高中数学第二讲参数方程一曲线的参数方程1参数方程的概念学案含解析

合集下载

高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。

2.分析圆的几何性质,选择适当的参数写出它的参数方程。

3.会进行参数方程和普通方程的互化。

教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。

参数方程和普通方程的互化。

教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。

参数方程和普通方程的等价互化。

教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。

)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。

例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。

高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件

高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件
[思路点拨] 此类问题关键是参数的选取.本例中由于 A、 B 的滑动而引起点 P 的运动,故可以 OB 的长为参数,或以角 为参数,不妨取 BP 与 x 轴正向夹角为参数来求解.
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.

第二讲 参数方程

第二讲 参数方程

最大值6 2 , 最小值 6 2 .
2、θ取一切实数时,连接A(4sinθ,6cosθ)和B(-4cosθ,
6sinθ)两点的线段的中点轨迹是 B .
B. 椭圆 C. 直线 x=2sinθ-2cosθ 设中点M (x, y) y=3cosθ+3sinθ 2 2
A. 圆
D. 线段
x y 2 4 9
(3)
x 9
2
1 (4)
y 25
2
x 64
2

y 100
2
1
例1、如图,在椭圆x2+8y2=8上求一点P,使P到直线
l:x-y+4=0的距离最小.
分析1: 设P( 8 8y 2 , y),
则d | 8 8y 2 y 4 | 2
y
O P
x
分析2:设P(2 2 cos, sin ),
x= t 1 (1) (t为参数) y 1 2 t
x= sin cos (2) ( 为参数). y 1 sin 2
练习1 将下列参数方程化为普通方程:
(1)
x 2 3 cos y 3 sin
x=t+1/t
(2)
x sin y cos 2
1.写出下列圆的参数方程:
x =-2+cosθ (2)圆心为(-2,-3),半径为1: ______________. y =-3+sinθ x =5cosθ+1 2.若圆的参数方程为 , 则其标准 y =5sinθ-1
2+(y+1)2=25 ( x 1) 方程为:_________________.
所以,点M的轨迹的参数方程是

第二讲:曲线的参数方程

第二讲:曲线的参数方程

可以使其准确落在指定位置.
1、参数方程的概念:
一般地, 在平面直角坐标系中,如果曲线上任意一点的
坐标x, y都是某个变数t的函数
x f (t),

y

g (t ).
(2)
那么方程(2) 就叫做这条曲线的参数方程, 联系变数x,y 的变数t叫做参数.
相对于参数方程而言,直接给出点的坐标间关系 的方程叫做普通方程。
x 1 cos

参数方程为

y

3

sin
(θ为参数)
例2 如图,圆O的半径为2,P是圆上的动点, Q(6,0)是x轴上的定点,M是PQ的中点,当 点P绕O作匀速圆周运动时,求点M的轨迹的 参数方程。
y
P M

o
Qx
解:设点M的坐标是(x, y),xOP ,则点
P的坐标是(2 cos ,2sin ),由中点坐标公式得:
x 3
1 t 2 (t为参数)和x 3
1t2
y 2t
y 2t
小结:
(1)圆:(x-x0)2+(y-y0)2= r2
x x0 r cos

y

y0
r sin
(为参数)
(2)椭圆:x
a
2 2

y2 b2
1,(a

b
0)
(3)双曲线:ax22
由参数的任意性,可取y 2sin ,
所以椭圆 x2 y2 1的参数方程是 94
x

y

3 c os (为参数) 2sin
(2)把y 2t代入椭圆方程,得x2 4t 2 1 94

§2.1.1参数方程的概念-教案

§2.1.1参数方程的概念-教案

课题:§2.1.1参数方程---参数方程的概念(第一课时)吴代军(恩施高中.恩施市445000 )一、教学设计1.教学内容解析本课内容为北师大2003课标版《选修4-4》第二讲“参数方程”的起始课《参数方程的概念》,课本中给出的问题情境是“投铅球”,由于涉及投掷点的高度问题,对学生而言难度略大,从而构置学生熟悉的运动项目--“跳远”这一情景,层层深入的探究“跳远”这一运动项目的数学内涵,较为自然的生成“参数方程概念”,比较参数方程和普通方程在研究同一问题的数学直观与简洁美,通过学生生活问题数学抽象,再经过严密的逻辑推理,建立恰当的数学模型,进行合理的数学运算,进而培养学生良好的数学素养.2.2019年考试说明和教学大纲考试说明指出:要求学生“了解参数方程并了解参数方程参数的意义”,在对学生的能力层次要求上属于“了解”的程度,这就要求学生能根据问题的条件,学会引进恰当的参数建立参数方程,体会具体问题中参数的意义.f x y教学大纲指出:参数方程不仅可表示曲线,还可描绘事物运动变化的规律,对于较难建立(,)0的方程用参数方程描绘,x y间的联系更为方便,这就让我们感受到了学习参数方程的必要性。

