10kV及以上三相单芯电缆基本的接地方式
单芯电缆和三芯电缆的接地方式

津成电线电缆内部专用
单芯电缆和三芯电缆的接地方式
金属屏蔽层两端基本上没有感应电压。
(一般为35kV及以下电压等级的电缆)。
而单芯电缆(一般为35kV及以上电压等级的电缆)一般不能采取两端直接接地方式。
原因是:当单芯电缆线芯通过电流时金属屏蔽层会产生感应电流,电缆的两端会产生感应电压。
感应电压的高低与电缆线路的长度和流过导体的电流成正比,当电缆线路发生短路故障、遭受雷电冲击或操作过电压时,屏蔽上会形成很高的感应电压。
将会危及人身安全,甚至可能击穿电缆外护套。
单芯电缆两端直接接地,电缆的金属屏蔽层还可能产生环流,据相关报导单芯电缆两端接地产生的环流可达到电缆线芯正常输送电流的30%--80%,这既降低了电缆的载流量、又浪费电能形成损耗,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。
的接地方式。
一般应按照具体线路选择不同的接地方式,常用的方式有:
1.金属屏蔽层一端直接接地,另一端通过护层保护器接地;
2.金属屏蔽层中点直接接地,两端通过护层保护器接地;
3.金属屏蔽层一端直接接地,电缆中间护层交叉互联接地,另一端通过护层保护器接地;
4.金属屏蔽层一端直接接地,若干个护层交叉互联接地,金属屏蔽层中点直接接地,若干个护层交叉互联接地,另一端金属屏蔽层直接接地。
5.金属屏蔽层两端直接接地(仅适用于短电缆和小负载电缆)。
津成线缆。
110kV及以上电压等级高压单芯交联聚乙烯电缆线路接地系统研究

110kV及以上电压等级高压单芯交联聚乙烯电缆线路接地系统研究发布时间:2022-09-20T07:26:03.101Z 来源:《科学与技术》2022年5月第10期作者:孟高志[导读] 随着电网的快速发展,高压电缆在城郊电网中运用越来越广泛孟高志扬州浩辰电力设计有限公司江苏省扬州市 225000摘要:随着电网的快速发展,高压电缆在城郊电网中运用越来越广泛。
当单芯电缆通过电流时,在金属护套上会产生感应电压,如果护套接地,则形成电流通道,在金属护套上会产生环流。
如果金属护套中电流过大就会使金属护套发热,不仅浪费了大量电能,而且会降低电缆的载流量,长期运行可能伤及主绝缘或加快劣化。
在对电缆“导体芯-铝护套-石墨层-接地体”三级电容进行理论分析的基础上,单端接地系统和交叉互联接地系统两种工况,计算分析了由接地系统异常引起的电缆线路高悬浮电压,并通过案例进行实证,提出了解决电缆线路高悬浮电压的措施关键词:高压电缆;铝护套;悬浮电压;接地系统 0引言110kV及以上高压电缆均采用单芯结构,金属护套一方面起径向阻水和抗机械损伤的作用,另一方面在系统发生短路故障时为故障电流提供回流通路。
当单芯电缆线芯流过交变的电流时,在线芯的周围会产生交变的磁场,该交变磁场与金属护套相交联,在金属护套上将产生感应电动势。
感应电动势会在护套中产生环流,较大的环流会影响电缆的载流量,同时会产生附加损耗,并可能引起电缆发热。
在单芯电缆构成的交流传输系统中,金属护套处于导体电流的交变磁场中,在金属护套中产生一定的感应电动势,其大小与电缆线路的长度、截面及电压等级有关,长度愈长、截面愈大、电压等级愈高,其感应电动势愈高。
如果护套形成通路,金属护套中的感应电动势将在护套中形成金属护套感应电流Is。
单芯电缆的导体与金属护套之间形成以导体和金属护套为连接、绝缘材料为介质的电容器,在交流电压作用下,会产生电容电流Ic。
金属护套接地电流Id由金属护套感应电流Is和电缆电容电流Ic两部分构成,即Id=Is+Ic。
1kV及以上三相单芯电缆基本的接地方式

1kV及以上三相单芯电缆基本的接地方式概述
本文档介绍了1kV及以上三相单芯电缆的基本接地方式。
这些接地方式是用于确保电缆系统的安全性和可靠性。
1. 直接接地方式
直接接地方式是指将电缆的金属护套与地面直接连接,以形成低阻抗的接地路径。
这种方式适用于地下埋设的电缆,可以有效消除电缆中的潜在接地故障。
