110kV高压单芯电缆金属护套接地方式探讨

合集下载

110kV电力电缆感应电压分析及控制

110kV电力电缆感应电压分析及控制

110kV电力电缆感应电压分析及控制城市要发展,电力要先行。

随着生产力的发展、城市化进程的加快,生产生活对供电可靠性的要求越来越高。

电力电缆由于其占地省、供电可靠、有利于美化城市等诸多优点,在电力系统中占比越来越大,很多城市电缆化率越来越高,有些城市甚至实现了全电缆线路供,电力电缆的可靠运行直接影响整个电网的可靠供电。

110kV电力电缆由于其电压等级较高,且为了便于运输和现场施工,一般采用单芯电缆,单芯电缆由于其结构特点,投入运行后其金属护套上会产生感应电压,本文主要就110kV电缆感应电压产生的原理及金属护套的接地方式进行分析讨论。

标签:110kV电缆;感应电压;接地方式单芯是指在一个绝缘层内只有一路导体。

当电压超过35kV时,大多数采用单芯电缆,它的线芯与金属屏蔽层的关系,可看作一个变压器的初级绕组中线圈与铁芯的关系。

当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。

因单芯电缆金属护层与芯线中交流电流产生的磁力线相铰链,使其两端出现较高的感应电压,因此要求护层有良好的绝缘,同时要求电缆金属护套接地可靠。

当单芯电缆过马路或者是过墙时应穿管保护,应用的这种保护管应该是非磁性材料的金属管或非金属管。

一、110kV电力电缆在运行中的感应电压110kV电力电缆在三相交流电网中运行时,当电缆导体中有电流通过时,导体电流产生的一部分磁通与金属护套相交链,与导体平行的金属护套中必然产生纵向感应电压,产生的感应电压数值与电缆排列中心距离和金属护套平均半径之比的对数成正比,并且与导体负荷电流,频率以及电缆的长度成正比。

在等边三角形排列的线路中,三相感应电压相等;在水平排列线路中,边相的感应电压较中相感应电压高。

在实际的运行过程中,如果把110kV电力电缆两端金属护套直接接地,护套中的感应电压将产生以大地为回路的循环电流,此电流大小与电缆线芯中负荷电流大小密切相关,同时,还与间距等因素有关。

110kV高压单芯电缆线路金属护套接地方式

110kV高压单芯电缆线路金属护套接地方式

110kV高压单芯电缆线路金属护套接地方式110kV高压电缆线路护套必须接地运行,并且考虑限制其护套感应电压,文章讲解其不同的接地方式和原理,以便运行人员更好地巡查、维护和消缺,以免造成高压电缆过电压导致电缆外护层击穿,从而形成环流和腐蚀,最终影响电缆线路物载流量、运行寿命及人身安全。

标签:电缆护套不接地危害;护套接地方式;中点接地方式;交叉互联接地方式近年来,随着城市改造建设的加快,110kV高压电缆线路大量投入运行,并且大量110kV高压电缆线路敷设在人群密集区,其运行的安全性倍感重要。

《电力安全规程》规定:电气设备非带电的金属外壳都要接地,因此电缆的金属屏蔽层都要接地。

通常35kV及以下电压等级的电缆都采用两端接地方式,按照GB50217-1994《电力工程电缆设计规程》的要求,35kV及以下电压等级的电缆基本上为三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在金属屏蔽层两端基本上没有感应电压,所以采用两端接地不会有感应电流流过金属屏蔽层,两端就基本上没有感应电压,所以两端接地后不会有感应电流流过金属屏蔽层。

但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。

当单芯电缆线芯通过电流时就会有磁力线交链金属屏蔽层,使它的两端出现感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比,高压电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。

此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%~95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。

个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。

一起110kV电缆交叉互联接地故障探讨

一起110kV电缆交叉互联接地故障探讨

110kV电缆交叉互联接地故障探讨1前言某公司110kV电厂V线是#1发电机组的并网线路,2014年12月17日建成后投运,路径是从110kV西分站通过外网桥架到#1发电机组升压站,全长1529米,截面积800mm2单芯铜电缆,金属外护套为波纹管铝护套。

