区教育部门为了了解本地区中小 学生的近视情况及其形成原因,要从本地区的中小学 生中抽取1%的学生进行调查.你认为应当怎样抽取样 本?能在14300人中任意取143个吗?能将143个份额 均分到这三部分中吗?
结束
12
上述引例使用抽签法,过程如下:
1.将50名学生从1到50进行编号; 2.再制作1到50的50个号签; 3.将50个号签放在同一箱中并充分搅匀; 4.从箱中每次抽出1个号签,连续抽10次; 5.让编号与抽中的号签的号码相一致的学 生去观看英语话剧表演.
注:抽签法简单易行,适用于总体中个体
数不多的情形,每个个体抽到的机会相等.
8
“简单随机抽样”概念的理解:
简单的随机抽样
反思与感悟
解析答案
④是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐 个进行抽取的,是不放回、等可能的抽样. ⑤不是简单随机抽样,因为它是有放回抽样. 综上,只有④是简单随机抽样. 答案 B
反思与感悟
跟踪训练1 在简单随机抽样中,某一个体被抽到的可能性( B ) A.与第几次抽样有关,第一次抽到的可能性大一些 B.与第几次抽样无关,每次抽到的可能性都相等 C.与第几次抽样有关,最后一次抽到的可能性要大些 D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性
题型探究
重点突破
题型一 简单随机抽样的判断
例1 下列5个抽样中,简单随机抽样的个数是( ) ①从无数个个体中抽取50个个体作为样本; ②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查; ③某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴青海参加抗震 救灾工作;
④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出 6个号签. ⑤箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中, 从中任意取出1个零件进行质量检验后,再把它放回箱子里.
问题:怎样获取样本呢?
原则:样本要具1.简单的随机抽样 2.系统抽样 3.分层抽样
特点 步骤 适用范围 共同点
联系
知识点一 统计的相关概念
名称
定义
总体 样本 个体
所要_考__察__对__象__的全体叫做总体 从总体中抽取出的_若__干__个__个__体__组成的集合叫做总体 的一个样本
规律与方法
1.简单随机抽样是一种简单、基本、不放回的抽样方法,常用的简单随 机抽样方法有抽签法和随机数法. 2.抽签法的优点是简单易行,缺点是当总体的容量大时,费时、费力, 并且标号的签不易搅拌均匀,这样会导致抽样不公平;随机数法的优点 也是简单易行,缺点是当总体容量大时,编号不方便.两种方法只适合 总体容量较少的抽样类型. 3.简单随机抽样每个个体入样的可能性都相等,均为n/N,但要将每个 个体入样的可能性与第n次抽取时每个个体入样的可能性区分开,避免 在解题中出现错误.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:25.1.1 简单的随机抽样【教学目标】:使学生了解简单的随机抽样的操作过程,理解简单的随机抽样的含义,能用随机抽样的方法从总体中抽取样本。
【重点、难点】:用简单的随机抽样的方法从总体中抽取样本。
【教学过程】:一、用例子说明有些调查不适宜做普查,只适宜做抽样调查例1:妈妈为了知道饼熟了没有,从刚出锅的饼上切下一小块尝尝,如果这一小块熟了,那么可以估计整张饼熟了。
例2:环境检测中心为了了解一个城市的空气质量情况,会在这个城市中分散地选择几个点,从各地采集数据。
例3:农科站要了解农田中某种病虫害的灾情,会随意地选定几块地,仔细地检查虫卵数,然后估计一公顷农田大约平均有多少虫卵,会不会发生病虫害。
例4:某部队要想知道一批炮弹的杀伤半径,会随意地从中选取一些炮弹进行发射实验,以考察这一批炮弹的杀伤半径。
以上的例子都不适宜做普查,而适宜做抽样调查。
二、如何从总体中选取样本1、什么是简单的随机抽样上面的例子不适宜做普查,而需要做抽样调查,那么应该如何选取样本,使它具有代表性,而能较好地反映总体的情况呢?要想使样本具有代表性,不偏向总体中的某些个性,有一个对每个个体都公平的方法,决定哪些个体进入样本,这种思想的抽样方法我们把它称为简单的随机抽样2、用简单的随机抽样方法来选取一些样本。