根据以上分析,本节课的教学重点确定为:教学重点:根据问题情境和题设条件引入合适的参数,建立参数方程,并体会参数的意义.3.学生学情诊断课堂主体对象为湖北省重点中学、省级示范高中恩施高中,学生有较强的探究意识和学习能力,基于本节内容为学生对函数关系、运动变化、实际问题的建模已经有较为深刻的认知,已经学习了“曲线与方程”,探究动点轨迹方程有理性的认识,由此对本节课“参数方程的概念”的知识建构作了较好的铺垫.根据以上分析,本节课的教学难点确定为:教学难点:根据具体问题选取恰当的参数,建立曲线的参数方程,确定参数的范围.4.教学策略分析本课型为概念课,旨在通过实际情景问题的内涵挖掘,呼朋引伴式的合作与探究,从而达成对“参数方程的概念”新知的建构.在较强的生活背景下将本课时的帷幕渐渐拉开、循序渐进而又螺旋上升的感悟中生成知识,学生体会到数学源于生活,数学是有用的,展“为有源头活水来”之美.鉴于上述分析,本节课的教学策略确定为:情境教学法、发现式教学、启发式教学,为激发学生的学习兴趣,提升课堂效率,增强直观形象,需采用视频投放、实物投影仪、PPT.5.教学基本流程反思凝练)(cos 21sin 020为重力加速度为参数,g t t v x gt t v y ⎪⎩⎪⎨⎧=-=αα二.课堂实录6.1 情境创设奥运会的田赛项目急行跳远起源于古希腊奥林匹克运动,首先,我们欣赏一个急行跳远的视频片段,请同学们猜想这样一个问题:若某运动员初速度0v 一定的情况下,以多大的倾斜角α起跳,会跳得更远呢? 你能建构这一运动轨迹的函数关系(,)0f x y =吗?【设计意图】创设学生熟悉的运动项目“急行跳远”作为引入,从而激发学生兴趣;通过分析“急行跳远”这一运动项目,发现由于水平位移量x 和高度y 是两种不同的运动合成,因此直接建立,x y 所要满足的函数关系式很困难,从而可建立水平位移量x 和高度y 两个方向上的等量关系,比直接列出x ,y 的函数关系要方便得多,为引出“参数方程”的必要性做好铺垫.并为学生对北师大版习题2-1的第一题“摩托车飞跃黄河”这一实际问题的参数方程的刻画有了初步的认知.6.2 第一篇章 追本溯源直观想象 猜想验证为此,我们建立以起跳点为坐标原点的直角坐标系(如此建系较为直观),据物理学可知,以初速度0v ,与水平方向成α起跳后,其运动轨迹由水平方向的匀速直线运动与竖直方向上的反向重力加速度而合成,易得:同学能否验证自己的猜想呢?能否通过逻辑推理证明自己猜想的真伪?【设计意图】通过对“急行跳远”这一情景的挖掘,让同学们提出数学猜想、并通过逻辑推理验证自己的猜想,从而收获学习的乐趣,提升我们学生的数学核心素养;更为重要的是,从而为引出“参)(cos 21sin 020为重力加速度为参数,g t t v x gt t v y ⎪⎩⎪⎨⎧⋅=-⋅=αα数方程的概念”埋下伏笔.探中抽知 新知生成通过对“急行跳远”的探究,你能求它的普通方程么?通过对比研究我们发现了什么?参数方程的定义:如果曲线C 上任意一点P 的坐标y x ,都可以表示为变量t 的函数:{)()(t f x t g y ==, 反之,对于t 的每一个允许值,由函数式{)()(t f x t g y ==所确定的点),(y x P 都在曲线C 上,则方程:{为参数)(t t f x t g y )()(==叫做曲线C 的参数方程,变量t 为参数.相比参数方程而言,直接给出坐标y x ,的关系称为普通方程.注:1、一般地,参数(...,,θαt )是有条件限制的;2、参数是联系y x ,的桥梁,可有物理意义、几何意义,也可无明显的意义;3、对应关系.【设计意图】通过对特殊问题的研究,进而理性分析一般问题所蕴含的数学本质,培养学生归纳的数学能力,完成由感性到理性的新知识--“参数方程的概念”的认知建构,较为深刻的体会参数方程这一定义的函数本质.6.3 第二篇章 探究展示自主探究一:探求曲线的参数方程问题1:汶川地震,举国上下,万众一心,为灾区人民第一时间配给救援物资,某运输机在离灾区地面m 490的上空以h km /720匀速直线飞行,为使得救援物资准确投放灾区指定的安置点(不计空气阻)/8.9(2200214902s m g t t x gt y =⎪⎩⎪⎨⎧=-=为参数,力),飞行员如何确定投放时机?(重力加速度2/8.9s m g =)成果展示:剖析思维过程,并通过实物投影展示其解答过程!此处参数t 的意义是什么呢?范围如何选择?(追问:...)飞行员确定投放时机为:距离投放安置点水平距离2000米处投放物资可准确投放.【设计意图】将教材问题作适度的加工和处理,培养学生的数据处理能力,有利于学生对新知的理性认知,成果的展示让学生感受学习习得性成功的体验,与此同时,以地震作为问题背景,有利于培养学生的同情心、民族感,渗透数学学科的人文精神.合作探究二:参数方程概念辨析问题2-1:下列方程可看成参数方程的是( ))(012.)(02.22为参数为参数m mx y x B t t y x A =--+=-+{)(.)0(.cos 2cos 232为参数为参数,θθθ===-=>⎩⎨⎧x y a x a y D a a C 问题2-2:曲线的参数方程{为参数)ααα(sin 22cos ==x y ,则参数πα611=对应点的坐标是( ) )21,1.(A )23,1.(-B )21,1.(-C )23,21.(-D 问题2-3:下列各点可能在方程{)232(2sin cos ⎪⎭⎫⎢⎣⎡∈==ππαααα,为参数,x y 所表示的曲线上的是( ) )22,1.(A )21,1.(--B )21,23.(-C )23,21.(-D【设计意图】通过师生学生独立自主探究与合作探究相结合,使学生体验探究问题中比较、分析、推理、判断、辨析,使其对参数方程的概念有更进一步的深刻的理解,感受曲线的参数方程与点之间的对应关系,为后续圆锥曲线的参数方程和直线的参数方程的学习谱写了序章.小组展示三:已知一个量求参数方程问题3(北师大版 选修4-428P 练习2 改编) 设2()cos y t t=为参数,曲线C :229436y x -=. (1)求曲线C 的参数方程;(2)已知参数4t π=-对应的点(,)M a b 在曲线C 上,求a 的值.【设计意图】通过回归课本的典型问题及其对教材问题的深加工,让学生重视教材的问题原型,“饮水思源”,教材是我们研究问题和培养学生能力和核心素养的“根”,而枝繁叶茂、异彩纷呈的问题均源于此.6.4第三篇章 课堂小结 反思凝炼通过本节课的学习,你学习了那些知识?渗透了那些的数学思想?体现了什么样的数学核心素? (请学生谈自己的学习体会)【设计意图】通过让学生畅所欲言的谈方法、谈收获、谈体验,使得学生学会学习,学会总结,学会反思,学会表达,进而养成学生良好的反思、小结的学习习惯,为学生的终生发展奠基.6.5课后作业 分层练习基础训练:完成对应章节的《课时作业》能力提升:(北师大课标版26P “问题提出”)一位铅球运动投掷铅球的瞬间铅球球心距离地面高度为h ,初速度为0v 且与水平方向成α角投掷铅球.(Ⅰ)请同学们探究该铅球的运动轨迹的参数方程;(Ⅱ)并研究以多大的倾斜角投掷时,铅球抛掷的水平距离最远?(忽略空气阻力);(Ⅲ)试分析投掷铅球与急行跳远这两项运动的联系和区别?并举例说明我们身边还有哪些案例属于这类问题,并尝试给出最优化的研究方案.【设计意图】分层训练旨在尊重每一个学生的独立有个性化的发展,尊重他们的认知差异,在学生的最近发展区建构知识,给出能力提升这一问题,意在首尾呼应,让学生带着问题来,带着思考离,起到“言有尽而意无穷”的数学教学的延伸功能,与此同时,开放性问题的设计让学生充分发挥数学想象、通过逻辑推理、验证自己猜想的过程,完成由感性到理性的升华.6.6板书设计一览无余三、教后反思:①反思课前预案:②反思课堂活动:③反思教后改进:四、教学点评:。

