八年级数学上册因式分解拔高题型

合集下载

八年级因式分解常见方法和经典题型(适合基础和提高)

八年级因式分解常见方法和经典题型(适合基础和提高)

西安乐童教育中心八年级数学 因式分解常见方法讲解和经典题型常见方法一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b); (2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2; (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2). 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式 例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

专题14.3 因式分解的综合应用(专项拔高卷)学生版-2024-2025学年八年级数学上册真题汇编章

专题14.3 因式分解的综合应用(专项拔高卷)学生版-2024-2025学年八年级数学上册真题汇编章

2024-2025学年人教版数学八年级上册同步专题热点难点专项练习专题14.3 因式分解的综合应用(专项拔高30题)考试时间:90分钟试卷满分:120分难度:0.53姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•佛山月考)已知a、b、c为△ABC的三边长,且a2+ac=b2+bc,则△ABC是()A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形2.(2分)(2023•阜城县校级模拟)如图,把图1中的①部分剪下来,恰好能拼在②的位置处,构成图2中的图形,形成一个从边长为a的大正方形中剪掉一个边长为b的小正方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2﹣b23.(2分)(2023•赫山区校级一模)设n为某一自然数,代入代数式n3﹣n计算其值时,四个学生算出了下列四个结果.其中正确的结果是()A.5814 B.5841 C.8415 D.84514.(2分)(2023•路北区模拟)在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b25.(2分)(2023春•蜀山区校级期中)如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“致真数”,如8=32﹣12,24=72﹣52,即8,24均为“致真数”,在不超过50的正整数中,所有的“致真数”之和为()A.160 B.164 C.168 D.1776.(2分)(2023春•金沙县期末)设a,b为自然数,定义aΔb=a2+b2﹣ab,则(3△4)+(﹣4△5)的值()A.34 B.58 C.74 D.987.(2分)(2022秋•大兴区校级期末)在日常生活中,如取款、上网等都需要密码,有一种利用“因式分解”法生成的密码,方便记忆.如:对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3﹣9xy2,取x=10,y=1时,用上述方法生成的密码可以是()A.101001 B.1307 C.1370 D.101378.(2分)(2022秋•江北区校级期末)定义:对于确定顺序的三个数a,b,c,计算,,,将这三个计算结果的最大值称为a,b,c的“极数”:例如:1,﹣3,1,因为,,,所以1,2,3的“极数”为,下列说法正确的个数为()①3,1,﹣4的“极数”是36;②若x,y,0的“极数”为0,则x和y中至少有1个数是负数;③存在2个数m,使得m,﹣6,2的极数为.A.0个B.1个C.2个D.3个9.(2分)(2021秋•惠民县期末)已知a、b、c为△ABC的三条边边长,且满足等式a2+2b2+c2﹣2ab﹣2bc =0,则△ABC的形状为()A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形10.(2分)(2022秋•内江期末)已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为()A.25 B.20 C.15 D.10评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023春•岳阳期末)当a+b=2,ab=﹣3时,则a2b+ab2=.12.(2分)(2023•平江县模拟)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为.13.(2分)(2022秋•万州区期末)若,则代数式m2+n2+k2+2mn﹣2mk﹣2nk 的值为.14.(2分)(2022秋•河口区期末)若一个整数能表示成a2+b2(a,b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.若p=4x2﹣mxy+2y2﹣6y+9(其中x>y>0)是“丰利数”,则m=.15.(2分)(2023春•淮安区期末)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n(以上长度单位:cm).观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为.16.(2分)(2022秋•新泰市期中)如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.17.(2分)(2022秋•新泰市期中)已知a=2021x+2000,b=2021x+2001,c=2021x+2002,则多项式a2+b2+c2﹣ab﹣bc﹣ca的值为.18.(2分)(2021秋•云梦县期末)若m2=2n+2021,n2=2m+2021(m≠n),那么式子m3﹣4mn+n3值为.19.(2分)(2022秋•文登区期中)已知a=+18,b=+17,c=+16,那么代数式a2+b2+c2﹣ab﹣bc﹣ac的值是.20.(2分)(2018春•成都期中)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc ﹣ca的值为.评卷人得分三.解答题(共9小题,满分80分)21.(8分)(2023春•高碑店市校级月考)发现:两个正整数之和与这两个正整数之差的平方差一定是4的倍数.验证:(1)(2+1)2﹣(2﹣1)2=;(2)设两个正整数为m,n,请验证“发现”中的结论正确;拓展:(1)已知(x+y)2=200,xy=48,求(x﹣y)2的值;(2)直接写出两个正整数之和与这两个正整数之差的平方和一定是几的倍数.22.(8分)(2023春•新晃县期末)“以形释数”是利用数形结合思想证明代数问题的一种体现,做整式的乘法运算时利用几何直观的方法获取结论,在解决整式运算问题时经常运用.例1:如图1,可得等式:a(b+c)=ab+ac;例2:由图2,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)如图3,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,从中你发现的结论用等式表示为;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=10,a2+b2+c2=36.求ab+bc+ac的值.(3)如图4,拼成AMGN为大长方形,记长方形ABCD的面积与长方形EFGH的面积差为S.设CD=x,若S的值与CD无关,求a与b之间的数量关系.23.(8分)(2022秋•交城县期末)在学习对复杂多项式进行因式分解时,老师示范了如下例题:例:因式分解:(x2+6x+5)(x2+6x﹣7)+36解:设x2+6x=y原式=(y+5)(y﹣7)+36第一步=y2﹣2y+1第二步=(y﹣1)2第三步=(x2+6x﹣1)2第四步完成下列任务:(1)例题中第二步到第三步运用了因式分解的;(填序号)①提取公因式;②平方差公式;③两数和的完全平方公式;④两数差的完全平方公式;(3)请你模仿以上例题分解因式:(a2﹣4a+2)(a2﹣4a+6)+4.24.(8分)(2022秋•前郭县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.25.(8分)(2022秋•邻水县期末)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图1可以用来解释a2+2ab+b2=(a+b)2.现有足够多的正方形卡片1号、2号,长方形卡片3号,如图3.(1)根据图2完成因式分解:2a2+2ab=;(2)现有1号卡片1张、2号卡片4张,3号卡片4张,在不重叠的情况下可以紧密地拼成一个大正方形,求这个大正方形的边长;(3)图1中的两个正方形的面积之和为S1,两个长方形的面积之和为S2,S1与S2有何大小关系?请说明理由.26.(10分)(2023春•芗城区校级期中)常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,可以通过以下过程进行因式分解:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2+2xy+y2﹣9;(2)已知:x+y=3,x﹣y=2.求:x2﹣y2+6y﹣6x的值.27.(10分)(2022秋•长春期末)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图①可以得到(a+2b)(a+b)=a2+3ab+2b2.请回答下列问题:(1)写出图②中所表示的数学等式;(2)猜测(a+b+c+d)2=.(3)利用(1)中得到的结论,解决下面的问题:已知a+b+c=12,ab+bc+ca=48,求a2+b2+c2的值;(4)在(3)的条件下,若a、b、c分别是一个三角形的三边长,请判断该三角形的形状,并说明理由.28.(10分)(2023春•新吴区期中)阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解例如x2+4x﹣5=x2+4x+()2﹣()2﹣5=(x+2)2﹣9=(x+2+3)(x+2﹣3)=(x+3)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式(利用公式法):x2+2x﹣8;(2)求多项式x2+4x﹣3的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.29.(10分)(2021秋•科尔沁区期末)阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法可以解决一些数学问题.比如运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例:x2+4x﹣5=x2+4x+()2﹣()2﹣5=x2+4x+4﹣9=(x+2)2﹣9.=(x+2﹣3)(x+2+3)=(x﹣1)(x+5).根据以上材料,利用多项式的配方解答下列问题.(1)分解因式:x2+2x﹣3;(2)求多项式x2+6x﹣9的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2﹣6a﹣8b﹣10c+50=0,求△ABC的周长.。

2023学年八年级数学上册高分突破必练专题(人教版) 因式分解常用方法(六大类型)(解析版)

2023学年八年级数学上册高分突破必练专题(人教版) 因式分解常用方法(六大类型)(解析版)