2. 绝缘接地方式
绝缘接地方式是指将电缆的金属护套与接地电阻器相连接。
接地电阻器将电缆的金属护套与地面隔离,以减小接地故障对电缆系统的影响,提高电缆系统的可靠性。
3. 屏蔽接地方式
屏蔽接地方式是指将电缆的金属护套与接地屏蔽相连接。
接地屏蔽将电缆的金属护套与地面隔离,以减小接地故障对电缆系统的影响,并提供对外界电磁干扰的屏蔽保护。
4. 多重接地方式
多重接地方式是指在电缆系统中采用多个接地点,以提高接地的效果和可靠性。
这种方式适用于长距离电缆系统和对电缆系统可靠性要求更高的场合。
结论
根据实际情况选择适合的接地方式对于1kV及以上三相单芯电缆系统的安全运行至关重要。
在选择接地方式时,应考虑电缆的埋设环境、电气要求和可靠性要求,并确保接地系统满足相应的标准和规范。
电缆接地有何安全规定(3篇)

第1篇一、引言电缆接地是电力系统中的重要环节,它关系到电力系统的安全稳定运行以及人身安全。
正确的电缆接地不仅可以有效防止雷电、操作过电压等对电缆的损害,还可以降低故障发生时的故障电流,保障电力系统的安全运行。
以下是关于电缆接地的一些安全规定。
二、电缆接地原则1. 电缆接地应遵循“先接后装、先装后接”的原则,即先完成接地工作,再进行电缆安装。
2. 电缆接地应保证接地电阻符合规定,以降低接地电流,确保接地效果。
3. 电缆接地应采用符合国家标准的接地材料和接地装置。
4. 电缆接地应定期检查、维护,确保接地系统处于良好状态。
三、电缆接地方式1. 电缆接地方式分为直接接地和经保护器接地。
(1)直接接地:将电缆金属护套、铠装层等直接接地,适用于电压等级较低、线路较短的电缆。
(2)经保护器接地:将电缆金属护套、铠装层等通过接地保护器接地,适用于电压等级较高、线路较长的电缆。
2. 单芯电缆接地方式:单芯电缆的金属护套应至少有一点直接接地,其余部分可通过接地保护器接地。
3. 三芯电缆接地方式:三芯电缆的金属护套、铠装层等应在电缆线路两端直接接地。
四、电缆接地安全规定1. 接地电阻(1)直接接地:接地电阻应小于4Ω。
(2)经保护器接地:接地电阻应小于10Ω。
2. 接地线截面(1)接地线截面应满足接地电流的要求,一般不应小于接地电阻的1/20。
(2)接地线截面应满足接地装置的热稳定性和机械强度要求。
3. 接地装置(1)接地装置应采用符合国家标准的接地材料和接地装置。
(2)接地装置应安装牢固,确保接地效果。
4. 接地检查(1)接地检查应定期进行,一般每年不少于1次。
(2)接地检查应包括接地电阻、接地线截面、接地装置等方面。
5. 接地保护(1)接地保护器应选用符合国家标准的接地保护器。
(2)接地保护器应定期检查、维护,确保保护器处于良好状态。
6. 接地标识(1)接地装置应设置明显的接地标识。
(2)接地标识应清晰、醒目,便于检查、维护。
10kV系统中性点接地方式

10kV系统中性点接地可分为:
中性点不接地系统(中性点非有效接地系统)(包括中性点不接地系统、经消弧线圈接地系统、高电阻接地系统);
中性点接地系统(中性点有效接地系统)(中性点直接接地系统或经低电阻接地系统)。
1.10kV系统中性点不接地系统
(பைடு நூலகம்)接地故障特点
配电系统在正常运行时,三相基本平衡电压作用下,各相对地电容电流ICL1、ICL2、ICL3相等,分别超前相电压90°,ICL1=ICL2=ICL3=UΦωC,其ICL1+ICL2+ICL3=0,系统中性点与地有相同电位。
过补偿方式,接地故障残余电流Id较大,不利于接地故障点电弧自熄,但它不易产生串联谐振过电压。实际运行中,过补偿方式常被采用。
系统在运行中,经常接通或切除部分回路,系统中分布电容电流有较大的变化,满足脱谐度的要求,消弧线圈的电感也相应改变,需人工改变消弧线圈的抽头位置,接地故障残余电流Id小于5A~10A以下,系统出现谐振过电压可能性降低。发生接地故障时,非故障相对地电压升高 倍。
IC——接地电容电流(单位:A)。
上述电容电流的计算值只能用于某些对准确度要求不很高的场合.