第2讲1第1课时参数方程的概念及圆的参数方程课件人教新课标

第2讲1第1课时参数方程的概念及圆的参数方程课件人教新课标
例3 如图,圆O的半径为2,P是圆O上的动 点,Q(4,0)在x轴上.M是PQ的中点,当点P绕 O作匀速圆周运动时, (1)求点M的轨迹的参数方程,并判断轨迹所 表示的图形;
解答
(2)若(x,y)是M轨迹上的点,求x+2y的取值范围. 解 x+2y=cos θ+2+2sin θ= 5sin(θ+φ)+2,tan φ=12. ∵-1≤sin(θ+φ)≤1, ∴- 5+2≤x+2y≤ 5+2. 即 x+2y 的取值范围是[- 5+2, 5+2].
弦所在直线 l 的方程为_x_-__y_-__3_=__0__.
解析 圆心O′(1,0),∴kO′P=-1,即直线l的斜率为1. ∴直线l的方程为x-y-3=0.
12345
解析 答案
规律与方法
1.参数方程 (1)参数的作用:参数是间接地建立横、纵坐标x,y之间的关系的中间变量, 起到了桥梁的作用. (2)参数方程是通过变数反应坐标变量x与y之间的间接联系. 2.求曲线参数方程的步骤 第一步,建系,设M(x,y)是轨迹上任意一点; 第二步,选参数,比如选参数t; 第三步,建立x,y与参数间的关系,即xy==fgtt,.
12345
解析 答案
4.已知xy= =tt+ 2 1, (t 为参数),若 y=1,则 x=__0_或__2___.
解析 ∵y=t2=1, ∴t=±1. ∴x=1+1=2或x=-1+1=0.
12345
解析 答案
5.若 P(2,-1)为圆 O′:xy= =15s+in5θcos θ, (0≤θ<2π)的弦的中点,则该
_-_6_y_-__3_=__0_)_.
4x
解析 将参数方程化为标准方程,得(x-3)2+(y+2)2=16,
故圆心坐标为(3,-2).

高中数学人教A版选修第二讲参数方程一曲线的参数方程课件

导入新课
某救援飞机给灾区投放救援物,已 知飞机离地面有500米,飞机以100m/s的 速度作水平直线运动,为事救援物准确 落于灾区指定地面,飞行员应如何确定 投放时机呢?
y
由物理知识可知,物资投 A 出机舱后的运动轨迹如图,
V=100m/s
.M
它是这两种运动的合成:
O
X
(1)沿OX方向以的速度作匀速直线运动;
(1)判断点M1(0,1),M2(5,4)与曲线 C的位置关系;
(2)已知点M1(6,a)在曲线C上,求a 的值.
高中数学人教A版选修4-4 第二讲 参数方程 一 曲线的参数方程 课件(共43张PPT)
高中数学人教A版选修4-4 第二讲 参数方程 一 曲线的参数方程 课件(共43张PPT)
解:(1)把点M1(0,1)的坐标代入方程组 中,得t=0,所以点M1在曲线C上;同理,把点 M2(5,4)代入方程组中,得
导入新课
上节课我们学习了参数方程 的概念,也了解参方程和普通 方程的同异之处.现在大家来想 想:圆心在原点半径为r的圆, 我们用什么样的参数方程去表 示它呢?
高中数学人教A版选修4-4 第二讲 参数方程 一 曲线的参数方程 课件(共43张PPT)
高中数学人教A版选修4-4 第二讲 参数方程 一 曲线的参数方程 课件(共43张PPT) 高中数学人教A版选修4-4 第二讲 参数方程 一 曲线的
(t ), (t )
求出唯一对应x,
y
的值,而且大多数情况下,参数方程中
参数的变化范围是有限制的.
高中数学人教A版选修4-4 第二讲 参数方程 一 曲线的参数方程 课件(共43张PPT)
高中数学人教A版选修4-4 第二讲 参数方程 一 曲线的参数方程 课件(共43张PPT)