因式分解常用方法(六大类型)类型一:提公因式法提公因式提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.类型二:公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2类型三:先提公因式,再用公式法类型四:先展开,再用公式法类型五:十字相乘法考点2:十字相乘法1. x²+ ( p + q)x + pq =(x+p )(x+q )2. 在二次三项式ax2 + bx + c(a ≠ 0) 中,如果二次项系数a可以分解成两个因数之积,即a = a1 ⨯ a2 ,常数项c 可以分解成两个因数之积,即c = c1 ⨯c2 ,把a1,a2 ,c1,c2 排列如下:按斜线交叉相乘,再相加,得到a1c2 + a2c1,若它正好等于二次三项式ax 2 + bx + c 的一次项系数b ,即a1c2 + a2c1 = b ,那么二次三项式就可以分解为两个因式a1x + c1与a2 x + c2 之积,即ax2 + bx + c = (a1x + c1)(a2 x + c2 ) .类型六:分组分解法【类型一:提公因式法提公因式】【典例1】(2021春•罗湖区校级期末)因式分解:(1)﹣20a﹣15ax;(2)(a﹣3)2﹣(2a﹣6).【解答】解:(1)﹣20a﹣15ax=﹣5a(4+3x);(2)(a﹣3)2﹣(2a﹣6)=(a﹣3)2﹣2(a﹣3)=(a﹣3)(a﹣5).【变式1-1】(2022•中山市三模)因式分解:3ax﹣9ay=.【答案】3a(x﹣3y)【解答】解:原式=3a(x﹣3y).故答案为:3a(x﹣3y).【变式1-2】(2022•滨海县模拟)将多项式2a2﹣6ab因式分解为.【答案】2a(a﹣3b)【解答】解:原式=2a(a﹣3b).故答案为:2a(a﹣3b).【变式1-3】(2019秋•西城区校级期中)因式分解:2m(a﹣b)﹣3n(b﹣a)【解答】解:2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n).【变式1-4】(2021秋•虹口区校级月考)分解因式:x(a﹣b)+y(b﹣a)﹣3(b﹣a).【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).【类型二:公式法】【典例2】(2021秋•富裕县期末)因式分解:(1).(2)(a﹣2b)2﹣(3a﹣2b)2.【解答】解:(1)原式=52﹣()2=(5+m)(5﹣m).(2)(a﹣2b)2﹣(3a﹣2b)2=(a﹣2b+3a﹣2b)(a﹣2b﹣3a+2b)=(4a﹣4b)•(﹣2a)=﹣8a(a﹣b).【变式2-1】(2022春•来宾期末)把多项式9a2﹣1分解因式,结果正确的是()A.(3a﹣1)2B.(3a+1)2C.(9a+1)(9a﹣1)D.(3a+1)(3a﹣1)【答案】D【解答】解:9a2﹣1=(3a)2﹣1=(3a﹣1)(3a+1).故选:D.【变式2-2】(2022•菏泽)分解因式:x2﹣9y2=.【答案】(x﹣3y)(x+3y)【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).【变式2-3】(2021•槐荫区一模)分解因式:4a2﹣9b2.【解答】解:4a2﹣9b2=(2a+3b)(2a﹣3b).【变式5-4】(2021秋•闵行区期末)分解因式:(3m﹣1)2﹣(2m﹣3)2.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).【考点5 因式分解-完全平方】【典例3】(2022春•攸县期末)分解因式:y2+4y+4=()A.y(y+4)+4B.(y+2)2C.(y﹣2)2D.(y+2)(y﹣2)【答案】B【解答】解:y2+4y+4=(y+2)2,故选:B.【变式3-1】(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)2【答案】D【解答】解:原式=(x﹣2)2.故选:D.【变式3-2】(2022•富阳区二模)分解因式4y2+4y+1结果正确的是()A.(2y+1)2B.(2y﹣1)2C.(4y+1)2D.(4y﹣1)2【答案】A【解答】解:4y2+4y+1=(2y+1)2.故选:A.【变式3-3】(2020秋•海淀区校级期中)分解因式(x2﹣1)2+6(1﹣x2)+9.【答案】(x﹣2)2(x+2)2【解答】解:原式=(x2﹣1)2﹣6(x2﹣1)+9=(x2﹣1﹣3)2=(x﹣2)2(x+2)2.【类型三:先提公因式,再用公式法】【典例4】(2022春•巨野县期末)因式分解:(1)x3﹣2x2y+xy2(2)a2(x﹣3y)+9b2(3y﹣x)【解答】解:(1)x3﹣2x2y+xy2=x(x2﹣2xy+y2)=x(x﹣y)2;(2)a2(x﹣3y)+9b2(3y﹣x)=(x﹣3y)(a2﹣9b2)=(x﹣3y)(a+3b)(a﹣3b).【变式4-1】(2022春•济阳区期末)因式分解:2x3﹣8x2y+8xy2.【解答】解:2x3﹣8x2y+8xy2=2x(x2﹣4xy+4y2)=2x(x﹣2y)2.【变式4-2】(2022春•辰溪县期末)因式分解:(1)2ax2﹣2ay2;(2)3a3﹣6a2b+3ab2.【解答】解:(1)原式=2a(x2﹣y2)=2a(x+y)(x﹣y);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.【变式4-3】(2022•南京模拟)因式分解:4a2(x+7)﹣9(x+7).【解答】解:原式=(x+7)(4a2﹣9)=(x+7)(2a+3)(2a﹣3).【变式4-4】(2022春•新城区校级期末)因式分解:﹣3a+12a2﹣12a3.【解答】解:原式=﹣3a(1﹣4a+4a2)=﹣3a(1﹣2a)2.【类型四:先展开,再用公式法】【典例5】(2021春•苏州期末)分解因式(1)(a﹣b)(a﹣4b)+ab.(2)(a﹣b)2+4ab.【答案】(1)(a﹣2b)2 (2)(a+b)2【解答】解:(1)原式=a2﹣4ab﹣ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.(2)原式=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2.【类型五:十字相乘法】【典例6】(2021•北碚区校级开学)分解因式(1)x2﹣4x﹣12;(2)x2﹣4x﹣5.(3)﹣2x3﹣6x2y+20xy2.(4) 3x2﹣19x﹣14.【答案】(1)(x﹣6)(x+2)(2)(x﹣5)(x+1)(3)﹣2x(x+5y)(x﹣2y)(4)(x﹣7)(3x+2)【解答】(1)原式=x2+(﹣6+2)x+(﹣6×2)=(x﹣6)(x+2);(2)原式=(x﹣5)(x+1).(3)原式=﹣2x(x2+3xy﹣10y2)=﹣2x(x+5y)(x﹣2y).(1)原式=(x﹣7)(3x+2).【变式6】(2021春•岑溪市期末)分解因式(1)m2﹣4m﹣5.(2)x2+2x﹣3 (3)x2﹣2x﹣8【答案】(1)(m﹣5)(m+1)(2)(x+3)(x﹣1)(3)(x﹣4)(x+2)【解答】(1)原式=(m﹣5)(m+1).(2)原式=(x+3)(x﹣1).(3)原式=(x﹣4)(x+2).【类型六:分组分解法】【典例7】(2022春•新田县期中)先阅读材料:分解因式:a2b﹣3a2+2b﹣6.解:a2b﹣3a2+2b﹣6=(a2b﹣3a2)+(2b﹣6)=a2(b﹣3)+2(b﹣3)=(b﹣3)(a2+2)以上解题过程中用到了“分组分解法”,即把多项式先分组,再分解.请你运用这种方法对下面多项式分解因式:x2+3x﹣y2+3y.【解答】解:x2+3x﹣y2+3y=x2﹣y2+(3x+3y)=(x+y)(x﹣y)+3(x+y)=(x+y)(x﹣y+3).【变式7-1】(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解答】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).【变式7-2】(2020秋•嘉定区期末)分解因式:x2﹣y2﹣2x﹣2y.【解答】解:原式=(x2﹣y2)﹣(2x+2y)=(x+y)(x﹣y)﹣2(x+y)=(x+y)(x﹣y﹣2).1.(2021秋•江津区月考)分解因式(1)﹣20a﹣15ax;(2)xy3﹣10xy2+25xy【答案】(1)﹣5a(4+3x)(2)xy(y﹣5)2【解答】解:(1)﹣20a﹣15ax=﹣5a(4+3x);(2)xy3﹣10xy2+25xy=xy(y2﹣10xy+25)=xy(y﹣5)2.2.(2021春•铁西区期末)分解因式(1)2m(m﹣n)2﹣8m2(n﹣m)(2)2m(x﹣y)﹣3n(x﹣y).【答案】(1)2m(m﹣n)(5m﹣n)(2)(x﹣y)(2m﹣3n);【解答】解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n).(2)原式= (x﹣y)(2m﹣3n);3.(2021春•惠山区期中)分解因式:(1)a3﹣4a2+4a;(2)a2b﹣16b.【答案】(1)a(a﹣2)2 (2)b(a+4)(a﹣4)【解答】(1)原式=a(a2﹣4a+4)=a(a﹣2)2;(2)原式=b(a2﹣16)=b(a+4)(a﹣4)4、(2021秋•姜堰区月考)分解因式:(3m﹣1)2﹣(2m﹣3)2.【答案】(5m﹣4)(m+2).【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).5.(2021春•肃州区校级期中)分解因式:(1)x2﹣10x+16;(2)x2﹣2x﹣3.【解答】解:(1)x2﹣10x+16=(x﹣8)(x﹣2);(2)x2﹣2x﹣3=(x﹣3)(x+1).6.(2021•市南区校级开学)分解因式:(1)(x﹣2)(x﹣4)+1.(2)3m(2x﹣y)2﹣3mn2;【答案】(1)(x﹣3)2(2)3m(2x﹣y+n)(2x﹣y﹣n)【解答】(1)(x﹣2)(x﹣4)+1=x2﹣4x﹣2x+8+1=x2﹣6x+9=(x﹣3)2;(2)原式=3m[(2x﹣y)2﹣n2]=3m(2x﹣y+n)(2x﹣y﹣n);7.(2022春•富平县期末)因式分解:x2(m+n)﹣4y2(m+n).【解答】解:原式=(m+n)(x2﹣4y2)=(m+n)(x+2y)(x﹣2y).8.(2022春•新田县期末)因式分解:(1)﹣3y2+12y﹣12;(2)a2(a﹣b)+b2(b﹣a).【解答】解:(1)原式=﹣3(y2﹣4y+4)=﹣3(y﹣2)2;(2)原式=a2(a﹣b)﹣b2(a﹣b)=(a﹣b)(a2﹣b2)=(a﹣b)2(a+b).9.(2022春•清江浦区期末)因式分解:(1)a2﹣9;(2)3x2+6xy+3y2.【解答】解:(1)a2﹣9=(a+3)(a﹣3);(2)3x2+6xy+3y2.=3(x2+2xy+y2)=3(x+y)2.10.(2022春•海陵区期末)把下列各式因式分解:(1)x2﹣25;(2)﹣4x2+24x﹣36.【解答】解:(1)x2﹣25=(x+5)(x﹣5);(2)﹣4x2+24x﹣36=﹣4(x2﹣6x+9)=﹣4(x﹣3)2.11.(2022春•东台市期中)因式分解:(1)4a2b﹣6ab2 (2)4x2﹣4x+1(3)a2(x﹣y)+4(y﹣x)(4)(x+2)(x﹣8)+25【解答】解:(1)4a2b﹣6ab2=2ab(2a﹣3b);(2)4x2﹣4x+1=(2x﹣1)2;(3)a2(x﹣y)+4(y﹣x)=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2);(4)(x+2)(x﹣8)+25=x2﹣6x﹣16+25=x2﹣6x+9=(x﹣3)2.12.(2021秋•奉贤区期中)因式分解:x2+4y2+4xy﹣1.【解答】解:原式=(x2+4y2+4xy)﹣1=(x+2y)2﹣1=(x+2y+1)(x+2y﹣1).13.(2021秋•徐汇区月考)因式分解:4﹣m2﹣9n2﹣6mn.【解答】解:原式=4﹣(m2+9n2+6mn)=22﹣(m+3n)2=(2+m+3n)(2﹣m﹣3n).。