通过上述估算,可知道系统的总的零序电流,然后进行电流互感器的选择,电流互感器选择的基本原则是:线路发生单相故障时,安装在该线路的零序电流电流互感器二次侧能提供大于10mA ,且小于800mA的零序电流。
零序电流的检测,架空出线是采用三相电流组成滤过器来检测零序电流,接线如图14.2-5所示;电缆出线是采用零序电流互感器,电缆穿过零序电流互感器内孔,电缆头的接地线务必穿过零序电流互感器后再接地,接线如图14.2-6所示。
10kV经低电阻接地系统中,发生接地故障时的故障电压虽时间不长,但幅值很高。低压采用TN系统供电时,应采取以下措施:变电所内设置两组接地极;采用主等电位联结措施;在主等电位联结范围外供电时,采用局部TT系统供电。低压采用TT系统供电时,变电所的外露可导电部分的接地电阻不超过1Ω或带有已接地的合适的有金属护层的高压电缆和低压电缆总长度超过1km。
中低压单芯电缆接地方式的合理选择

中低压单芯电缆接地方式的合理选择新区部分单芯高压电力电缆在设计时因未考虑合理的接地方式,曾接连发生电缆接地短路事故,通过对高压单芯电缆接地方式优化改造,采用金属护套交叉互联或中间直接接地、两端保护接地等措施,使电缆屏蔽层可靠合理接地,且安装时按照经济合理的原则在护套的一定位置采用特殊的连接和接地方式、装设护层绝缘保护器等,较好地解决了金属护套感应电压高、环流大等问题,大大降低了线损,提高了电缆安全运行的可靠、经济性。
标签:单芯电缆;接地方式;感应电压;线损一、项目概况按照《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。
但在2011年5月份以前,我公司应用的十几路高压单芯电力电缆均未考虑合理的接地方式,线路较长、负荷较大的单芯电缆线路外护套的感应电压实测发现最多高达154V,感应电流最高到12A,已严重超出电力系统运行及设计规定,多次了发生运行电缆因单相接地而导致的短路事故,严重影响整个电力系统的安全运行,为避免类似事故再次发生,决定对长距离单芯电缆的接地方式进行统一的优化改造。
二、单芯电缆金属护套的连接与接地的方式1、护套两端接地大家都知道,单芯电缆金属护套上的感应电压与电缆的长度和负荷电流成正比。
当电缆线路较短,负荷较小时,护套上的感应电压较小,护套两端接地形成通路后,护套中的环流也比较小.损耗较低,对电缆的正常载流量影响不是很大,这样的电缆线路可以采用护套两端直接接地,不需要装设接地保护箱,可以减少维护工作。
2、护套一端接地当电缆线路长度大约在500m—700m及以下时,电缆护套可以采用一端直接接地(通常在终端头位置接地),另一端经护层保护箱接地,护套的其他部位对地绝缘,这样接地后因护套内金属屏蔽层没有构成回路,基本上可以消除护套上的环形电流,提高电缆的载流量。
单芯高压电缆的敷设及接地
单芯高压电缆的敷设及接地随着城市化的发展高压长距离电缆工程越来越多,由于三芯高压电缆不能制造得太长,这样线路中不得不存在多处电缆中间接头,给输电系统的带来了诸多安全隐患。
与三芯电缆相比单芯电缆在其单根长度、敷设环节和电缆头制作等环节中显示了三芯电缆所无法比拟的优点。
因此单芯电缆多用在长距离输电线路中。
对单芯电缆与三芯电缆各自特点进行总结。
单芯电缆:单芯电缆不能承受机械外力;不带铠装,不允许直埋敷设,电缆不允许敷设在钢管等磁性管道中。
外径小,重量轻、电缆长度可以不受重量限制,400 mm?电缆可以做到1000米以上。