第2章 1 参数方程的概念

§1参数方程的概念1.参数方程的概念(1)一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数 ⎩⎨⎧x =f (t ),y =g (t ),① 并且对于t 取的每一个允许值,由方程组①所确定的点P (x ,y )都在这条曲线上,那么方程组①就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称参数.相对于参数方程,我们把直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程.(2)在参数方程中,应明确参数t 的取值范围.对于参数方程x =f (t ),y =g (t )来说,如果t 的取值范围不同,它们表示的曲线可能是不相同的.如果不明确写出其取值范围,那么参数的取值范围就理解为x =f (t )和y =g (t )这两个函数的自然定义域的交集.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.(2)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 【思维导图】【知能要点】 1.参数方程的概念. 2.求曲线的参数方程. 3.参数方程和普通方程的互化.题型一 参数方程及其求法1.曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的联系,而参数方程是通过参数反映坐标变量x 、y 间的间接联系.在具体问题中的参数可能有相应的几何意义,也可能没有什么明显的几何意义.曲线的参数方程常常是方程组的形式,任意给定一个参数的允许取值就可得到曲线上的一个对应点,反过来对于曲线上任一点也必然对应着其中的参数的相应的允许取值.2.求曲线参数方程的主要步骤:第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数惟一确定.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.【例1】 设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为π60 rad/s.试以时间t 为参数,建立质点运动轨迹的参数方程.解 如图所示,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知⎩⎨⎧x =2cos θ,y =2sin θ,又θ=π60t (t 的单位:S),故参数方程为⎩⎪⎨⎪⎧x =2cos π60t ,y =2sin π60t .【反思感悟】 以时间t 为参数,在图形中分别寻求动点M 的坐标和t 的关系.1.已知定直线l 和线外一定点O ,Q 为直线l 上一动点,△OQP 为正三角形(按逆时针方向转,如图所示),求点P 的轨迹方程. 解 以O 点为原点,过点O 且与l 垂直的直线为x 轴,过点O 与l 平行的直线为y 轴建立直角坐标系.设点O 到直线l 的距离为d (为定值,且d >0),取∠xOQ =θ为参数, θ∈⎝ ⎛⎭⎪⎫-π2,π2, 设动点P (x ,y ).在Rt △OQN 中, ∵|OQ |=dcos θ,|OP |=|OQ |, ∠xOP =θ+π3, ∴x =|OP |cos ⎝ ⎛⎭⎪⎫π3+θ=d cos θ·cos ⎝ ⎛⎭⎪⎫π3+θ=⎝ ⎛⎭⎪⎫12-32tan θ·d , y =|OP |·sin ⎝ ⎛⎭⎪⎫π3+θ=d cos θ·sin ⎝ ⎛⎭⎪⎫π3+θ=⎝ ⎛⎭⎪⎫32+12tan θ·d . ∴点P 的参数方程为⎩⎪⎨⎪⎧x =⎝ ⎛⎭⎪⎫12-32tan θd ,y =⎝ ⎛⎭⎪⎫32+12tan θd ⎝ ⎛⎭⎪⎫-π2<θ<π2. 题型二 参数方程和普通方程的互化参数方程化为普通方程,消去参数方程中的参数即可,通过曲线的普通方程来判断曲线的类型.由普通方程化为参数方程要选定恰当的参数,寻求曲线上任一点M 的坐标x ,y 和参数的关系,根据实际问题的要求,我们可以选择时间、角度、线段长度、直线的斜率、截距等作为参数.【例2】 已知某条曲线C 的参数方程为⎩⎨⎧x =1+2t y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上. (1)求常数a ;(2)求曲线C 的普通方程.分析 本题主要应根据曲线与方程之间的关系,可知点M (5,4)在该曲线上,则点M 的坐标应适合曲线C 的方程,从而可求得其中的待定系数,进而消去参数得到其普通方程.解 (1)由题意可知有⎩⎨⎧1+2t =5,at 2=4,故⎩⎨⎧t =2,a =1.∴a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎨⎧x =1+2t ,y =t 2. 由第一个方程得t =x -12代入第二个方程,得 y =⎝⎛⎭⎪⎫x -122,即(x -1)2=4y 为所求. 【反思感悟】 参数方程化为普通方程时,求参数的表达式应从简单的有唯一结论的式子入手,易于代入消参.2.把下列参数方程化为普通方程.⎩⎨⎧x =3+cos θ,y =2-sin θ,解 由已知得⎩⎨⎧cos θ=x -3,sin θ=2-y .由三角恒等式sin 2θ+cos 2θ=1,可知(x -3)2+(y -2)2=1这就是所求的普通方程. 【例3】 选取适当的参数,把普通方程x 216+y 29=1化为参数方程. 解 设x =4cos φ,代入椭圆方程,得16cos 2φ16+y 29=1.∴y 2=9(1-cos 2φ)=9sin 2φ,即y =±3sin φ.由参数φ的任意性可知y =3sin φ.故所求参数方程为⎩⎨⎧x =4cos φ,y =3sin φ(φ为参数).【反思感悟】 选取的参数不同,所得曲线的参数方程不同,注意普通方程和参数方程的等价性.3.选取适当参数,把直线方程y =2x +3化为参数方程.解 选t =x ,则y =2t +3,由此得直线的参数方程⎩⎨⎧x =t ,y =2t +3(t ∈R ).也可选t =x +1,则y =2t +1,参数方程为⎩⎨⎧x =t -1,y =2t +1.1.已知曲线C 的参数方程是:⎩⎨⎧x =3t ,y =2t 2+1(t 为参数). (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值.解 (1)把点M 1的坐标(0,1)代入方程组,得:⎩⎨⎧0=3t ,1=2t 2+1 解得:t =0.∴点M 1在曲线C 上.同理,可知点M 2不在曲线C 上. (2)∵点M 3(6,a )在曲线C 上,∴⎩⎨⎧6=3t ,a =2t 2+1,解得:t =2,a =9.∴a =9. 2.将下列曲线的参数方程化为普通方程,并指明曲线的类型. (1)⎩⎨⎧x =a cos θ,y =b sin θ(θ为参数,a 、b 为常数,且a >b >0);(2)⎩⎪⎨⎪⎧x =a cos φ,y =b tan φ(φ为参数,a 、b 为正常数); (3)⎩⎨⎧x =2pt 2,y =2pt(t 为参数,p 为正常数). 解 (1)由cos 2θ+sin 2θ=1,得x 2a 2+y 2b2=1 (a >b >0),它表示的曲线是椭圆.(2)由已知1cos φ=x a ,tan φ=yb ,由1cos 2φ=1+tan 2φ,有x 2a 2-y 2b 2=1,它表示的曲线是双曲线. (3)由已知t =y 2p ,代入x =2pt 2得y 24p 2·2p =x , 即y 2=2px 它表示的曲线是抛物线.3.两曲线的参数方程为⎩⎨⎧x =3cos θ,y =4sin θ (θ为参数)和⎩⎨⎧x =-3t 2,y =-4t 2(t 为参数),求它们的交点坐标.解 将两曲线的参数方程化为普通方程, 得x 29+y 216=1,y =43x (x ≤0).联立解得它们的交点坐标为⎝ ⎛⎭⎪⎫-322,-22. 4.△ABC 是圆x 2+y 2=r 2的内接三角形,已知A (r ,0)为定点,∠BAC =60°,求△ABC 的重心G 的轨迹方程.