专题14.2 因式分解(专项拔高卷)学生版-2024-2025学年八年级数学上册真题汇编章节复习知识

专题14.2 因式分解(专项拔高卷)学生版-2024-2025学年八年级数学上册真题汇编章节复习知识

2024-2025学年人教版数学八年级上册同步专题热点难点专项练习专题14.2 因式分解(专项拔高30题)考试时间:90分钟试卷满分:120分难度:0.49姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共11小题,满分22分,每小题2分)1.(2分)(2023春•电白区期中)下列从左到右的变形中,属于因式分解的是()A.3xy2=3x⋅y2B.x2﹣y2=(x+y)(x﹣y)C.x2+x+2=x(x+1)+2 D.(x+1)(x﹣1)=x2﹣12.(2分)(2022秋•高青县期末)已知甲、乙、丙均为含x的整式,且其一次项的系数皆为正整数.若甲与乙相乘的积为x2﹣4,乙与丙相乘的积为x2﹣2x,则甲与丙相乘的积为()A.2x+2 B.x2+2x C.2x﹣2 D.x2﹣2x3.(2分)(2022秋•沙坪坝区校级期末)已知a+b=﹣3,ab=7,则多项式a2b+ab2﹣a﹣b的值为()A.24 B.18 C.﹣24 D.﹣184.(2分)(2022秋•两江新区期末)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(a+b)(m+n).以下说法:①分解因式:x2y+x2﹣y﹣1=(x2﹣1)(y+1)=(x+1)(x﹣1)(y+1);②若a,b,c是△ABC的三边长,且满足a2+b2+c2=ac+ab+bc,则△ABC为等边三角形;③若a,b,c为实数且满足a2+2b2+c2+28=4a+8b+8c,则这三边能构成三角形;正确的有()个.A.3 B.2 C.1 D.05.(2分)(2023春•曲阳县期末)已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为()A.﹣4 B.﹣2 C.2 D.46.(2分)(2022秋•白云区期末)下列多项式能用完全平方公式进行因式分解的是()A.a2﹣2a+4 B.a2+2a﹣1 C.a2+a﹣1 D.a2﹣4a+47.(2分)(2023春•曲阳县期末)小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种8.(2分)(2022秋•林州市校级期末)王林是一位密码编译爱好者,在他的密码手册中有这样一条信息:x ﹣1,a﹣b,3,x2+1,a,x+1分别对应六个字:南,爱,我,数,学,河,现将3a(x2﹣1)﹣3b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱数学B.爱河南C.河南数学D.我爱河南9.(2分)(2022秋•南安市期末)已知a=﹣x+2021,b=﹣x+2022,c=﹣x+2023,那么,代数式a2+b2+c2﹣ab﹣bc﹣ac的值是()A.﹣2022 B.2022 C.﹣3 D.310.(2分)(2022秋•内江期末)已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为()A.25 B.20 C.15 D.1011.(2分)(2022春•兰西县校级期末)已知长方形的周长为16cm,它两邻边长分别为xcm,ycm,且满足(x﹣y)2﹣2x+2y+1=0,则该长方形的面积为()cm2.A.B.C.15 D.16评卷人得分二.填空题(共9小题,满分18分,每小题2分)(2023春•汉寿县期中)已知4x2+2(k+1)x+1可以用完全平方公式进行因式分解,则k=.(2分)12.13.(2分)(2023春•新田县期中)已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2022的值为.14.(2分)(2023春•新晃县期末)甲、乙两个同学分解因式x2+mx+n时,甲看错了m,分解结果为(x+9)(x﹣2);乙看错了n,分解结果为(x﹣5)(x+2),则正确的分解结果为.15.(2分)(2023春•双流区期中)已知:△ABC的三分别边为a、b、c;且满足a2+2b2+c2=2b(a+c),则△ABC的形状.16.(2分)(2022秋•合肥期末)若a+b=3,ab=﹣1,则代数式a3b+2a2b2+ab3的值为.17.(2分)(2022春•桃江县期末)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.18.(2分)(2022秋•济宁期末)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y =9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).19.(2分)(2021秋•龙凤区期末)已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是.20.(2分)(2018春•成都期中)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc ﹣ca的值为.评卷人得分三.解答题(共10小题,满分80分)21.(6分)(2023春•成县期末)因式分解.(1)y+(y﹣4)(y﹣1);(2)9a2(x﹣y)+4b2(y﹣x).22.(6分)(2022秋•嘉峪关期末)整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.23.(6分)(2022秋•宛城区校级期末)阅读以下文字并解决问题:【方法呈现】形如x2+2ax+a2这样的二次三项式,我们可以直接用公式法把它分解成(x+a)2的形式,但对于二次三项式x2+6x﹣27,就不能直接用公式法分解了,此时,我们可以在x2+6x﹣27中间先加上一项9,使它与x2+6x 的和构成一个完全平方式,然后再减去9,则整个多项式的值不变.即:x2+6x﹣27=(x2+6x+9)﹣9﹣27=(x+3)2﹣62=(x+3+6)(x+3﹣6)=(x+9)(x﹣3),像这样,把一个二次三项式变成含有完全平方式的形式的方法,叫做配方法.同样地,把一个多项式进行局部因式分解可以来解决代数式值的最小(或最大)问题.例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,∵(x+1)2≥0,∴(x+1)2+2≥2.则这个代数式x2+2x+3的最小值是2,这时相应的x的值是﹣1.【尝试应用】(1)利用“配方法”因式分解:x2+2xy﹣3y2.(2)求代数式x2﹣14x+10的最小(或最大)值,并写出相应的x的值.24.(8分)(2023春•铁西区月考)我们把多项式a2+2ab+b2及a2﹣2ab+b2这样的式子叫做完全平方式.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式的最大值、最小值等.例如:分解因式x2+2x﹣3.原式=(x2+2x+1﹣1)﹣3=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1).求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x+1﹣1)﹣6=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值﹣8.根据阅读材料用配方法解决下列问题:(1)填空:x2﹣+49=(x﹣7)2;;(2)利用配方法分解因式:x2﹣2x﹣24(注意:用其它方法不给分);(3)当x为何值时,多项式﹣x2﹣4x+3有最大值,并求出这个最大值.25.(8分)(2023春•吉安县期末)常用的分解因式的方法有提取公因式法、公式法及到了高中还要学习的十字相乘法,但有更多的多项式只用上述方法就无法分解,x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2)这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:a2﹣4a﹣b2+4;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.26.(8分)(2023春•沭阳县期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)请说明28是否为“神秘数”;(2)下面是两个同学演算后的发现,请判断真假,并说明理由.①嘉嘉发现:两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”也是4的倍数.②洪淇发现:2024是“神秘数”.27.(8分)(2023春•滕州市期末)阅读下列材料,并解答相应问题:对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax﹣3a2,就不能直接应用完全平方式,我们可以在二次三项式x2+2ax﹣3a2中先加一项a2,使其一部分成为完全平方式,再减去a2项,使整个式子的值不变,于是有下面的因式分解:仔细领会上述的解决问题的思路、方法,认真分析完全平方式的构造,结合自己对完全平方式的理解,解决下列问题:(1)因式分解:①x2﹣4x+3;②(x2+2x)2﹣2(x2+2x)﹣3.(2)拓展:因式分解:x4+4.28.(10分)(2023春•贵州期末)【知识再现】在研究平方差公式时,我们在边长为a的正方形中剪掉一个边长为b的小正方形(如图1),把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a,b的等式①;【知识迁移】在边长为a的正方体上挖去一个边长为b的小正方体后,余下的部分(如图3)再切割拼成一个几何体(如图4).根据它们的体积关系得到关于a,b的等式为②a3﹣b3=(结果写成整式的积的形式)【知识运用】已知a﹣b=4,ab=3,求a3﹣b3的值.29.(10分)(2023春•兴庆区期末)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=15,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形图形,则x+y+z=.(4)如图4所示,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接AG 和GE,若两正方形的边长满足a+b=12,ab=20,你能求出阴影部分的面积吗?30.(10分)(2022秋•平城区校级期末)综合与实践如图1所示,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表达).(2)依据这个公式,康康展示了“计算:(2+1)(22+1)(24+1)(28+1)”的解题过程.解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1.在数学学习中,要学会观察,尝试从不同角度分析问题,请仿照康康的解题过程计算:2(3+1)(32+1)(34+1)(38+1)(316+1)+1.(3)对数学知识要会举一反三,请用(1)中的公式证明任意两个相邻奇数的平方差必是8的倍数.。