单芯电缆需要敷设在三根非磁性管道材料中,管材消耗较大,占地面积较大,在变电所多出线场所不易采纳,一般适应与占地面积较大,线路比较长,对景观带要求比较严格地段,单芯电缆虽便与敷设,但是敷设长度为三芯电缆的三倍,总体施工强度比较大,由于电芯电缆电缆头比较多,在进出线位置布置空间要求大,布置起来比较困难,在电缆上杆时,需要电缆布线,单芯电缆由于相间距离比较大,电缆虽比较容易受潮、劣化、甚少发生相间短路,发生事故多为接地短路。
由于电缆不能带磁性钢带铠装,对敷设环境要求要求比较严格,一般敷设在密封电缆沟内,严禁外力作用电缆。
单芯电缆长期运行中如发生外护套损伤,金属屏蔽多处接地后,电缆不能保持安全运行,金属护套直接接地会产生很大环流,引起点啦发热烧坏电缆。
三芯电缆与单芯电缆相比能承受一定的拉力与压力,可以直接埋地敷设,也可以在磁性管道中进行敷设,敷设条件没有严格的环境要求。
由于三芯电缆自身重量,通常情况不能制作太长,300 mm?大截面电缆,基本不采用三芯电缆,在大功率送电中多采用单芯电缆。
三芯电缆虽不便于敷设但由于长度为单芯电缆1/3,施工周期较短,在电缆终端塔,户内布线时,空间要求比较少,电缆头制作比单芯电缆要求严格,施工材料比较节省。
由于电缆可以铠装,对敷设环境较为宽松,对应力有一定防护,三芯电缆由于三相报过在一块,相间依靠绝缘材料进行绝缘,绝缘层老化,受潮后容易引起相间短路,三芯电缆长期运行如外护套据部破损,金属保护层发生接地后,电缆可以安全运行。
10kV单芯电缆长距离敷设的感应电压分析
10kV单芯电缆长距离敷设的感应电压分析发表时间:2017-10-17T14:10:48.833Z 来源:《电力设备》2017年第17期作者:吴火军[导读] 摘要:依托杭州市在建的紫之隧道工程,分析计算长距离敷设的10kV单芯电缆金属层工频感应电压,提出适宜、合理的10kV单芯电缆布置方式和接地方式。
(中国电建集团华东勘测设计研究院有限公司浙江杭州 310014)摘要:依托杭州市在建的紫之隧道工程,分析计算长距离敷设的10kV单芯电缆金属层工频感应电压,提出适宜、合理的10kV单芯电缆布置方式和接地方式。
关键词:10kV单芯电缆;感应电压;分析在建的杭州市紫之隧道(紫金港路—之江路)工程位于杭州绕城高速与西湖风景区之间,北起紫金港路,南接之浦路,全长约14.14km。
工程沿线线性分布有10座10/0.4kV降压变电所,并在6座通风竖井内均设置跟随式降压变电所,总用电负荷约9698.52kW。
根据供电方案,整个工程按一个供电分区设计,10座变电所环网贯通供电,如图1所示。
常规的10kV电力电缆有单芯、3芯两种型式。
在电力行业,66kV及以上高压电缆因为相间绝缘问题一般采用单芯的型式,6kV至35kV 的中压电缆因电压较低,相间绝缘已不是瓶颈问题,故一般采用三芯的型式,但当负荷容量大,所需电缆截面特别大时,再做成三芯电缆的型式。
一般的,单芯电缆与三芯电缆的导体截面积、绝缘厚度是一致的,区别在于外护套厚度、电缆近似外径和电缆重量。
三芯电缆的外径大约是单芯电缆的2倍,重量是单芯电缆的3.7倍。
以400mm2截面电缆为例,三芯电缆与单芯电缆的适用性如下表所示:针对紫之隧道工程,各变电所间距在1.5km~2.5km之间。
显而易见,采用单芯电缆,引起成盘长度大大增加,可有效减少隧道内电缆接头数量,相应的,因接头导致的线路故障率也可大大降低,间接的提高系统供电的可靠性。
