最全直流电机工作原理与控制电路解析(无刷+有刷+伺服+步进)
有刷直流电机和无刷直流电机的结构及工作原理

有刷直流电机和无刷直流电机的结构及工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言直流电机是一种将直流电能转换成机械能的设备,根据其结构和工作原理的不同可以分为有刷直流电机和无刷直流电机。
无刷直流电机的工作原理

普通直流电动机得电枢在转子上,而定子产生固定不动得磁场。
为了使直流电动机旋转,需要通过换向器与电刷不断改变电枢绕组中电流得方向,使两个磁场得方向始终保持相互垂直,从而产生恒定得转矩驱动电动机不断旋转。
无刷直流电动机为了去掉电刷,将去,而,这样得结构正好与普通直流电动机相反;然而,即使这样改变还不够, 因为定子上得电枢通过直流电后,只能产生不变得磁场, 电动机依然转不起来。
为了使电动机转起来,必须使,这样才干使定子磁场随着转子得位置在不断地变化,使定子磁场与转子永磁磁场始终保持摆布得空间角,产生转矩推动转子旋转。
无刷直流电动机由电动机主体与驱动器组成,就是一种典型得机电一体化产品。
ﻫ电动机得定子绕组多做成三相对称星形接法, 同三相异步电动机十分相似。
电●动机得转子上粘有已充磁得永磁体,为了检测电动机转子得极性,在电动机内装有位置传感器。
驱动器由功率电子器件与集成电路等构成,其功能就是:接受电动机得启动、住手、制动信号, 以控制电动机得启动、住手与制动;接受位置传感器信号与正反转信号,用来控制逆变桥各功率管得通断,产生连续转矩;接受速度指令与速度反馈信号,用来控制与调整转速;提供保护与显示等等。
无刷直流电动机得原理简图如图一所示:ﻫ主电路就是一个典型得电压型交-直-交电路,逆变器提供等幅等频5-26KH Z调制波得对称交变矩形波。
永磁体N- S交替交换,使位置传感器产生相位差1 20°得U、V、W方波,结合正/反转信号产生有效得六状态编码信号:1 0 1 、1 00、110、010、0 11、001,通过逻辑组建处理产生T1-T4导通、T1-T6 导通、T3-T6 导通、T3-T2 导通、T5-T 2导通、T5-T4 导通,也就就是说将直流母线电压挨次加在A+B-、A+C-、B+C-、B+A - 、C+A -、C+B-上,这样转子每转过一对N-S 极,T1-T6 功率管即按固定组合成六种状态得挨次导通。
无刷直流电机的原理及正确的使用方法

无刷直流电机的原理及正确的使用方法无刷直流电机(Brushless DC motor,简称BLDC)是一种采用电子换向器换向的直流电机。
相比传统的有刷直流电机,BLDC电机具有更高的效率、更长的寿命和更少的维护需求。
下面将介绍BLDC电机的原理及正确的使用方法。
一、无刷直流电机的工作原理无刷直流电机由电机主体、电子换向器和控制电路组成。
电机主体包括固定部分(定子)和旋转部分(转子)。
定子上安装有若干绕组,每个绕组都与电子换向器相连。
电子换向器通过检测转子位置,并将适当的电流传送到绕组上,以形成旋转磁场。
转子感应到旋转磁场后,会根据斯托克定律转动。
无刷直流电机的电子换向器是一个复杂的电路系统,它通过检测转子位置来实现精确的换向。
检测转子位置的常用方法有霍尔效应、光电传感器、电感传感器等。
根据检测到的转子位置,电子换向器会以正确的顺序和适当的时机驱动绕组工作,从而实现连续的旋转。
二、无刷直流电机的正确使用方法1.供电电压:无刷直流电机具有特定的工作电压范围,应确保供电电压在该范围内。
如果供电电压过高,会导致电机过载甚至烧毁。
如供电电压过低,则会影响电机的性能和扭矩输出。
2.控制电路:无刷直流电机需要通过控制电路控制电流和实现换向。
因此,应使用正确的控制电路来驱动BLDC电机。
控制电路的选择应根据电机的额定电流和电压进行。
3.保护措施:为了延长无刷直流电机的寿命,应采取适当的保护措施。
例如,可以在电机上安装过压保护、过流保护和过温保护等设备,以防止电机受到损坏。
4.换向算法:无刷直流电机的换向算法对其性能和效率有很大的影响。
应根据电机的工作要求和特性选择合适的换向算法。