因式分解经典题及解析

因式分解经典题及解析

因式分解经典题及解析因式分解拔高题1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法:x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣①=(x+1)2﹣22﹣﹣﹣﹣﹣﹣②=…解决下列问题:(1)填空:在上述材料中,运用了_________的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;(2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3;(3)请用上述方法因式分解x2﹣4x﹣5.2.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_________.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底_________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.6.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.7.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.8.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.9.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.10.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x ﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.11.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:_________.(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x ﹣3)+4.12.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是_________,由②到③这一步的根据是_________;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是_________;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).13.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.答案1.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.考点:因式分解-运用公式法.专题:阅读型.分析:这是要运用添项法因式分解,首先要看明白例题才可以尝试做以下题目.解答:解:(1)x4+4y4=x4+4x2y2+4y2﹣4x2y2,=(x2+2y2)2﹣4x2y2,=(x2+2y2+2xy)(x2+2y2﹣2xy);(2)x2﹣2ax﹣b2﹣2ab,=x2﹣2ax+a2﹣a2﹣b2﹣2ab,=(x﹣a)2﹣(a+b)2,=(x﹣a+a+b)(x﹣a﹣a﹣b),=(x+b)(x﹣2a﹣b).点本题考查了添项法因式分解,难度比较大.评:2.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x ﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.考点:提公因式法与公式法的综合运用.专题:阅读型.分析:(1)完全平方式是两数的平方和与这两个数积的两倍的和或差;(2)x2﹣4x+4还可以分解,所以是不彻底.(3)按照例题的分解方法进行分解即可.解答:解:(1)运用了C,两数和的完全平方公式;(2)x2﹣4x+4还可以分解,分解不彻底;(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.点评:本题考查了运用公式法分解因式和学生的模仿理解能力,按照提供的方法和样式解答即可,难度中等.3.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.考点:因式分解-十字相乘法等.分析:根据十字相乘法的分解方法和特点可知:a 是﹣6的两个因数的和,则﹣6可分成3×(﹣2),﹣3×2,6×(﹣1),﹣6×1,共4种,所以将x2+ax﹣6分解因式后有4种情况.解答:解:x2+x﹣6=(x+3)(x﹣2);x2﹣x﹣6=(x﹣3)(x+2);x2+5x﹣6=(x+6)(x﹣1);x2﹣5x﹣6=(x﹣6)(x+1).点评:本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,常数﹣6的不同分解是本题的难点.4.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.考点:因式分解的应用.分析:根据题意设出两个连续偶数为2n、2n+2,利用平方差公式进行因式分解,即可证出结论.解答:解:设两个连续偶数为2n,2n+2,则有(2n+2)2﹣(2n)2,=(2n+2+2n)(2n+2﹣2n),=(4n+2)×2,=4(2n+1),因为n为整数,所以4(2n+1)中的2n+1是正奇数,所以4(2n+1)是4的倍数,故两个连续正偶数的平方差一定能被4整除.点评:本题考查了因式分解的应用,解题的关键是正确设出两个连续正偶数,再用平方差公式对列出的式子进行整理,此题较简单.5.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.考点:因式分解的意义.分析:由于x的多项式3x2+x+m分解因式后有一个因式是3x﹣2,所以当x=时多项式的值为0,由此得到关于m的方程,解方程即可求出m的值,再把m的值代入3x2+x+m进行因式分解,即可求出答案.解答:解:∵x的多项式3x2+x+m分解因式后有一个因式是3x﹣2,当x=时多项式的值为0,即3×=0,∴2+m=0,∴m=﹣2;∴3x2+x+m=3x2+x﹣2=(x+1)(3x﹣2);故答案为:m=﹣2,(x+1)(3x﹣2).点评:本题主要考查因式分解的意义,有公因式时,要先考虑提取公因式;注意运用整体代入法求解.6.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.考点:因式分解-运用公式法.专题开放型.:分析:根据完全平方公式以及平方差公式进行分解因式即可.解答:解:k=±10,假设k=10,则有(a2+10a+25)﹣b2=(a+5)2﹣b2=(a+5+b)(a+5﹣b).点评:此题主要考查了运用公式法分解因式,正确掌握完全平方公式和平方差公式是解题关键.7.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.考点:配方法的应用;非负数的性质:偶次方.分析:按照题目提供的方法将二次三项式配方后即可得到答案.解答:解:﹣2x2﹣8x﹣10=﹣2(x2+4x+5)=﹣2(x2+4x+22﹣22+5)=﹣2[(x+2)2+1]=﹣2(x+2)2﹣2因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么﹣2(x+2)2﹣2的值一定为负数,所以,原式的值恒小于0,并且,当x=﹣2时,原式有最大值﹣2.点评:此题考查了配方法与完全平方式的非负性的应用.注意解此题的关键是将原代数式准确配方.8.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.考点:提公因式法与公式法的综合运用.专题:开放型.分析:能用完全平方公式分解的式子的特点是:三项;两项平方项的符号需相同;有一项是两底数积的2倍.解答:解:由题意知,可以理解为:甲:这是一个关于x三次三项式;乙:三次项系数为1,即三次项为x3;丙:这个多项式的各项有公因式x;丁:这个多项式分解因式时要用到完全平方公式法.故多项式可以为x(x﹣1)2=x(x2﹣2x+1)=x3﹣2x2+x.点评:本题考查了提公因式法和公式法分解因式,是开放性题,根据描述按照要求列出这个多项式.答案不唯一.9.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x ﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.考点:因式分解的应用.分此题可以先将两个分解过的式子还原,再根析:据两个同学的错误得出正确的二次三项式,最后进行因式分解即可.解答:解:2(x﹣1)(x﹣9)=2x2﹣20x+18,2(x ﹣2)(x﹣4)=2x2﹣12x+16;由于甲同学因看错了一次项系数,乙同学看错了常数项,则正确的二次三项式为:2x2﹣12x+18;再对其进行因式分解:2x2﹣12x+18=2(x﹣3)2.点评:本题考查了因式分解的应用,题目较为新颖,同学们要细心对待.10.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:(x+3)4.(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x ﹣3)+4.考点:因式分解-十字相乘法等.专题:换元法.分析:(1)根据x2+6x+9=(x+3)2,进而分解因式得出答案即可;(2)仿照例题整理多项式进而分解因式得出答案即可.解答:解:(1)这位同学的因式分解不彻底,原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2=(x+3)4.故答案为:(x+3)4;(2)设x2+4x=y,则原式=(y+1)(y﹣3)+4 =y2﹣2y+1=(y﹣1)2=(x2+4x﹣1)2.点评:此题主要考查了因式分解法的应用,正确分解因式以及注意分解因式要彻底是解题关键.11.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是提公因式法分解因式,由②到③这一步的根据是同底数幂的乘法法则;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是(1+x)2007;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).考点:因式分解-提公因式法.分析:(1)根据题目要求可以编出先提公因式后用平方差的式子,答案不唯一;(2)首先通过分解因式,可发现①中的式子与结果之间的关系,根据所发现的结论可直接得到答案.解答:解:(1)m3﹣mn2=m(m2﹣n2)=m(m﹣n)(m+n),(2)①提公因式法,同底数幂的乘法法则;②根据①中可发现结论:(1+x)2007;③(1+x)n+1.点评:此题主要考查了因式分解法中的提公因式法分解因式,公式法分解因式以及分解因式得根据,考查同学们的观察能力与归纳能力.12.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.因式分解-十字相乘法等.考点:专阅读型.题:分析:发现规律:二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,则x2+px+q=(x+a)(x+b).解答:解:(1)x2+7x+12=(x+3)(x+4);(2)x2﹣7x+12=(x﹣3)(x﹣4);(3)x2+4x﹣12=(x+6)(x﹣2);(4)x2﹣x﹣12=(x﹣4)(x+3).点评:本题考查十字相乘法分解因式,是x2+(p+q)x+pq型式子的因式分解的应用,应识记:x2+(p+q)x+pq=(x+p)(x+q).。