假设总体是某年级300名学生的数学考试成绩,我们已经按照学号顺序排列如下:97 92 89 86 93 73 74 72 60 98 70 90 89 90 91 80 69 92 70 64 92 83 89 93 72 77 79 75 80 93 93 72 87 76 86 82 85 82 87 86 81 88 74 87 92 88 75 92 89 82 88 86 85 76 79 92 89 84 93 75 93 84 87 90 88 90 80 89 72 78 73 79 85 78 77 91 92 82 77 86 90 78 86 90 83 73 75 67 76 55 70 76 77 91 70 84 87 62 91 67 88 78 82 77 87 75 84 70 80 66 80 87 60 78 76 89 81 88 73 75 95 68 80 70 78 71 80 65 82 83 62 72 80 70 83 68 74 67 67 80 90 70 82 85 96 70 73 86 87 81 70 69 76 68 70 68 71 79 71 87 60 64 62 81 69 63 66 63 64 53 61 41 58 60 84 62 63 76 82 76 61 72 66 80 90 93 87 60 82 85 77 84 78 65 62 75 64 70 68 66 99 81 65 98 87 100 64 68 82 73 66 72 96 78 74 52 92 83 85 60 67 94 88 86 89 93 99 100 79 85 68 60 74 70 78 65 68 68 79 77 90 55 80 77 67 65 87 81 67 75 57 75 90 86 66 83 68 84 68 85 74 98 89 67 79 77 69 89 68 55 58 63 77 78 69 67 80 82 83 98 94 96 80 79 68 70 57 74 96 70 78 80 87 85 93 80 88 67 70 93。
用简单抽样的方法选取三个样本,每个样本含有5个个体,老师示范完成了第一个样本的选取,请同学们继续完成第二和第三个样本的选取。
课堂活动:用简单的随机抽样方法从300名学生的数学成绩的总体中选取两个样本,每个样本含有20个个体。
同学们从刚才的活动中可以体会到,抽样之前,同学们不能预测到哪些个体会被抽中,像这样不能够预先预测结果的特性叫做随机性。
所以统计学家把这种抽样的方法叫做随机抽样。
三、小结本节课我们学习了什么是随机抽样,如何从总体中随机选取一些样本,通过对这些样本的研究,可以反映总体中的特性。
四、作业:课本P117习题25.1的第1、5题。
课题:25.1.2 这样抽样调查合适吗【教学目标】:使学生知道在抽样调查时,所选取的样本必须具有代表性,并能掌握科学的抽样方法,即具有代表性,样本容量必须足够大避免遗漏某一群体,使得所抽取的样本比较合理,能比较准确地反映总体的特征。
【重点难点】:重点、难点:判断所选取的样本是否具有代表性,是否能够反映总体的特征。
【教学过程】:一、用例子说明如何进行抽样比较合理例1、老师布置给每个小组一个任务,用抽样调查的方法估计全班同学的平均身高.坐在教室最后面的小胖为了争速度,立即就近向他周围的三个同学作调查,计算出他们四个人的平均身高后就举手向老师示意已经完成任务了.分析因为小胖他们四个坐在教室最后面,所以他们的身高平均数就会大于整个班级的身高平均数,这样的样本就不具有代表性了.现实生活中,用简单的随机抽样方法选中的样本可能不愿意参加或者没空配合你作调查,所以,在不太影响样本代表性的前提下,人们也经常采取调查周围人的抽样方法.但是,要注意这些调查对象在总体中是否有代表性.例2甲同学说:“6,6,6…啊!真的是6!你只要一直想某个数,就会掷出那个数.”乙同学说:“不对,我发现我越是想要某个数就越得不到这个数,倒是不想它反而会掷出那个数.”分析这两位同学的说法都不正确.因为几次经验说明不了什么问题。
在这里请同学掷骰子,来验证上述两位同学的说法不正确。
例3小强的自行车失窃了,他想知道所在地区每个家庭平均发生过几次自行车失窃事件.为此,他和同学们一起,调查了全校每个同学所在家庭发生过几次自行车失窃事件.分析这样抽样调查是不合适的.虽然他们调查的人数很多,但是因为排除了所在地区那些没有中学生的家庭,所以他们的调查结果不能推广到所在地区的所有家庭。