常见的换向算法有霍尔传感器换向、电流反电动势(Back EMF)换向等。
5.轴承和润滑:轴承是无刷直流电机中常见的易损件。
应定期检查轴承的状态,并进行润滑维护。
适当的润滑可以减少摩擦和磨损,提高电机的效率和寿命。
6.散热措施:无刷直流电机在长时间工作时会产生一定的热量。
有刷直流电机和无刷直流电机的结构及工作原理

有刷直流电机和无刷直流电机的结构及工作原理哎呀,今天小智就来给大家聊聊有刷直流电机和无刷直流电机的结构及工作原理,让我们一起揭开它们神秘的面纱吧!我们来看看有刷直流电机。
有刷直流电机的“刷子”就是它的转子上的电刷,它的作用就是给转子提供电流。
有刷直流电机的结构比较简单,主要包括定子、转子和电刷三个部分。
定子上有很多槽,槽里面有绕组,绕组的两端分别接电源的正负极;转子上也有很多槽,槽里面也有绕组,绕组的两端分别接电源的正负极;电刷就是用来给转子提供电流的。
当电源接通后,电流会通过定子的绕组流到转子的绕组,由于磁场的存在,转子就会转动起来。
接下来,我们再来看看无刷直流电机。
无刷直流电机没有电刷,它的转子上有一个永磁体和霍尔传感器。
永磁体的作用是产生磁场,霍尔传感器的作用是检测转子的转速。
无刷直流电机的结构相对于有刷直流电机来说要复杂一些,主要包括定子、转子、永磁体和霍尔传感器四个部分。
定子上也有很多槽,槽里面有绕组,绕组的两端分别接电源的正负极;转子上也有很多槽,槽里面也有绕组,绕组的两端分别接电源的正负极;永磁体就是用来产生磁场的;霍尔传感器就是用来检测转子的转速的。
当电源接通后,电流会通过定子的绕组流到转子的绕组,由于磁场的存在,转子就会转动起来。
霍尔传感器会检测到转子的转速,并将这个信息传递给控制器,控制器再根据这个信息来控制电机的运行。
那么,有刷直流电机和无刷直流电机的工作原理有什么区别呢?其实很简单,主要就是在于是否有电刷。
有刷直流电机需要通过电刷来给转子提供电流,而无刷直流电机则不需要电刷。
因此,无刷直流电机在寿命、噪音等方面都要优于有刷直流电机。
但是,由于无刷直流电机的结构比较复杂,所以价格也要贵一些。
有刷直流电机和无刷直流电机各有优缺点,大家在选择的时候要根据自己的需求来决定哦!好了,今天小智就给大家聊到这里啦,希望大家能够喜欢!下次再见啦!。
直流永磁无刷电机工作原理

直流永磁无刷电机工作原理
直流永磁无刷电机是一种可以使直流电转化为直流电的电机,在我们日常生活中应用广泛,并且在工业生产中也占有重要的地位。
它的工作原理是通过反电势过零触发控制,使得电机转子转动到反电势零位,并且转子停止旋转。
这种电机能够实现无刷驱动,并且具有结构简单、成本低等优点。
直流永磁无刷电机通常由转子、定子、控制器三部分组成。
其中,定子是整个系统的核心,它由定子铁芯、绕组和绝缘材料组成。
转子是在定子内有一个“旋转磁极”的电动机。
转子上的永磁体在通电时产生磁场,在没有电流的情况下,它会自己旋转。
无刷电机的控制系统由上位机和下位机组成。
上位机对下位机发出控制信号,下位机根据控制信号来产生相应的电流来驱动电机转子运转。
上位机和下位机之间通过专用通信线进行通信。
无刷电机的工作原理是利用反电势过零触发控制方法实现电机的无刷驱动和运行,该控制方法可以产生一个在反电势过零点上的电流脉冲,这个脉冲的能量通过定子绕组传递给转子,转子再利用其能量带动电机旋转。
—— 1 —1 —。
无刷电机工作及控制原理(图解)

无刷电机工作及控制原理(图解)左手定则,这个是电机转动受力分析的基础,简单说就是磁场中的载流导体,会受到力的作用。
让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力的方向,我相信喜欢玩模型的人都还有一定物理基础的哈哈。
让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生的电动势方向。
为什么要讲感生电动势呢?不知道大家有没有类似的经历,把电机的三相线合在一起,用手去转动电机会发现阻力非常大,这就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生和转动方向相反的力,大家就会感觉转动有很大的阻力。