因此,在隧道外部电源段敷设空间较为宽裕,施工方案,但易受外部机械开挖、雨水浸泡等损伤,采用三芯电缆,而在隧道内部,由于隧道内空间狭小,敷设环境良好、稳定,且需尽量减少接头数量,采用低烟无卤A类耐火、交联聚乙烯绝缘、非磁性钢带铠装、聚烯烃护套铜芯单芯电力电缆(WDZAN-YJY63-8.7 /10kV-1x400mm2),以提升电缆载流能力,提高电缆成盘长度,减少电缆中间接头的数量。
35kV及以上三相单芯电缆基本的接地方式
35kV 及以上及以上三相三相三相单芯电缆基本的接地方式单芯电缆基本的接地方式单芯电缆基本的接地方式高压电缆线路安装运行时,按照GB50217-1994《电力工程电缆设计规程》4.1.9项要求:单芯电缆线路的金属护套只有一点接地时,未采取不能任意接触金属护套的安全措施时不得大于50V,采取有效措施时,不得大于100V,并对地绝缘。
近年来随着单芯电缆的使用量的增多,其敷设、接地方式不规范、电缆外护套受外力损伤、电缆护层保护器被击穿等导致电缆系统发生故障时有发生,其事前都表现出接地环流异常,故对单芯电缆金属屏蔽层接地环流进行监控,是预防或减少事故发生的有效办法。
以下为三相单芯电缆常用四种接地方式:1、金属金属屏蔽屏蔽屏蔽两端直接接地两端直接接地两端直接接地这种接地方式可减少工作量,但是在金属护套上存在环流,适用的条件比较苛刻,要求电缆线路很短、传输功率很小、传输容量有很大的裕度等,因此一般不宜采用这种方式。
2、金属金属屏蔽一端直接接地屏蔽一端直接接地屏蔽一端直接接地,,另一端通过护层保护接地另一端通过护层保护接地::当单相电缆线路长度X≤L 时采用(基本上为一盘电缆长度,L 长500米内)。
3、金属金属屏蔽中点接地屏蔽中点接地屏蔽中点接地当单相单相电缆电缆电缆线路长度线路长度X 在L <X ≤2L 时采用时采用((基本上为两盘基本上为两盘等长等长等长电缆电缆电缆,,L 长1000米内米内)。
)。
方式A :中间接地点安装一个直通接头中间接地点安装一个直通接头。
方式B :中间接地点安装一个绝缘接头中间接地点安装一个绝缘接头。
A、B 两种接地方式的区别:通过直通接头接地,可减少一台“直接接地箱”,但电缆外护套出现故障时,不便确定故障点在接头的左边而是右边,电缆维护不方便;通过绝缘接头接地,多一台“直接接地箱”,成本略有增加,但能很快确定故障点在接头的左边而是右边,方便维护。
当电缆线路长度X 略大于2L 时,在分段中再装设回流线。
2023年电力电缆高频考点训练2卷合壹-11(带答案)
2023年电力电缆高频考点训练2卷合壹(带答案)(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1套一.全能考点(共100题)1.【判断题】电力电缆沟道敷设时,最上层至沟顶或楼板间的规定距离为150~200mm。
()参考答案:√2.【判断题】通过对电缆的负荷和绝缘状况进行连续的在线监测,随时获得能反应绝缘状况变化的信息,从而有的放矢地进行维护的方式称为状态检修。
()参考答案:√3.【单选题】介质损耗角正切值反映的是被测对象的()。
A、个别缺陷B、普遍性缺陷C、偶然性缺陷参考答案:B4.【判断题】单芯电缆线芯外径与绝缘层外径之比为0.25时,导体表面最大电场强度最小。
()参考答案:×5.【单选题】任何电缆事故发生发展过程中,都伴随有()。
A、电缆局部温度升高B、电缆终端温度降低C、电缆整体温度升高参考答案:A6.【判断题】根据电缆线路综合运行情况实行“到期必修,修必修好”的原则,对电缆或附件进行的定期检查、试验及维修,称为矫正性检修。