想一想:小强和他的同学们的调查反映哪些家庭失窃自行车的情况?这个例子告诉我们,开展调查之前,要仔细检查总体中的每个个体是否都有可能成为调查对象。
例4、1936年,美国《文学文摘》杂志:根据1000万电话和从该杂志订户所收回的意见,断言兰登将以370:161的优势在总统竞选中击败罗斯福,但结果是,罗斯福当选了,《文学文摘》大丢面子,原因何在呢?原来,1936年能装电话和订阅《文学文摘》杂志的人,在经济上相对富裕,而引入不太高的的大多数选民选择了罗斯福。
《文学文摘》的教训表明,抽样调查时,既要关注样本的大小,又要关注样本的代表性。
二、练习判断下面这几个抽样调查选取样本的方法是否合适,并说明理由:1、一食品厂为了解其产品质量情况,在其生产流水线上每隔100包选取一包检查其质量;2、一手表厂欲了解6-11岁少年儿童戴手表的比例,周末来到一家业余艺术学校调查200名在那里学习的学生.3、为调查全校学生对购买正版书籍、唱片和软件的支持率,用简单随机抽样法在全校所有的班级中抽取8个班级,调查这8个班级所有学生对购买正版书籍、唱片和软件的支持率;4、为调查一个省的环境污染情况,调查省会城市的环境污染情况三、小结通过本节课的学习,同学们应明白在做抽样调查时,所选取的样本应具有代表性,应避免遗漏某一群体,同时样本的容易要足够大,这样样本才能反映总体的特性,才能反映事物的本来面目。
五、作业P117 习题25.1 2、3、4课题:25.2.1 抽样调查可靠吗【教学目标】:通过样本抽样,绘频数颁布直方图,计算样本平均数和标准差使学生认识到只有样本容易足够大,才能比较准确地反映总体的特性,这样的样本才可靠,体会只有可靠的样本,才能用样本去估计总体。
【重点难点】:重点、难点:通过随机抽样选取样本,绘制频数分布直方图、计算平均数和标准差并与总体的频数分布直方图、平均数和标准差进行比较,得出结论。
【教学过程】:一、复习上节课的内容在上节课中,我们知道在选取样本时应注意的问题,其一是所选取的样本必须具有代表性,其二是所选取的样本的容量应该足够大,这样的样本才能反映总体的特性,所选取的样本才比较可靠。
二、新课1、用例子说明样本中的个体数太少,不能真实反映的特性。
让我们仍以上一节300名学生的考试成绩为例,考察一下抽样调查的结果是否可靠。
上一节中,老师选取的一个样本是:它的频数分布直方图、平均成绩和标准差分别如下:同样,也可以作出这两个样本的频数分布直方图、计算它们的平均成绩和校准差,如下图所示:样本平均成绩为74.2分,标准差为3.8分样本平均成绩为80.8分,标准差为6.5分从以上三张图比较来看,它们之间存在明显的差异,平均数和标准差与总体的平均数与标准差也相去甚远,显然这样选择的样本不能反映总体的特性,是不可靠的。
以下是总体的频数分布直方图、平均成绩和标准差,请同学们把三个样本的频数分布直方图、平均成绩和标准差与它进行比较,更能反映这样选取样本是不可靠的。
2、选择恰当的样本个体数目下面是某位同学用随机抽样的方法选取两个含有40个个体的样本,并计算了它们的平均数与标准差,绘制了频数分布直方图,具体如下:样本平均成绩为75.7分,标准差为10.2分样本平均成绩为77.1分,标准差为10.7分从以上我们可以看出,当样本中个体太少时,样本的平均数、标准差往往差距较大,如果选取适当的样本的个体数,各个样本的平均数、标准差与总体的标准差相当接近。
)三、课堂练习请同学们在300名学生的成绩中用随机抽样的方法选取两个含有20个个体的样本,并计算出它们的平均数与标准差,绘制频数分布直方图,并与总体的平均数、标准差比较。
四、小结一般来说,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确,相应地,搜集、整理、计算数据的工作量也就越大,因此,在实际工作中,样本容量既要考虑问题本身的需要,又要考虑实现的可能性和所付出的代价的大小。
五、作业P123 习题25.2 2、3、4课题:25.2.2 用样本估计总体【教学目标】:通过实例,使学生体会用样本估计总体的思想,能够根据统计结果作出合理的判断和推测,能与同学进行交流,用清晰的语言表达自己的观点。
【重点难点】:重点、难点:根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。
【教学过程】:一、课前准备问题:2002年北京的空气质量情况如何?请用简单随机抽样方法选取该年的30天,记录并统计这30天北京的空气污染指数,求出这30天的平均空气污染指数,据此估计北京2002年全年的平均空气污染指数和空气质量状况。
请同学们查询中国环境保护网,网址是。