解 因为∠BAC =60°,所以∠BOC =120°,于是可设B (r cos θ,r sin θ),C (r cos(θ+120°),r sin(θ+120°)),重心坐标为(x ,y ), 则⎩⎪⎨⎪⎧x =r +r cos θ+r cos (θ+120°)3,y =r sin θ+r sin (θ+120°)3,消去θ得(3x -r )2+(3y )2=r 2,所以△ABC 重心G 的轨迹方程为⎝ ⎛⎭⎪⎫x -r 32+y 2=r29 (0≤x ≤r 2).[P 28思考交流]把引例中求出的铅球运动轨迹的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用.答⎩⎨⎧x =v 0t cos α,y =h +v 0t sin α-12gt2其中v 0、α,h 和g 都是常数.这里的g 是重力加速度.h 是运动员出手时铅球的高度.消去参数t 整理得:y =-g2v 20cos 2αx 2+x ·tan x +h .参数方程的作用:当参数t 每取一个允许值,就可以相应地确定一个x 值和一个y 值.这样铅球的位置就相应的确定了.这样建立的t 与x ,y 之间的关系不仅方便,而且清晰地反映了变数的实际意义.如x =v 0t cos α反映了铅球飞行的水平距离. y =h +v 0t sin α-12gt 2反映了铅球的高度与飞行时间的关系.总之它是物理学中弹道曲线的方程. 【规律方法总结】1.求轨迹的参数方程,可以通过对具体问题的分析,选择恰当的参数,建立参数方程.2.曲线的参数方程和普通方程可以互化,两种方程具有等价性.3.曲线上点的坐标如果需要单独表示,使用参数方程比较方便.一、选择题1.下列各点在方程⎩⎨⎧x =sin θ,y =cos 2θ(θ是参数)所表示曲线上的点是( )A.(2,-7)B.⎝ ⎛⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,12 D.(1,0)解析 由已知可得⎩⎪⎨⎪⎧x =sin θ,y =1-2sin 2θ,将选项代入上式即可.∴x =12时,y =12.故应选C. 答案 C2.将参数方程⎩⎨⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为( ) A.y =x -2 B.y =x +2C.y =x -2 (2≤x ≤3)D.y =x +2 (0≤y ≤1)解析 将参数方程中的θ消去,得y =x -2.又x ∈[2,3],故选C. 答案 C3.曲线(x -1)2+y 2=4上的点可以表示为( ) A.(-1+cos θ,sin θ) B.(1+sin θ,cos θ) C.(-1+2cos θ,2sin θ)D.(1+2cos θ,2sin θ)解析 可设⎩⎪⎨⎪⎧x -1=2cos θ,y =2sin θ,∴⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ,∴曲线x 的点可表示为(1+2cos θ,2sin θ). 答案 D4.直线l 的参数方程为⎩⎨⎧x =a +t ,y =b +t (t 为参数),l 上的点P 1对应的参数是t 1,则点P 1与P (a ,b )之间的距离为( ) A.|t 1| B.2|t 1| C.2|t 1|D.22|t 1|解析 点P 1对应的点的坐标为(a +t 1,b +t 1), ∴|PP 1|=(a +t 1-a )2+(b +t 1-b )2=2t 21=2|t 1|.答案 C5.参数方程⎩⎪⎨⎪⎧x =t 2+2t +3y =t 2+2t +2表示的曲线是( ) A.双曲线x 2-y 2=1 B.双曲线x 2-y 2=1的右支 C.双曲线x 2-y 2=1,但x ≥0,y ≥0 D.以上结论都不对解析 平方相减得x 2-y 2=1,但x ≥2,y ≥1. 答案 D 二、填空题6.已知曲线⎩⎨⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<2π).下列各点A (1,3),B (2,2),C (-3,5),其中在曲线上的点是________.解析 曲线方程可化为x -2y +5=0,将A ,B ,C 三点坐标代入曲线的参数方程可知只有A 符合. 答案 A7.物体从高处以初速度v 0(m/s)沿水平方向抛出,以抛出点为原点,水平直线为x 轴,物体所经路线的参数方程为________.解析 设物体抛出的时刻为0 s ,在时刻t s 时其坐标为M (x ,y ),由于物体作平抛运动,依题意,得⎩⎨⎧x =v 0t ,y =-12gt 2,这就是物体所经路线的参数方程. 答案 ⎩⎪⎨⎪⎧x =v 0t ,y =-12gt 2(t 为参数)8.以过点A (0,4)的直线的斜率k 为参数,将方程4x 2+y 2=16化成参数方程是__________.解析 设直线为y =kx +4,代入4x 2+y 2=16化简即可.答案⎩⎪⎨⎪⎧x =-8k 4+k 2,y =16-4k 24+k 29.将参数方程⎩⎨⎧x =sin θ+cos θy =sin θcos θ化成普通方程为__________.解析 应用三角变形消去θ,同时注意到|x |≤ 2. 答案 x 2=1+2y (|x |≤2) 三、解答题10.已知曲线C :⎩⎨⎧x =cos θ,y =-1+sin θ,如果曲线C 与直线x +y +a =0有公共点,求实数a 的取值范围. 解 ∵⎩⎨⎧x =cos θ,y =-1+sin θ,∴x 2+(y +1)2=1.圆与直线有公共点,d =|0-1+a |2≤1,解得1-2≤a ≤1+ 2.11.已知圆的极坐标方程为ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.解 (1)由ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0得ρ2-4ρcos θ-4ρsin θ+6=0,即x 2+y 2-4x -4y +6=0为所求, 由圆的标准方程(x -2)2+(y -2)2=2, 令x -2=2cos α,y -2=2sin α,得圆的参数方程为⎩⎨⎧x =2+2cos α,y =2+2sin α(α为参数).(2)由上述可知x +y =4+2(cos α+sin α)=4+2sin(α+π4), 故x +y 的最大值为6,最小值为2.12.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,已知动点P 满足PQ ⊥OA 于D ,PB ∥OA ,试求点P 的轨迹方程. 解 设点P 坐标为(x ,y ), 则B (2a ,y ),D (x ,0). 在Rt △OAB 中,tan θ=AB OA , ∴AB =OA ·tan θ,即y =2a ·tan θ. 在Rt △OAQ 中,cos θ=OQ OA ,∴OQ =OA ·cos θ,在Rt △OQD 中,cos θ=ODOQ , ∴OD =OQ ·cos θ,∴OD =OA ·cos 2θ,即x =2a · cos 2θ.即有⎩⎨⎧x =2a cos 2θ,y =2a tan θθ∈⎝ ⎛⎭⎪⎫-π2,π2,化为普通方程为:xy 2+4a 2x =8a 3.13.在长为a 的线段AB 上有一个动点E ,在AB 的同侧以AE 和EB 为斜边,分别作等腰直角三角形AEC 和EBD ,点P 是CD 的定比分点,且CP ∶PD =2∶1,求点P 的轨迹.解 建立如图所示坐标系(设C ,D 在x 轴上方).设E (t ,0)(t 为参数,t ∈[0,a ]),B (a ,0),则点C 的坐标为⎝ ⎛⎭⎪⎫t 2,t 2,点D 的坐标为⎝ ⎛⎭⎪⎫a +t 2,a -t 2.∵CP ∶PD =2∶1,即λ=2.由定比分点公式,有⎩⎪⎨⎪⎧x =t 2+2·12(a +t )1+2=16(2a +3t ),y =t 2+2·12(a -t )1+2=16(2a -t )t ∈[0,a ],这就是点P 运动轨迹的参数方程.。