()参考答案:×7.【判断题】金属电缆支架防腐工艺应保证运行5年不出现严重腐蚀。
()参考答案:×8.【单选题】电缆采用铅包的缺点是()。
A、不易焊接B、电阻率高C、不易加工参考答案:B9.【判断题】电缆线芯采用多股导线单丝绞合是为了制造工艺简单化。
()参考答案:×10.【判断题】配电网是指电力系统中直接与用户相连的网络。
()参考答案:√11.【单选题】由于集肤效应的存在,导体的内电感()。
A、减小B、不受影响C、增大参考答案:A12.【判断题】中低压电缆接地线在附件内接触点处发热的原因是接地点螺丝松动。
() 参考答案:×13.【单选题】在交流电压下,随电压作用时间增加,绝缘层击穿场强()。
A、下降B、不变C、上升参考答案:A14.【单选题】中性点不接地方式适用于()电力系统。
A、220kVB、110kVC、35-60kV以下参考答案:C15.【单选题】电力系统中,应用最多的电缆是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10kV及以上三相单芯电缆基本的接地方
式
三相单芯电缆在10kV及以上电压等级下的接地方式有以下几种基本方法:
1. 电气接地:三相单芯电缆可以采用电气接地方式,即将电缆的金属护套和接地系统连接。
这可以防止电缆金属护套产生电场,减小电磁辐射的干扰,并对电缆产生的故障电流进行安全地引流。
电气接地:三相单芯电缆可以采用电气接地方式,即将电缆的金属护套和接地系统连接。
这可以防止电缆金属护套产生电场,减小电磁辐射的干扰,并对电缆产生的故障电流进行安全地引流。
2. 绝缘接地:绝缘接地是指将电缆的金属护套与绝缘层隔离,不与接地系统连接。
这种方式适用于要求较高的绝缘保护,以及在电缆路径中存在其他导体需要接地的情况。
绝缘接地:绝缘接地是指将电缆的金属护套与绝缘层隔离,不与接地系统连接。
这种方式适用于要求较高的绝缘保护,以及在电缆路径中存在其他导体需要接地的情况。
3. 共模接地:共模接地是指将电缆的三相导体同时与接地系统
连接。
这种方式适用于需要减小电缆的正常和故障电流对环境的影响,降低电磁辐射水平的场合。
共模接地:共模接地是指将电缆的
三相导体同时与接地系统连接。
这种方式适用于需要减小电缆的正
常和故障电流对环境的影响,降低电磁辐射水平的场合。
4. 单点接地:单点接地是指将电缆的一相导体与接地系统连接,而其他两相导体绝缘处理。
这种方式可以减小电缆的故障电流流经
接地电阻产生的接地电位差,降低对电缆承压层的影响。
单点接地:单点接地是指将电缆的一相导体与接地系统连接,而其他两相导体
绝缘处理。
这种方式可以减小电缆的故障电流流经接地电阻产生的
接地电位差,降低对电缆承压层的影响。
5. 多点接地:多点接地是指将电缆的多个点与接地系统连接,
以分散电缆的接地电位差。
这种方式适用于特殊环境,要求对电缆
的接地保护更加严格的场合。
多点接地:多点接地是指将电缆的多
个点与接地系统连接,以分散电缆的接地电位差。
这种方式适用于
特殊环境,要求对电缆的接地保护更加严格的场合。
在选择三相单芯电缆的接地方式时,需要考虑具体的电缆特性、使用环境以及工程需求等因素,并遵循相应的电气安全规范和标准。
以上是10kV及以上三相单芯电缆基本的接地方式的简要介绍。
具体的接地设计和实施应遵循当地的电气规范及专业评估。