专题10 因式分解重难点题型分类(解析版)八年级数学上册重难点题型分类高分必刷题(人教版)

专题10 因式分解重难点题型分类(解析版)八年级数学上册重难点题型分类高分必刷题(人教版)

专题10 因式分解重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《因式分解》这一在各次期中期末中常考的主流题型,所选题目源自各名校期中、 期末试题中的典型考题,具体包含六类题型:因式分解的概念、提公因式法、用平方差公式分解因式、用完全平方公式分解因式、用十字相乘法分解因式、分组分解法,本专题资料适合于培训机构的老师给学生作复习培训时使用或者学生月考、期末考前刷题时使用。

题型一:因式分解的概念因式分解的概念(1)定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.(2)原则:①分解必须要彻底(即分解之后因式均不能再做分解);②结果最后只留下小括号 ③结果的多项式首项为正。

1.(2022·福建泉州)下列各式由左边到右边的变形中,正确因式分解的是( )A .232(3)2a a a a -+=-+B .2(1)a x a a ax -=-C .()22393x x x ++=+D .()()2141414a a a -=+- 【详解】A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、符合因式分解的定义,故本选项正确;C 、左边≠右边,不是因式分解,故本选项错误;D 、左边≠右边,不是因式分解,故本选项错误.故选:D .2.(2021·江西)下列因式分解中,正确的是( )A .()211x x x +=+B .()()2222x x x -=+-C .()22693x x x -+=-D .()()21644x x x x x +-=+-+ 【详解】解:A 、等式左边不能因式分解,故本选项错误;B 、()()2222x x x -=+-,故本选项错误; C 、用完全平方公式,()22693x x x -+=-,正确;D 、等式右边不是因式分解,故本选项错误.故选C .3.(2022·上海)下列四个式子从左到右的变形是因式分解的为( )A .()()22x y x y y x --=--B .23231226a b a b ⋅=C .()()()442281933x y x y x y x y -++-=D .()()()()222222821222812a a a a a a a a +-++++-+= 【详解】解:AD.等号右边都不是积的形式,所以不是因式分解,故AD 不符合题意;B.左边不是多项式,所以不是因式分解,故B 不符合题意;C.符合因式分解的定义,故C 符合题意;故选:C .题型二:提公因式法提公因式法的定义(1)定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成 因式乘积的形式,这种分解因式的方法叫做提公因式法.(2)理论依据:乘法分配律的逆运算)(c b a ac ab +=+.4.(2022·甘肃)已知a −b =3,ab =2,则22a b ab -的值为____________.【详解】解:∵3a b -=,2ab =,∴22a b ab - ()=ab a b - =23⨯ =6.故答案为:6.5.(2022·河北邯郸)分解因式:x (x -3)-x +3=_______________________.【详解】解:x (x -3)-x +3=x (x -3)-(x -3)=(x -3)(x -1),故答案为:(x -3)(x -1).6.(2022·辽宁)因式分解:()()26a x y b y x ---=________. 【详解】解:2a (x -y )-6b (y -x )=()()23x y a b -+.故答案为:()()23x y a b -+.题型三:用平方差公式分解因式公式法(1)公式法的定义:逆用乘法公式将一个多项式分解因式的方法叫做公式法.(2)方法归纳:①平分差公式))((22b a b a b a -+=-;②完全平方公式222)(2b a b ab a ±=+±.7.(2022·河北邯郸)下列多项式中,既能用提取公因式又能用平方差公式进行因式分解的是( ) A .22a b -- B .24a -+ C .34a a - D .24a a + 【详解】解:A.22a b --,不能因式分解,故该选项不符合题意;B.24a -+()()22a a =+-,只用了平方差公式因式分解,故该选项不符合题意;C.34a a -()()()2422a a a a a =-=+-,故该选项符合题意;D. 24a a +,能用提公因式的方法因式分解,故该选项不符合题意.故选C .8.(2022·辽宁沈阳)在下列各式中,能用平方差公式因式分解的是( )A .24a +B .24a -C .24a --D .22a m + 【详解】解:A 、24a +,不能用平方差公式因式分解,故本选项不符合题意;B 、()()2422a a a -=+-,能用平方差公式因式分解,故本选项符合题意;C 、()2244a a --=-+,不能用平方差公式因式分解,故本选项不符合题意;D 、22a m +,不能用平方差公式因式分解,故本选项不符合题意;故选:B9.(2022·广西贺州)在实数范围内分解因式:425x -=________________________________.10.(2022·陕西汉中)分解因式:()2249a b +-=________.【详解】解:原式()()22=43a b +-()()=4343a b a b +-++ 故答案为:()()4343a b a b +-++.11.(2022·辽宁葫芦岛·八年级期末)因式分解:2()25()x m n n m -+-【详解】解:原式=2)(25()x m n m n ---=2()(25)m n x -- =()(5)(5)m n x x -+-.12.(2022·山东济宁)()()2222x y x y +-+分解因式的结果是______. 【详解】解:()()2222x y x y +-+=()()()()222+-2⎡⎤+++⎡⎤⎣⎦⎣⎦+x y x y x y x y =2+2)((22)+++--x y x y x y x y =(3+3()-+)x y x y =3(+()-)x y x y - 或=3(+()-)x y y x 故答案为:3(+()-)x y x y -或3(+()-)x y y x . 13.(2022·湖南永州)因式分解(1)336m m - (2)()222224m n m n +- 【详解】解:(1)解:336m m -()236m m =-()()66m m m =+-;(2)解:()222224m n m n +-()()22222m n mn =+-()()222222m n mn m n mn =+++-()()22m n m n =+-.14.(2022·山东菏泽)分解因式:(1)2()4()x a b b a -+- (2)22(2)(2)a b a b +-- 【详解】解:(1)解:原式()2()4a b x =--()(2)(2)a b x x =--+; (2)解:原式(22)(22)a b a b a b a b =++-+-+(3)(3)a b b a =+-.题型四:用完全平方公式分解因式15.(2022·陕西榆林)下列各式中,能用完全平方公式分解因式的是( )A .241x -B .221x x +-C .221x x ++D .22x xy y -+ 【详解】解:A 、241x -可以用平方差公式因式分解为(2x +1)(2x -1).故选项A 不符合题意; B 、221x x +-不能用完全平方公式进行因式分解,故选项B 不符合题意;C 、2221(1)x x x ++=+,故选项C 符合题意;D 、22x xy y -+不能用完全平方公式进行因式分解,故选项D 不符合题意.故选:C .16.(2022·山东滨州)下列各式:①22x y --;②22114a b -+;③22a ab b ++;④222x xy y -+-;⑤2214mn m n -+,能用公式法分解因式的有( ) A .2个 B .3个 C .4个 D .5个17.(2022·山东济南)下列各式能用完全平方公式进行分解因式的是( )A .21x +B .221x x --C .239x x ++D .214x x -+ 【详解】解:A .x 2+1,缺少积的2倍项,不能用完全平方公式进行分解因式,故A 不符合题意;B .x 2+2x -1,缺少两数的平方的和,不能用完全平方公式进行分解因式,故B 不符合题意;18.(2021·湖北·十堰)分解因式:3222a a b ab -+=_________________.【详解】解:()()23222222a a b ab a a ab b a a b -+=-+=-,故答案为:()2a ab -. 19.(2022·辽宁)已知多项式29(6)4x m x -++可以按完全平方公式进行因式分解,则m =________________.【详解】解:多项式()2229(6)43(6)2x m x x m x -++=-++,∵该多项式可以按完全平方公式进行因式分解,∴(6)232m -+=⨯⨯或(6)232m -+=-⨯⨯,解得18m =-或6m =.故答案为:18-或6.20.(2022·湖南岳阳)若多项式29x kx ++可以用完全平方公式进行因式分解,则k =_________.【详解】解:∵多项式29x kx ++可以用完全平方公式进行因式分解,∴2136k =±⨯⨯=±.故答案为:6±.21.(2022·吉林)分解因式:am 2﹣2amn +an 2=_____.【详解】解:am 2﹣2amn +an 2=()()2222a m mn n a m n -+=-, 故答案为:()2a m n -.22.(2022·辽宁营口·八年级期末)分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.【详解】解:原式=﹣2ab (4a 2﹣4ab +b 2)=﹣2ab (2a ﹣b )2,故答案为:﹣2ab (2a ﹣b )2.23.(2022·陕西渭南)分解因式:﹣x 2y +6xy ﹣9y =___.【详解】解:﹣x 2y +6xy ﹣9y()()22=693y x x y x --+=--故答案为:()23y x --.24.(2021·四川达州)分解因式24(21)x x +-=________.【详解】解:(2x +1)2-x 4=(2x +1-x 2)(2x +1+x 2)=(2x +1-x 2)(x +1)2.故答案为:(2x +1-x 2)(x +1)2.题型五:用十字相乘法分解因式十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和.(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++25.(2022·辽宁抚顺)分解因式:2-2-8a a =______.【详解】解:a 2-2a -8=(a -4)(a +2),故答案为:(a -4)(a +2).26.(2022·吉林长春)分解因式:x 2﹣5x ﹣6=_____.【详解】解:x 2﹣5x ﹣6 ()()61x x =-+故答案为:()()61x x -+.27.(2022·上海浦东)因式分解:2412x x --=_______.【详解】解:因为1262,624-=-⨯-+=-,且4-是x 的一次项的系数,所以2412(6)(2)--=-+x x x x ,故答案为:(6)(2)x x -+.28.(2021·上海虹口)因式分解:2a 2-4a -6=________.【详解】解:2a 2-4a -6=2(a 2-2a -3)=2(a -3)(a +1)故答案为:2(a -3)(a +1).29.(2022·黑龙江)把多项式2412ab ab a --分解因式的结果是_________.【详解】2412ab ab a --2(412)a b b =--()()62a b b =-+故答案为:(6)(2)a b b -+.30.(2022·上海)在实数范围内分解因式:2252x x -+=________.【详解】解:225221()()2x x x x -+=--,故答案为:(21)(2)x x --.31.(2022·山东淄博)分解因式:3243a a a -+=__________.【详解】解:32243(43)(1)(3).a a a a a a a a a -+=-+=--32.(2020·上海浦东)分解因式:32514x x x --=__________. 【详解】解:32514x x x --=()2514x x x --=()()27x x x +-故答案为:()()27x x x +-.33.(2018·黑龙江)在实数范围内分解因式:x 4﹣2x 2﹣3=_____.题型六:分组分解法34.(2022·黑龙江)分解因式:2224a ab b -+-=________________.【详解】解:2224a ab b -+-2()4a b =--(2)(2)a b a b =-+--故答案为:(2)(2)a b a b -+--. 35.(2021·江苏常州)因式分解:22421x y y ---=__________.【详解】22421x y y ---224(21)x y y =-++22(2)(1)x y =-+(21)(21)x y x y =++--. 故答案为:(21)(21)x y x y ++--.36.已知a 、b 、c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状( )A .直角三角形B .等腰三角形C .直角或等腰三角形D .直角或等边三角形【解答】解:222244a c b c a b -=-,2222222()()()c a b a b a b ∴-=+-,2222222()()()0c a b a b a b --+-=, 22222()()0a b c a b ---=,22a b ∴=或222c a b =+,ABC ∴∆是等腰三角形或直角三角形, 故选:C .37.分解因式:22424x xy y x y --++= .【解答】解:22424x xy y x y --++22(44)(2)x xy y x y =-++-2(2)(2)x y x y =-+-(2)(21)x y x y =--+.故答案为:(2)(21)x y x y --+.38.已知2226100a b a b ++-+=,求ab 的值.【解答】解:2226100a b a b ++-+=,2221690a a b b ∴+++-+=,22(1)(3)0a b ∴++-=, 10a ∴+=,30b -=,1a ∴=-,3b =,133ab ∴=-⨯=-.39.已知a ,b ,c 是ABC ∆的三边,且满足222222a b c ab ac ++=+,试判断ABC ∆的形状,并说明理由.【解答】解:ABC ∆为等边三角形,理由如下:由222222a b c ab ac ++=+得: 2222220a ab b a ac c -++-+=,22()()0a b a c ∴-+-=,0a b ∴-=,0a c -=a b ∴=,a c = a b c ∴==,ABC ∴∆为等边三角形.40.已知a ,b ,c 为ABC ∆的三边,若2222220a b c ac bc ++--=,判断ABC ∆的形状?【解答】解:2222220a b c ac bc ++--=,2222220a c ac b c bc ∴+-++-=, 即22()()0a c b c -+-=,0a c ∴-=且0b c -=,即a c =且b c =,a b c ∴==. 故ABC ∆是等边三角形.41.三角形ABC 的三条边长a ,b ,c 满足222166100a b c ab bc --++=,求证:2a c b +=.【解答】证明:222166100a b c ab bc --++=,222269(1025)0a ab b c bc b ∴++--+=, 22(3)(5)0a b c b ∴+--=,(35)(35)0a b c b a b c b ∴++-+-+=,即(2)(8)0a c b a b c +-+-=, a ,b ,c 是三角形三边长,0a b c ∴+->,80a b c ∴+->,20a c b ∴+-=, 2a c b ∴+=.。