人教版高中数学选修4-4课件:第二讲一第2课时圆的参数方程

圆的参数方程知 D 正确. 答案:D
3.参数方程x=11-+tt22,(t 为参数),化为普通方程为 y=1+2tt2
() A.x2+(y-1)2=1
B.(x-1)2+y2=1
C.(x-1)2+(y-1)2=1 D.x2+y2=1
1-t2 1-x 解析:x=1+t2,1+x=t2
代入
y=1+2tt2,
|1-(-2)+m|

2
=2,解得 m=-3±2 2.
类型 2 利用圆的参数方程求轨迹
[典例 2] 如图,圆 O 的半径为 2,P 是圆上的动点, Q(6,0)是 x 轴上的定点,M 是 PQ 的中点.当点 P 绕点 O 作匀速圆周运动时,求点 M 的轨迹的参数方程.
解:设点 M 的坐标为(x,y),∠POQ=θ,取 θ 为参
(2)圆(x-x0)2+(y-y0)2=r2 的参数方程为 ___xy_==__yx_00++__rr_sc_ion_s_θθ_,__(_θ_为__参__数__)_.__
温馨提示 圆的参数方程不唯一,选取的参数不同,
相应的参数方程也不同.
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”).
(1)求圆 C 的普通方程及直线 l 的直角坐标方程; (2)设圆心 C 到直线 l 的距离等于 2,求 m 的值.
解:(1)消去参数 t,得到圆的标准方程为(x-1)2+(y
+2)2=9. 由 2ρsin(θ-π4)=m,得 ρsin θ-ρcos θ-m=0. 所以直线 l 的直角坐标方程为 x-y+m=0. (2)依题意,圆心 C 到直线 l 的距离等于 2,
2.利用圆的参数方程容易解决一些与圆有关的最值 和取值范围问题.
求最值问题时,利用圆的参数方程来将问题合理地转 化,常用的方法是建立代数与三角函数的联系,利用三角 函数的值域求解,解决此类问题还要注意数形结合思想的 应用.