不信可以试试。
三相线分开,电机可以轻松转动三相线合并,电机转动阻力非常大右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端就是通电螺旋管的N极。
状态1当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。
当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大。
注意这里说的是“力矩”最大,而不是“力”最大。
诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。
补充一句,力矩是力与力臂的乘积。
其中一个为零,乘积就为零了。
当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,状态2如此不断改变两头螺线管的电流方向,内转子就会不停转起来了。
改变电流方向的这一动作,就叫做换相。
补充一句:何时换相只与转子的位置有关,而与其他任何量无直接关系。
第二部分:三相二极内转子电机一般来说,定子的三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最为常用,这里就用该模型来做个简单分析。
有刷直流电机和无刷直流电机的结构及工作原理
有刷直流电机和无刷直流电机的结构及工作原理一、有刷直流电机的结构及工作原理1.1 有刷直流电机的组成部分有刷直流电机主要由以下几个部分组成:定子、转子、电刷、换向器和轴承。
其中,定子和转子是电机的核心部件,电刷和换向器则起到传输电流和实现换向的作用,轴承则保证了电机的正常运转。
1.2 有刷直流电机的工作原理有刷直流电机的工作原理主要是利用电刷在换向器表面产生摩擦力,使电流在定子和转子之间的线圈中产生磁场,从而实现电机的转动。
当电流通过定子线圈时,会产生一个磁场,这个磁场会与转子上的永磁体相互作用,使转子产生旋转力矩。
而电刷则在换向器表面不断滑动,当电流方向改变时,电刷与换向器之间的接触点也会随之改变,从而实现电流方向的切换。
这样,电机就能连续不断地转动下去。
二、无刷直流电机的结构及工作原理2.1 无刷直流电机的组成部分无刷直流电机与有刷直流电机相比,最大的区别在于它采用了无刷设计,即没有传统的电刷。
因此,无刷直流电机的主要组成部分包括:定子、转子、霍尔传感器、电子控制器和轴承等。
其中,定子和转子是电机的核心部件,霍尔传感器用于检测转子的转速,电子控制器则负责控制电机的运行,轴承则保证了电机的正常运转。
2.2 无刷直流电机的工作原理无刷直流电机的工作原理与有刷直流电机类似,也是通过电磁感应原理实现的。
当电流通过定子线圈时,会产生一个磁场,这个磁场会与转子上的永磁体相互作用,使转子产生旋转力矩。
由于无刷直流电机采用了无刷设计,因此不需要传统的电刷来实现换向。
相反,霍尔传感器会实时监测转子的转速,并将这些信息传递给电子控制器。
电子控制器根据这些信息来判断是否需要进行换向操作,从而实现连续不断地转动下去。
三、总结有刷直流电机和无刷直流电机虽然在结构上有所不同,但其工作原理都是基于电磁感应原理。
有刷直流电机通过电刷在换向器表面产生摩擦力来实现换向和连续转动;而无刷直流电机则采用霍尔传感器和电子控制器来实现换向和连续转动。
无刷直流电机工作原理分解
无刷直流电机工作原理无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。
电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。
电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。
驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。
由于无刷直流电动机是以自控式运行的,所以不会象变频调速下重载启动的同步电机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。