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课研讨复习教学课件拔高


计算:
(1)28x4y2 ÷7x3y;
解:(1)原式=(28 ÷7)x4–3y2–1
(2)–5a5b3c ÷15a4b.
(2)原式=(–5÷15)a5–4b3–1c
=4xy;
= –
1
2c.
ab
3
多项式除以单项式要按照法则逐项进行,不得
漏项,并且要注意符号的变化.
巩固练习
下列计算错在哪里?怎样改正?
计算.
巩固练习
计算:
(1)(–xy)13÷(–xy)8;
(2)(x–2y)3÷(2y–x)2;
(3)(a2+1)6÷(a2+1)4÷(a2+1)2.
解:(1)原式=(–xy)13–8=(–xy)5=–x5y5;
(2)原式=(x–2y)3÷(x–2y)2=x–2y;
(3)原式=(a2+1)6–4–2=(a2+1)0=1.
探究新知
单项式除以单项式的法则
单项式相除, 把系数与同底数幂分别相除作为商的
因式,对于只在被除式里含有的字母,则连同它的指数作
为商的一个因式.
理解
商式=系数 • 同底的幂 • 被除式里单独有的幂
被除式的系数
除式的系数
底数不变,
指数相减.
保留在商里
作为因式.
探究新知
素养考点 3 单项式除法以单项式法则的应用
探究新知
素养考点 2
同底数幂除法法则的逆运用
例2 已知am=12,an=2,a=3,求am–n–1的值.
解:∵am=12,an=2,a=3,
∴am–n–1=am÷an÷a=12÷2÷3=2.
方法总结:解此题的关键是逆用同底数幂的除法,对am–n–1进
行变形,再代入数值进行计算.