高中数学参数方程知识点详解(讲义+过关检测+详细答案)


5.【答案】D
【解析】 x2 t, y2 1 t 1 x2, x2 y2 1,而t 0, 0 1 t 1,得0 y 2 .
4
4
6.【答案】D
【解析】圆
x=2 cos,
的圆心为原点,半径为
y =2 sin
2,
则圆心到直线 3x-4y-9=0 的距离为 9 ,小于半径 2,故直线与圆相交. 5
D.(1, 3)
2.已知某曲线的参数方程为 xy==ccooss2, +1,则该曲线是(

A.直线
B.圆
C.双曲线
3.若一直线的参数方程为
x
x0
1 2
t
(t 为参数),则此直线的倾斜Байду номын сангаас为(
y
y0
3t 2
A.30º
B. 60º
C.120º
4.若点
P(4,a)在曲线
x=
t 2
(t 为参数)上,点 F(2,0),则|PF|等于(
)
y=2 t
A.4
B.5
C.6
D.抛物线 ) D.150º
D.7
5.与参数方程为
x
t
(t为参数) 等价的普通方程为( )
y 2 1 t
A. x2 y2 1 4
B. x2 y2 1(0 x 1) 4
C. x2 y2 1(0 y 2) 4
D. x2 y2 1(0 x 1, 0 y 2) 4
y2 b2
1( a
0 , b 0 )的参数方程为:
x a sec
y
b
tan