中小容量的无刷直流电动机的永磁体,现在多采用高磁能积的稀土钕铁硼(Nd-Fe-B)材料。
因此,稀土永磁无刷电动机的体积比同容量三相异步电动机缩小了一个机座号。
近三十年来针对异步电动机变频调速的研究,归根到底是在寻找控制异步电动机转矩的方法,稀土永磁无刷直流电动机必将以其宽调速、小体积、高效率和稳态转速误差小等特点在调速领域显现优势。
电枢绕组直流电机的电磁感应的关键部件之一为导电的绕组,因为重要,故称为电枢绕组。
电枢绕组是直流电机的电路部分,亦是实现机电能量转换的枢纽。
电枢绕组的构成,应能产生足够的感应电动势,并允许通过一定多电枢电流,从而产生所需的电磁转矩和电磁功率。
此外,还要节省有色金属和绝缘材料,结构简单,运行可靠。
大的分类为环形和鼓形;环形绕组只曾在原始电机用过,由于容易理解故讲原理时也用此类绕组;现代直流电机均用鼓形绕组,它又分为叠绕组、波绕组和蛙形绕组。
鼓形绕组比环形绕组制造容易,又节省导线,运行较可靠,经济性好,故现在均用鼓形绕组。
无刷直流电机的基本原理意法半导体的ST72141是专门用在无刷直流电机(B LDC)控制的单片机。
内部包含意法半导体自有的反电动势检测专利技术,专门用于电机控制的片内外设,大大减少了电机控制系统的成本,简化了电机控制系统的设计。
直流无刷电动机工作原理与控制方法
直流无刷电动机工作原理与控制方法直流无刷电动机(Brushless DC Motor,简称BLDC)是一种基于电磁力作用实现机械能转换的电机。
与传统的有刷直流电动机相比,BLDC 电机不需要传统的用于换向的有刷子和槽型换向器,具有寿命长、效率高和维护方便等优点。
BLDC电机广泛应用于工业自动化、电动车辆、航空航天等领域。
BLDC电动机的工作原理如下:1.结构组成:BLDC电动机主要由转子、定子和传感器组成。
2.定子:定子是由硅钢片叠压而成,上面布置有若干个线圈,通电后产生磁场。
3.转子:转子上布置有磁铁,组成多个极对,其中每个极对由两个磁体构成。
4.传感器:BLDC电机中通常搭配有霍尔传感器或者编码器,用于检测转子位置,实现无刷电机的精确控制。
BLDC电动机的控制方法如下:1.转子位置检测:通过霍尔传感器或编码器检测转子位置,以便控制电机的相电流通断和电流方向。
2.电流控制:根据转子位置信息,利用控制算法控制电机的相电流,将电流引导到正确的相位上以实现电机的转动。
3.电压控制:根据电机转速需求,控制电机的进给电压,调整电机转速。
4.速度控制:通过调整电机的进给电压和相电流,使电机达到所需的速度。
5.扭矩控制:通过控制电机的相电流大小,控制电机的输出扭矩。
BLDC电机的控制可以分为开环控制和闭环控制两种方式:1.开环控制:根据电机的数学模型和控制算法,在事先给定的速度范围内,根据转子位置信息和电机参数计算出合适的相电流和电压进行控制。
开环控制简单,但无法实现高精度的转速和位置控制。
2.闭环控制:通过传感器实时检测转子位置和速度,在控制算法中进行比较,调整相电流和电压,使电机输出所需的速度和扭矩。
闭环控制可以实现高精度的转速和位置控制,但相对于开环控制,需要更多的硬件和软件支持。
总结起来,BLDC电动机通过转子位置检测和电流控制实现高精度的转速和位置控制。
在控制方法上,可以采用开环控制或闭环控制,根据具体应用的需求选择合适的控制方式。
4种直流电机控制电路详解,含图
4种直流电机控制电路详解,含图含公式,直观又细致,不懂都难!旺材电机与电控2小时前私信“干货”二字,即可领取138G伺服与机器人专属及电控资料!直流电机在家用电器、电子仪器设备、电子玩具、录相机及各种自动控制中都有广泛的应用。
但对它的使用和控制,很多读者还不熟悉,而且其技术资料亦难于查找。
直流电机控制电路集锦,将使读者“得来全不费功夫”!在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。
大家熟悉的录音机、电唱机、录相机、电子计算机等,都不能缺少直流电机。
所以直流电机的控制是一门很实用的技术。