第14章整式的乘法与因式分解(拔高卷)学生版

20232024学年人教版数学八年级上册章节真题汇编检测卷(拔高)第14章整式的乘法与因式分解考试时间:120分钟试卷满分:100分难度系数:0.47姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•南平期末)下列各式变形中,是因式分解的是()A.x2﹣2x﹣1=x(x﹣2)﹣1 B.C.(x+2)(x﹣2)=x2﹣4 D.x2﹣1=(x+1)(x﹣1)2.(2分)(2022秋•天河区校级期末)有足够多张如图所示的A类、B类正方形卡片和C类长方形卡片,若要拼一个长为(3a+2b)、宽为(a+b)的大长方形,则需要C类卡片的张数为()A.3 B.4 C.5 D.63.(2分)(2023春•滕州市校级期末)若x2﹣2(m﹣3)x+16是完全平方式,则m的值是()A.3 B.﹣5 C.7 D.7或﹣14.(2分)(2022秋•南关区校级期末)若△ABC的三边a,b,c满足(a﹣b)(b2﹣2bc+c2)=0,那么△ABC 的形状是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形5.(2分)(2023春•海港区校级期中)若c=(﹣)2022×()2023,则下列结果正确的是()A.1 B.﹣1 C.D.﹣6.(2分)(2022秋•西山区期末)如图,正方形中阴影部分的面积为()A.a2﹣b2B.a2+b2C.ab D.2ab7.(2分)(2022秋•西岗区校级期末)若a﹣2b=10,ab=5,则a2+4b2的值是()A.125 B.120 C.110 D.1008.(2分)(2022秋•合川区校级期末)已知2x﹣y=3,则代数式x2﹣xy+y2+的值为()A.B.C.3 D.49.(2分)(2022秋•和平区校级期末)已知a=2020m+2021n+2020,b=2020m+2021n+2021,c=2020m+2021n+2022,那么a2+b2+c2﹣ab﹣bc﹣ca的值为()A.1 B.3 C.6 D.101010.(2分)(2022秋•新泰市期中)在多项式①﹣m4﹣n4,②a2+b2,③﹣16x2+y2,④9(a﹣b)2﹣4,⑤﹣4a2+b2中,能用平方差公式分解因式的有()A.1个B.2个C.3个D.4个评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•前郭县期末)已知2m=a,32n=b,m,n为正整数,则25m+10n=.12.(2分)(2022春•洪泽区期中)一个长、宽分别为m、n的长方形的周长为16,面积为6,则m2n+mn2的值为.13.(2分)(2022秋•长沙月考)x是实数,若1+x+x2+x3+x4+x5=0,则x6=.14.(2分)(2021秋•巴彦县期末)如果(x+m)(x﹣3)的乘积中不含x的一次项,则m的值为.15.(2分)(2021秋•冷水滩区校级期中)已知(x﹣3)x+4=1,则整数x的值是.16.(2分)(2019秋•雁江区期末)当a=,b=时,多项式a2+b2﹣4a+6b+18有最小值.17.(2分)(2022秋•任城区校级月考)已知m、n满足mn=4,m﹣n=﹣1,则2m3n﹣4m2n2+2mn3=.18.(2分)(2021•寻乌县模拟)如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=9,两正方形的面积和S1+S2=51,则图中阴影部分面积为.19.(2分)(2020•武侯区校级开学)计算:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2=.20.(2分)(2018秋•晋江市期末)如图①,是一个棱长为a的正方体中挖去一个棱长为b的小正方体(a >b)(1)如图①所示的几何体的体积是.(2)用另一种方法表示图①的体积:把图①分成如图②所示的三块长方体,将这三块长方体的体积相加后得到的多项式进行因式分解.比较这两种方法,可以得出一个代数恒等式.评卷人得分三.解答题(共7小题,满分60分)21.(8分)(2022秋•抚顺县期末)分解因式:(1)a3﹣a;(2)1﹣x2+2xy﹣y2.22.(8分)(2022春•渭滨区期末)如图1在一个长为2a,宽为2b的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形边长为.(2)请你用两种不同的方法表示图2中阴影部分的面积,并用等式表示.(3)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,面积分别是S1和S2,设AB=8,两正方形的面积和S1+S2=34,求图中阴影部分面积.23.(8分)(2022秋•铁西区期中)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(3,1)=,(2,)=;(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),并作出了如下的证明:∵设(3,4)=x,则3x=4,∴(3x)n=4n,即(3n)x=4n,∴(3n,4n)=x∴(3n,4n)=(3,4).试参照小明的证明过程,解决下列问题:①计算(8,1000)﹣(32,100000);②请你尝试运用这种方法,写出(7,45),(7,9),(7,5)之间的等量关系.并给予证明.24.(8分)(2021秋•坡头区校级期末)数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:(a+b)2=a2+2ab+b2.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:S阴影=;方法2:S阴影=.(2)由(1)中两种不同的方法,你能得到怎样的等式?(3)①已知(m+n)2=16,mn=3,请利用(2)中的等式,求m﹣n的值.②已知(2m+n)2=13,(2m ﹣n)2=5,请利用(2)中的等式,求mn的值.25.(8分)(2022秋•祁东县校级期中)一个长方形的长和宽分别为x厘米和y厘米(x,y为正整数),如果将长方形的长和宽各增加5厘米得到新的长方形,面积记为S1,将长方形的长和宽各减少2厘米得到新的长方形,面积记为S2.(1)请说明:S1与S2的差一定是7的倍数.(2)如果S1比S2大196cm2,求原长方形的周长.(3)如果一个面积为S1的长方形和原长方形能够没有缝隙没有重叠的拼成一个新的长方形,请找出x 与y的关系,并说明理由.26.(10分)(2022秋•西湖区校级期末)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b).27.(10分)(2022春•榕城区期末)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.。

初二上册因式分解100题及答案

初二上册因式分解100题及答案一、提取公因式(1)4322+82a x a x(2)244-153xy z xy(3)3432-a y a x y832(4)(3)(52)(3)(64)+-+-+-a b a b(5)42243--xy x yz y z18945(6)423xy z x z+129(7)24322-a c ab c520(8)23222-5x y z x y(9)(4)(65)(4)(25)(4)(21)-++--+--+x x x x x x (10)(85)(43)(5)(85)---++-a b b a(11)(61)(32)(93)(61)++-++m n n m(12)(83)(23)(83)(51)(83)(81)x x x x x x+--++-+++ (13)(53)(53)(53)(65)-++--x y x y(14)3224+b c b c2016(15)3323-x yz x y z312(16)(72)(2)(72)(5)--+-+a b a b(17)4442-45a ab c(18)(25)(61)(25)(2)+-++++a b a b(19)(31)(75)(31)(83)-----x x x x (20)(31)(91)(85)(31)m n n m------二、公式法(21)22-x y256169(22)22625484-x y(23)2x-7291(24)2-+x x400760361(25)22-a b361100(26)22++x xy y84123216(27)22m mn n-+4001160841 (28)2x x++165649(29)22-+144264121m mn n (30)2729x-三、分组分解法(31)72542418mn m n+++ (32)61248-+-mn m n(33)22a c ab bc ca+-+-1676322 (34)22----54757654a b ab bc ca(35)22+--+x z xy yz zx264213(36)22a c ab bc ca++++16202548 (37)54455445+++xy x y(38)22--++52110632a c ab bc ca(39)630525xy x y--+(40)1050525-+-mx my nx ny (41)22-+--a b ab bc ca365113054 (42)2485418+++ab a b(43)2-+-255735a ab bc ca(44)15401848-+-mn m n (45)12203050--+ab a b(46)99010+--ax ay bx by (47)840420xy x y+++(48)728455-+-ab a b(49)327436----xy x y(50)56724254--+ab a b四、拆添项(51)22a b a b-++-4949709824 (52)22---+94541272a b a b(53)2225813010827m n m n --+-(54)4264814x x -+(55)4224368349x x y y ++(56)22449129840m n m n -+--(57)2236142445x y x y -+++(58)4224641625a a b b ++(59)22644322845m n m n --+-(60)2236361084865m n m n -+-+五、十字相乘法(61)2222018439611a b c ab bc ac+--+-(62)22245246743059x y z xy yz xz++--+(63)222979294x xy y x y -+-++(64)222024256525x xy y x y -----(65)226112391321x xy y x y --++-(66)2221823651842x y z xy yz xz--++-(67)2267203193x xy y x y ---+-(68)22248218221560a b c ab bc ac++--+(69)222183625724x y z xy yz xz-++--(70)22454142x xy y x y --+--(71)224073303542x xy y x y-++-(72)22240208572636x y z xy yz xz++-+-(73)2214311526174m mn n m n ++++-(74)22230282591516a b c ab bc ac++-+-(75)22242124461317x y z xy yz xz+-+++(76)22145728251525m mn n m n +++--(77)22182931421x xy y x y++++(78)222821624522x y z xy yz xz--+++(79)22251015159m mn n m n--++(80)228213836x xy x y +-+-六、双十字相乘法(81)2222018439611a b c ab bc ac+--+-(82)22245246743059x y z xy yz xz++--+(83)222979294x xy y x y -+-++(84)222024256525x xy y x y -----(85)226112391321x xy y x y --++-(86)2221823651842x y z xy yz xz--++-(87)22---+-x xy y x y67203193(88)222a b c ab bc ac++--+48218221560 (89)222x y z xy yz xz-++--183625724 (90)22--+--454142x xy y x y七、因式定理(91)32--+a a a3292(92)32x x x++-81873(93)32x x x+-+5101112(94)32+-+323232x x x(95)3225215x x x -+-(96)3266710m m m +-+(97)32519228x x x -+-(98)325334315y y y -+-(99)327240x x x ++-(100)3321x x --初二上册因式分解100题答案一、提取公因式(1)2222(41)a x a x+(2)2423(5)xy z y-(3)3328(4)a y y x-(4)(3)(116)a b-+-(5)322339(25)y xy x z y z--(6)423(43)xz y xz+(7)22225(4)a c c ab-(8)222(51)x y yz-(9)(4)(61)x x-+(10)(85)(32)a b---(11)(61)(61)m n-++ (12)(83)(113)x x+-(13)(53)(112)x y--(14)2224(54)b c b c+(15)323(14)x yz yz-(16)(72)(23)a b-+ (17)442(45)a b c-(18)(25)(53)a b-+-(19)(31)(2)x x--+(20)(31)(174)m n---二、公式法(21)(1613)(1613)x y x y+-(22)(2522)(2522)x y x y+-(23)(271)(271)x x+-(24)2(2019)x-(25)(1910)(1910)a b a b+-(26)2(294)x y+(27)2(2029)m n-(28)2(47)x+(29)2(1211)m n-(30)(27)(27)x x+-三、分组分解法(31)6(31)(43)m n++ (32)2(32)(2)m n+-(33)(2)(837)a c ab c---(34)(9)(676)a b a b c+--(35)(26)(2)x y z x z-++(36)(84)(25)a b c a c+++ (37)9(1)(65)x y++(38)(53)(27)a c ab c--+(39)(65)(5)x y--(40)5(2)(5)m n x y+-(41)(95)(46)a b a b c+--(42)2(49)(31)a b++(43)(57)(5)a c a b--(44)(56)(38)m n+-(45)2(25)(35)a b--(46)(10)(9)a b x y-+(47)4(21)(5)x y++(48)(85)(91)a b+-(49)(34)(9)x y-++(50)2(43)(79)a b--四、拆添项(51)(772)(7712)a b a b+--+(52)(326)(3212)a b a b+---(53)(599)(593)m n m n+--+ (54)22(872)(872)x x x x+---(55)2222(67)(67)x xy y x xy y++-+ (56)(2710)(274)m n m n++--(57)(65)(69)x y x y++-+(58)2222(885)(885)a ab b a ab b++-+(59)(829)(825)m n m n+--+ (60)(6613)(665)m n m n++-+五、十字相乘法(61)(43)(564)a b c a b c-+--(62)(566)(94)x y z x y z-+-+ (63)(4)(271)x y x y----(64)(575)(465)x y x y++--(65)(63)(27)x y x y+--+ (66)(26)(926)x y z x y z+--+ (67)(343)(251)x y x y+--+(68)(623)(86)a b c a b c-+-+ (69)(232)(93)x y z x y z+---(70)(56)(7)x y x y--++ (71)(56)(857)x y x y--+ (72)(542)(854)x y z x y z----(73)(234)(751)m n m n+++-(74)(672)(54)a b c a b c----(75)(64)(734)x y z x y z+-++ (76)(745)(275)m n m n+-++ (77)(97)(23)x y x y+++ (78)(236)(47)x y z x y z-++-(79)(553)(53)m n m n-++ (80)(436)(71)x y x+-+六、双十字相乘法(81)(43)(564)a b c a b c-+--(82)(566)(94)x y z x y z-+-+ (83)(4)(271)x y x y----(84)(575)(465)x y x y++--(85)(63)(27)x y x y+--+ (86)(26)(926)x y z x y z+--+ (87)(343)(251)x y x y+--+(88)(623)(86)a b c a b c-+-+ (89)(232)(93)x y z x y z+---(90)(56)(7)x y x y--++七、因式定理(91)2(2)(341)a a a-+-(92)(1)(23)(41)x x x++-(93)2(3)(554)x x x+-+ (94)(2)(34)(4)x x x--+ (95)2(3)(25)x x x-++ (96)2(2)(665)m m m+-+ (97)(1)(2)(54)x x x---(98)(1)(53)(5)y y y---(99)(2)(4)(5)x x x-++ (100)2(1)(331)x x x-++。