为参数,
[0, 2 ) 且
, 2
3 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 曲线的参数方程 1.参数方程的概念1.参数方程的概念在平面直角坐标系中,曲线上任一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f t y =g t①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程组①就叫这条曲线的参数方程,t 叫做参变数,简称参数.相对于参数方程而言,直接给出坐标间关系的方程叫做普通方程.2.参数的意义参数是联系变数x ,y 的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.如图,△ABP 是等腰直角三角形,∠B 是直角,腰长为a ,顶点B ,A 分别在x 轴、y 轴上滑动,求点P 在第一象限的轨迹的参数方程.此类问题的关键是参数的选取.本例中由于A ,B 的滑动而引起点P 的运动,故可以OB 的长为参数,或以角为参数,不妨取BP 与x 轴正向夹角为参数来求解.法一:设P 点的坐标为(x ,y ),过P 点作x 轴的垂线交x 轴于点Q .如图所示,则Rt △OAB ≌Rt △QBP . 取OB =t ,t 为参数(0<t <a ). ∵|OA |=a 2-t 2, ∴|BQ |=a 2-t 2.∴点P 在第一象限的轨迹的参数方程为⎩⎨⎧x =t +a 2-t 2,y =t(0<t <a ).法二:设点P 的坐标为(x ,y ),过点P 作x 轴的垂线交x 轴于点Q ,如图所示.取∠QBP =θ,θ为参数⎝ ⎛⎭⎪⎫0<θ<π2, 则∠ABO =π2-θ.在Rt △OAB 中, |OB |=a cos ⎝⎛⎭⎪⎫π2-θ=a sin θ.在Rt △QBP 中,|BQ |=a cos θ,|PQ |=a sin θ. ∴点P 在第一象限的轨迹的参数方程为⎩⎪⎨⎪⎧x =aθ+cos θ,y =a sin θ⎝ ⎛⎭⎪⎫θ为参数,0<θ<π2.求曲线参数方程的主要步骤第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的“有向距离”,直线的倾斜角、斜率、截距等也常常被选为参数.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.1.设质点沿以原点为圆心,半径为2的圆做匀角速度运动,角速度为π60 rad/s ,试以时间t 为参数,建立质点运动轨迹的参数方程.解:如图,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),又θ=π60t ,故参数方程为⎩⎪⎨⎪⎧x =2cos π60t ,y =2sin π60t (t 为参数).2.选取适当的参数,把直线方程y =2x +3化为参数方程. 解:选t =x ,则y =2t +3.由此得直线的参数方程为⎩⎪⎨⎪⎧x =t ,y =2t +3(t 为参数).也可选t =x +1,则y =2t +1.参数方程为⎩⎪⎨⎪⎧x =t -1,y =2t +1(t 为参数).已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数).(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值.由参数方程的概念,只需判断对应于点的参数是否存在即可,若存在,说明点在曲线上,否则不在曲线上.(1)把点M 1的坐标(0,1)代入方程组,得⎩⎪⎨⎪⎧0=3t ,1=2t 2+1.解得t =0.∴点M 1在曲线C 上. 同理,可知点M 2不在曲线C 上.(2)∵点M 3(6,a )在曲线C 上,∴⎩⎪⎨⎪⎧6=3t ,a =2t 2+1.解得t =2,a =9. ∴a =9.参数方程是曲线方程的另一种表达形式,点与曲线位置关系的判断,与平面直角坐标方程下的判断方法是一致的.3.曲线(x -1)2+y 2=4上的点可以表示为( )A .(-1+cos θ,sin θ)B .(1+sin θ,cos θ)C .(-1+2cos θ,2sin θ)D .(1+2cos θ,2sin θ)解析:选D 将点的坐标代入方程,使方程成立的即可.4.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at2(其中t 为参数,a ∈R),点M (5,4)在该曲线上,求常数a .解:∵点M (5,4)在曲线C 上,∴⎩⎪⎨⎪⎧ 5=1+2t ,4=at 2,解得⎩⎪⎨⎪⎧t =2,a =1.∴a 的值为1.课时跟踪检测(七)一、选择题1.下列方程可以作为x 轴的参数方程的是( )A.⎩⎪⎨⎪⎧x =t 2+1,y =0;(t 为参数) B.⎩⎪⎨⎪⎧x =0,y =3t +1;(t 为参数)C.⎩⎪⎨⎪⎧x =1+sin θ,y =0;(θ为参数) D.⎩⎪⎨⎪⎧x =4t +1,y =0;(t 为参数)解析:选D x 轴上的点横坐标可取任意实数,纵坐标为0. 2.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6+4cos θ,y =5tan θ-3(θ为参数,π≤θ<2π),若点Μ(14,a )在曲线C 上,则a 等于( )A .-3-5 3B .-3+5 3C .-3+533D .-3-533解析:选A ∵(14,a )在曲线C 上, ∴⎩⎪⎨⎪⎧14=6+4cos θ, ①a =5tan θ-3. ②由①,得cos θ=12.又π≤θ<2π,∴sin θ=-1-⎝ ⎛⎭⎪⎫122=-32,∴tan θ=- 3.∴a =5·(-3)-3=-3-5 3.3.在方程⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ(θ为参数)所表示的曲线上的一点的坐标为( )A .(2,-7)B.⎝ ⎛⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,12D .(1,0)解析:选C 将点的坐标代入参数方程,若能求出θ,则点在曲线上,经检验,知C 满足条件.4.由方程x 2+y 2-4tx -2ty +3t 2-4=0(t 为参数)所表示的一族圆的圆心的轨迹方程为( )A.⎩⎪⎨⎪⎧ x =2ty =tB.⎩⎪⎨⎪⎧ x =-2t y =tC.⎩⎪⎨⎪⎧x =2t y =-tD.⎩⎪⎨⎪⎧x =-2t y =-t解析:选A 设(x ,y )为所求轨迹上任一点. 由x 2+y 2-4tx -2ty +3t 2-4=0,得 (x -2t )2+(y -t )2=4+2t 2.∴⎩⎪⎨⎪⎧x =2t ,y =t .二、填空题5.已知曲线⎩⎪⎨⎪⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<2π).下列各点:A (1,3),B (2,2),C (-3,5),其中在曲线上的点是________.解析:将点A 坐标代入方程,得θ=0或π, 将点B ,C 坐标代入方程,方程无解, 故点A 在曲线上. 答案:A (1,3)6.下列各参数方程与方程xy =1表示相同曲线的是________(填序号).①⎩⎪⎨⎪⎧x =t 2,y =-t 2,②⎩⎪⎨⎪⎧x =sin t ,y =csc t ,③⎩⎪⎨⎪⎧x =cos t ,y =sec t ,④⎩⎪⎨⎪⎧x =tan t ,y =cot t .解析:普通方程中,x ,y 均为不等于0的实数,而①②③中x 的取值依次为:,,故①②③均不正确,而④中,x ∈R ,y ∈R ,且xy =1,故④正确.答案:④7.动点M 作匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,运动开始时,点M 位于A (1,1),则点M 的参数方程为________________________.解析:设M (x ,y ),则在x 轴上的位移为x =1+9t , 在y 轴上的位移为y =1+12t .∴参数方程为⎩⎪⎨⎪⎧x =1+9t ,y =1+12t (t 为参数).答案:⎩⎪⎨⎪⎧x =1+9t ,y =1+12t(t 为参数)三、解答题8.已知动圆x 2+y 2-2ax cos θ-2by sin θ=0(a ,b ∈R +,且a ≠b ,θ为参数),求圆心的轨迹方程.解:设P (x ,y )为所求轨迹上任一点. 由x 2+y 2-2ax cos θ-2by sin θ=0,得(x -a cos θ)2+(y -b sin θ)2=a 2cos 2θ+b 2sin 2θ.∴⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).这就是所求的轨迹方程.9.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,作PQ ⊥OA ,PB ∥OA ,试求点P 的轨迹方程.解:设P (x ,y )是轨迹上任意一点,取∠DOQ =θ, 由PQ ⊥OA ,PB ∥OA ,得x =OD =OQ cos θ=OA cos 2θ=2a cos 2θ, y =AB =OA tan θ=2a tan θ.所以P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =2a cos 2θ,y =2a tan θ,θ∈⎝ ⎛⎭⎪⎫-π2,π2.10.试确定过M (0,1)作椭圆x 2+y 24=1的弦的中点的轨迹方程.解:设过M (0,1)的弦所在的直线方程为y =kx +1, 其与椭圆的交点为(x 1,y 1)和(x 2,y 2). 设中点P (x ,y ),则有:x =x 1+x 22,y =y 1+y 22.由⎩⎪⎨⎪⎧y =kx +1,x 2+y 24=1,得(k 2+4)y 2-8y +4-4k 2=0. ∴x 1+x 2=-2k k 2+4,y 1+y 2=8k 2+4. ∴⎩⎪⎨⎪⎧x =-k k 2+4,y =4k 2+4(k 为参数).这就是以动弦斜率k 为参数的动弦中点的轨迹方程.。

相关文档
最新文档