本文将详细介绍各种直流电机的控制技术。
直流电机,大体上可分为四类:第一类为有几相绕组的步进电机。
这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。
只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。
步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。
例如常用的S A A l027或S A A l024专用步进电机控制电路。
步进电机广泛用于需要角度转动精确计量的地方。
例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。
第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。
当外加额定直流电压时,转速几乎相等。
这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。
也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。
在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。
第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。
在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。
伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最全直流电机工作原理与控制电路解析(无刷+有刷+伺服+步进)直流电动机是连续的执行器,可将电能转换为(机械)能。
直流电动机通过产生连续的角旋转来实现此目的,该角旋转可用于旋转泵,风扇,压缩机,车轮等。
与传统的旋转直流电动机一样,也可以使用线性电动机,它们能够产生连续的衬套运动。
基本上有三种类型的常规电动机可用:AC 型电动机,(DC)型电动机和步进电动机。
典型的小型直流电动机交流电动机通常用于高功率的单相或多相(工业)应用中,需要恒定的旋转扭矩和速度来控制大负载,例如风扇或泵。
在本(教程)中,我们仅介绍简单的轻型直流电动机和步进电动机,这些电动机用于许多不同类型的(电子),位置控制,微处理器,(PI)C和(机器人)类型的电路中。
基本直流电动机该直流电动机或直流电动机,以给它的完整的标题,是用于产生连续运动和旋转,其速度可以容易地控制,从而使它们适合于应用中使用是速度控制,伺服控制类型的最常用的致动器,和/或需要定位。
直流电动机由两部分组成,“定子”是固定部分,而“转子”是旋转部分。
结果是基本上可以使用三种类型的直流电动机。
有刷(电机)–这种类型的电机通过使(电流)流经换向器和碳刷组件而在绕线转子(旋转的零件)中产生磁场,因此称为“有刷”。
定子(静止部分)的磁场是通过使用绕制的定子励磁绕组或永磁体产生的。
通常,有刷直流电动机便宜,体积小且易于控制。
无刷电动机–这种电动机通过使用附着在其上的永磁体在转子中产生磁场,并通过电子方式实现换向。
它们通常比常规的有刷型直流电动机更小,但价格更高,因为它们在定子中使用“霍尔效应”开关来产生所需的定子磁场旋转顺序,但是它们具有更好的转矩/速度特性,效率更高且使用寿命更长比同等拉丝类型。
伺服电动机–这种电动机基本上是一种有刷直流电动机,带有某种形式的位置反馈控制连接到转子轴。
它们连接到PWM型控制器并由其控制,主要用于位置(控制系统)和无线电控制模型。
普通的直流电动机具有几乎线性的特性,其旋转速度取决于所施加的直流电压,输出转矩则取决于流经电动机绕组的电流。
任何直流电动机的旋转速度可以从每分钟几转(rpm)到每分钟几千转不等,从而使其适用于电子,汽车或机器人应用。
通过将它们连接到(变速箱)或齿轮系,可以降低它们的输出速度,同时又可以提高电动机的高速转矩输出。