精品-八年级数学上册-因式分解提高题集

整式的乘除与因式分解例1.已知:2,3==n m x x ,求n m x23+、n m x 23-的值。

例2.若0352=-+y x ,求yx 324⋅的值.例3.已知二次三项式21ax bx ++与2231x x -+的乘积展开式中不含3x 项,也不含x 项,求a 、b 的值。

例4.对下列多项式进行因式分解:(1)2233m n m n --- (2)432462x x x --+(3)22111439x xy y -+- (4)32322002220022000200220022003-⨯-+-例5.已知9ab =,3a b -=-,求223a ab b ++的值.例6.已知22n+1+4n =48, 求n 的值.例7.已知2226100a a b b ++-+=,求a 、b 的值。

例8.求证:不论x 、y 为何有理数,2210845x y x y +-++的值均为正数。

例9.先化简,再求值:()()()()33222491233x y x y x y xy xy xy +-+-+÷-,其中1,23x y ==。

课堂练习:一、选择题:1.若142-=y x ,1327+=x y ,则y x -等于( )A.-5B.-3C.-1D.12.若x 、y 是正整数,且2x ·2y =25,则x 、y 的值有 ( )A. 4对B. 3对C. 2对D. 1对3.若a 、b 互为相反数,且a 、b 均不为0,n 为正整数,则下列结论正确的是( )A. a 2n 和b 2n 也一定互为相反数B. a n 与b n 一定互为相反数C. -a 2n 与-b 2n 也一定互为相反数D. a 2n +1与b 2n +1也一定互为相反数4.观察下列各式:①abx adx -;②2226x y xy +;③328421m m m -++;④3223a a b ab b ++-;⑤222()5()6()p q x y x p q p q +-+++;⑥2()()4()a x y x y b y x +--+.其中可以用提公因式法分解因式的有( )A .①②⑤B .②④⑤C .②④⑥D .①②⑤⑥5.多项式322236312m n m n m n --+分解因式时应提取的公因式为( )A .3mnB .23m n -C .23mnD .223m n -6.把多项式()()a p a p -+-112分解因式的结果是( )A.()()p p a +-21B.()()p p a --21 C.()()11--p a p D.()()11+-p a p7.已知2a b +=,则224a b b -+的值是( )A.2 B.3 C.4 D.68.设(5a+3b)2=(5a-3b)2+M,则M 的值是( )A. 30abB. 60abC. 15abD. 12ab9.下列多项式能利用平方差公式分解的是( )A.2x y -B.22x y +C.22x y --D.22x y -+10.22424y x y xy x ++--有一个因式是x-2y ,另一个因式是( )A. x+2y+1B.x+2y-1C.x-2y+1D.x-2y-1二、填空题:11.若210,n n +-=则3222008_______.n n ++=12.已知:a m =2,b n =32,则n m 1032+=_______ 13.计算()()200520045225__________+⋅-= 14.利用分解因式计算:32003+6×32002-32004=_________15.计算(2+1)(22+1)(24+1)·……·(22008+1)+1=______16.要使162x +1成为完全平方式,应加上的式子是_______17.若n mx x ++2是一个完全平方式,则n m 、的关系是18.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为___________19.已知0258622=+--+b a b a ,则代数式ba ab -的值是___________ 20.已知:0106222=+++-y y x x ,则=x _________,=y _______三、计算综合题:21.若的求n n n x x x 22232)(4)3(,2---=值.22.对下列多项式进行因式分解:(1)22254n m +- (2)229124b ab a ++ (3)(x -4)(x -2)+1(4)4)1(4)1(222++-+a a (5)12918922---++y y x x (6)16)43)(23(22-++-+x x x x23.已知099052=-+x x ,求1019985623+-+x x x 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册因式分解拔高题型
一、知识点梳理:
1、因式分解:因式分解就是把一个多项式变成几个整式的积的形式。

2、因式分解的方法:
(1)提公因式法;即 ma+mb+mc=m(a+b+c);
a 22
( 2)运用公式法;平方差公式:
b a b a b ;
完整平方公式: a22ab b 2= a b2和a22ab b2 a b
2
(3)十字相乘法:关于二次三项式x2Px
a b p, q ;若能找到两个数 a 、 b ;使
b q,
a
则就有 x2Px q x2(a b) x ab( x a)( x b) .
注:若 q 为正;则 a;b 同号;若 q 为负;则 a;b 异号;
二、典型例题:
(1)假如9 x 2kx25 是一个完整平方式;那么k 的值是()
A、 15
B、±5
C、30 D ±30(2)若x2mx15( x3)( x n)则 m=_____; n=______。

(3)计算 2998 2+2998×4+4=。

(4)若x24x 4 的值为0;则 3x 212x 5 的值是________。

例 2:分解因式:
22
4a2(x- y)+9b2 (y- x)
2a x 8axy8a y
例 3:已知 a –b = 1;a2b 225求ab和a+b的值。

三、加强训练:
1、已知 x+y=6; xy=4;则 x2y+xy2的值为.
2、察看图形;依据图形面积的关系;不需要连其余的线;便能够获得一个用来分解因式的公式;这
个公式是 ______________________。

3、分解因式:
(2a- b)2-(a +b)2- 3ma3+6ma2- 3ma a2(m- n)+b2(n- m)
m416n4(8)16a472a 2b 281b4
4、已知: a=2999;b=2995;求a22ab b 25a 5b 6 的值。

5、利用因式分解计算
11111111 (11)
2232 4 252n2
6;已知 a 为随意整数;且 a 13 2a2的值总能够被n 整除 (n 为自然数;且n 不等于 1);则 n 的值为。

7、已知 x(x-1)-(x2y )=-2;x
2
y 2xy 的值。

2。

相关文档
最新文档