“有刷”直流电动机传统的有刷直流电动机基本上由两部分组成,电动机的静止主体称为定子,而内部旋转产生的运动称为直流电动机的转子或“电枢”。
电机绕制定子是一个电磁电路,由圆形连接在一起的电线圈组成,以产生所需的北极,南极,然后是北极等类型的旋转固定磁场系统,这与交流电机不同。
定子磁场以施加的频率连续旋转。
在这些励磁线圈中流动的电流称为电动机励磁电流。
这些形成定子磁场的电磁线圈可以与电动机电枢串联,并联或同时电连接在一起(复合)。
串联绕制直流电动机的定子励磁绕组与电枢串联连接。
同样,并联绕组直流电动机的定子励磁绕组与电枢并联,如图所示。
串联和并联直流电动机直流电机的转子或电枢由载流导体组成,载流导体的一端连接到称为换向器的电隔离铜段。
换向器允许在电枢旋转时通过碳刷(因此称为“有刷”电动机)与外部(电源)进行(电气)连接。
转子建立的磁场试图使其自身与静止的定子磁场对准,从而导致转子沿其轴线旋转,但由于换向延迟而无法使其自身对准。
电动机的转速取决于转子磁场的强度,施加在电动机上的电压越大,转子旋转得越快。
通过改变施加的直流电压,也可以改变电动机的转速。
常规(有刷)直流电动机永磁(PMDC)有刷直流电动机通常比同等绕制定子型直流电动机表亲小得多,并且便宜得多,因为它们没有励磁绕组。
在永磁直流(PMDC)电动机中,这些励磁线圈被具有很高磁场能量的强稀土(例如(Cobolt或钕铁硼)磁体代替。
永磁体的使用使直流电动机的线性速度/转矩特性比同等的绕线电动机好得多,这是因为其具有永久性的磁场(有时是非常强的磁场),使其更适合用于模型,机器人和伺服系统。
尽管直流有刷电动机非常高效且便宜,但与直流有刷电动机相关的问题是,在重载条件下,换向器和碳刷的两个表面之间会产生火花,导致自发热,短寿命以及由于火花产生的电噪声,这会损坏任何(半导体)开关器件,例如(MOSFET)或(晶体管)。
为了克服这些缺点,开发了无刷直流电动机。
“无刷”直流电动机无刷直流电动机((BDC)M)与永磁直流电动机非常相似,但是没有任何电刷可更换或由于换向器火花而磨损。
因此,在转子中产生的热量很少,从而延长了电动机的寿命。
(无刷电机)的设计通过使用更复杂的(驱动电路)来消除对电刷的需求,因为转子磁场是永久磁铁,始终与定子磁场保持同步,从而可以实现更精确的速度和转矩控制。
然后,无刷直流电动机的结构与交流电动机非常相似,因此成为真正的同步电动机,但缺点是它比等效的“有刷”电动机设计贵。
无刷直流电动机的控制与普通的有刷直流电动机的控制方法有很大的不同,因为它与某些有刷直流电动机的控制方式相结合,可以(检测)出产生控制半导体开关所需的反馈(信号)所需的转子角位置(或磁极)。
设备。
最常见的位置/极点(传感器)是“霍尔效应传感器”,但是某些电动机也使用(光学传感器)。
使用霍尔效应传感器,(电磁铁)的极性由电动机控制驱动电路切换。
然后,可以轻松地将电动机与数字(时钟)信号同步,从而提供精确的速度控制。
无刷直流电动机可构造成具有外部永磁体转子和内部电磁定子,或内部永磁体转子和外部电磁定子。
与“有刷”表兄相比,无刷直流电动机的优点是效率更高,可靠性更高,电气噪声更低,速度控制良好,更重要的是,没有电刷或换向器会产生更高的转速。
然而,它们的缺点是它们更昂贵并且控制更复杂。
直流(伺服电机)直流伺服电动机用于闭环型应用,将输出电动机轴的位置反馈到电动机控制电路。
典型的位置“反馈”设备包括用于无线电控制模型(例如飞机和轮船等)的旋转变压器,(编码器)和电位计。
伺服电动机通常包括用于减速的内置齿轮箱,并且能够直接传递高扭矩。
由于安装了变速箱和反馈装置,因此伺服电动机的输出轴不能像直流电动机的轴那样自由旋转。
直流伺服电机框图伺服电动机由直流电动机,减速齿轮箱,位置反馈装置和某种形式的误差校正组成。
相对于施加到设备的位置输入信号或参考信号来控制速度或位置。
RC伺服马达错误检测(放大器)会查看此输入信号,并将其与来自电机输出轴的反馈信号进行比较,以确定电机输出轴是否处于错误状态,如果是,则控制器会进行适当的校正,以使电机加速或减速它下来。
对位置反馈设备的这种响应意味着伺服电机在“闭环系统”内运行。
除大型工业应用外,伺服电动机还用于小型遥控模型和机器人技术中,大多数伺服电动机都可以在两个方向上旋转大约180度,因此非常适合精确的角度定位。
但是,除非特别修改,否则这些RC型伺服器无法像传统的DC电动机一样连续高速旋转。
伺服电动机由一个装置中的多个装置,电动机,变速箱,反馈装置和用于控制位置,方向或速度的误差校正组成。
它们仅需使用电源,接地和信号控制三根导线即可轻松控制,因此广泛用于机器人和小型模型。
直流电动机开关与控制小型直流电动机可以通过开关,继电器,晶体管或MOSFET电路“接通”或“断开”,最简单的电动机控制形式是“线性”控制。
这种类型的电路使用双极晶体管作为开关(如果需要更高的额定电流,也可以使用达林顿晶体管),以通过单个电源控制电动机。
通过改变流入晶体管的基极电流量,可以控制电动机的速度,例如,如果晶体管“半路”导通,则只有一半的电源电压流向电动机。
如果晶体管“完全导通”(饱和),则所有电源电压都流向电动机,并且旋转速度更快。
然后,对于这种线性控制类型,功率将不断地传递到电动机,如下所示。
电机速度控制上面的简单(开关电路)显示了单向(仅一个方向)电动机速度(控制电路)的电路。
由于直流电动机的转速与两端的电压成正比,因此我们可以使用晶体管来调节该端电压。
两个晶体管作为达林顿对连接,以控制电动机的主电枢电流。
甲5kΩ的电位器是用于基极驱动量控制到所述第一导频晶体管TR 1,这反过来又控制主开关晶体管,TR 2允许马达的DC电压从零变化到Vcc,在本实施例9至12中伏特。
可选的飞轮(二极管)跨接在开关晶体管TR 2和电机端子之间,以防止电机旋转时产生的反电动势。
可调电位器可以用直接加到电路输入端的连续逻辑“ 1”或逻辑“ 0”信号代替,以分别将电动机“全开”(饱和)或“全关”(切断)从微控制器或PIC的端口。
除了基本的速度控制之外,还可以使用相同的电路来控制电动机的转速。
通过以足够高的频率反复切换电动机电流“ ON”和“ OFF”,可以通过改变其标记空间比来在静止(0 rpm)和全速(100%)之间改变电动机的速度。
供应。
这可以通过改变“开启”时间(t ON)与“关闭”时间(t OFF)的比例来实现,并且可以使用称为脉冲宽度调制的过程来实现。
脉冲宽度速度控制前面我们曾说过,直流电动机的转速与其端子上的平均(平均)电压值成正比,并且该值越高,直到达到最大允许电动机电压,电动机旋转的速度就越快。
换句话说,电压越高,速度越快。
通过改变“开”(t ON)时间和“关”(t OFF)持续时间之间的比率,称为“占空比”,“标记/间距比率”或“占空比”,可以得出电机电压及其转速可以改变。
对于简单的单极驱动器,占空比β为:馈入电动机的平均直流输出电压为:Vmean =βx Vsupply。
然后,通过改变脉冲a的宽度,可以控制电动机电压,从而可以控制施加到电动机的功率,这种控制方式称为脉冲宽度调制或PWM。
控制电动机转速的另一种方法是在保持“开”和“关”占空比时间不变的情况下改变频率(以及控制电压的时间段)。
这种控制称为脉冲频率调制或PFM。
通过脉冲频率调制,通过施加可变频率的脉冲来控制电动机电压,例如,以低频或只有很少的脉冲,施加到电动机的平均电压较低,因此电动机速度较慢。
在较高频率下或带有许多脉冲时,平均电动机端子电压会增加,并且电动机速度也会增加。
然后,晶体管可用于控制施加到直流电动机的功率,其工作模式为“线性”(电动机电压变化),“脉冲宽度调制”(脉冲宽度变化)或“脉冲频率”调制”(改变脉冲频率)。
反转直流电动机的方向尽管用单个晶体管控制直流电动机的速度具有许多优点,但它也有一个主要缺点,即旋转方向始终相同,这是一个“单向”电路。
在许多应用中,我们需要沿正反两个方向操作电动机。
为了控制直流电动机的方向,必须反转施加到电动机连接处的直流电源的极性,以使其轴沿相反方向旋转。
控制直流电动机旋转方向的一种非常简单且便宜的方法,是使用按以下方式排列的不同开关:直流电动机方向控制第一个电路使用单个双刀双掷(DPDT)开关来控制电动机连接的极性。
通过切换触点,可以将电动机端子的电源反向,并使电动机的方向反向。