由于不是一批次成型电缆,因此不是3等分,而是分为5段。

1段在110kV西分站侧,5段在#1发电机组开关站侧。

5段长度及接地方式如下:(接地箱处为实测接地电流)图1电厂V线实际接地情况及接地电流1段、2段、3段为一组交叉互联接地,4段、5段为各自单独接地。

在实际运行过程中,负荷为#1发电机组发电负荷,负荷较平稳,带载为125MW。

1箱、4箱为直接接地箱,电流很大,检测各接地箱电流为:1箱的电流分别为A:120.4A、B:84.7A、C:116.1A;4箱的电流分别为A:122.1A、B:114.5A、C:85.7A。

各段长度:1段197米,2段334米,3段366米,4段293米,5段339米。

各段的对地回路连接方式:(1)地-1段A相-2段C相-3段B相-地;(2)地-1段B相-2段A相-3段C相-地;(3)地-1段C相-2段B相-3段A相-地。

电缆感应电压的与电缆的长度和载流量有关,由于1段、2段、3段电缆长度不均等,1段与3段相差169米,1段与2段相差137米,2段与3段相差32米,造成A、B、C三相的感应电压合成后的零序电压不为零。

三段长度相差较大,造成接地电流较大。

实际感应电压与电缆的长度和载流大小成正比,此电缆的负荷较稳定,电流认为是稳定的,感应电压的大小只与电缆的长度有关。

根据电缆长度的比例,作出感应电压和回路电流向量图如下:图2感应电压向量图图3接地回路电流向量图三相电压合成的零序电压,通过大地形成回路,感应电流就在这个回路中流通。

零序电流形成的回路主要是电缆护套电阻及大地电阻,因此形成的回路电流近似认为是电阻回路,电压方向与电流方向相同。

高压电缆金属护套接地环流过大问题探讨

高压电缆金属护套接地环流过大问题探讨
绝缘 老化 , 白蚁蛀 蚀 , 力破坏 引起 的金属 护套 绝缘 破 坏而 造 成 多 外 点接 地 。 () 3 电缆 金属 护套 采用 交 叉互 联接 地方 式 时 , 没有 按要 求 把 电 缆 均 匀分 成 3段 , 或交 叉互 联 接错 线 。 在旖 工 中没有 按 要求 把 电缆分 成 3等 分 , 成 环流 偏 大 , 造 或者 是 施 工过 程 中 ,没 有 认真 核对 各 同轴 电缆 内外 线芯 的 方 向是 否统
理 改造 达 标 , 以便 实现 优质 供 电 。
4 运 行 效 果 及 发 展 前 景 分 析
我 厂变 配 电设 备 自动监 控 系统 自投运 以来 , 可靠 性 高 、 人机 界
面 友 好 、 作 维 修 简单 , 操 各项 性 能 指标 均 达 到 了预 期 目标 , 高 了 提 工 作效 率 , 降低 了劳动 强度 , 企业 变配 电管理提 供 了详 尽 的基 础 为
地 环流 一 般不 大 于负 荷 电流 1%的规 定 ,当前 情况 下达 到 8 %~ 0 0
1 对 高压 电缆金 属 护套 接地 环流 过 大 问题 的 分析
在 一次 例行 的电缆 金 属 护套 接地 环 流 测 试 时 , 得 10 V碧 测 1k 杜 线新 建 电缆 与 原来 运行 的 电缆 连接 后 , 电缆金 属 护套 接 地 环流
2 用户变 电所 综合 自动化系 统. 第八 届全 国石油和 化学工 要 设计 一 根通 信 电缆 引 至值 班室 中 央管 理机 ,就 可 以 实现 集 中监 []黄 平来. 业电气 技术年会 ,0 7 2 0 控, 同时考 虑 各 断路 器 的保 护跳 闸作 为其 核 心 功能 , 加 数据 采集 增
较大, 表 l 示。 如 所

对110kV及以上高压电缆线路的接地系统分析

对110kV及以上高压电缆线路的接地系统分析

对110kV及以上高压电缆线路的接地系统分析摘要:本文作者通过实际工作中总结与积累经验,主要针对110kv及以上高压电缆的接地的重要性,并通过分析高压电缆接地的要求、方式和采取的措施等。

关键词:高压电缆接地电流电缆接地方式一、前言:经过十几年高压电力电缆施工我们积累了相当一部分的经验,本文综合各类文献并结合工程实际,意图对110kv及以上高压电缆的接地就重要性等方面进行探索。

二、高压电力电缆接地分析当导体内通过电流时会在其周围产生感应电压,对于在发电厂、变电所等用于低压及二次系统控制的电缆,为了防止继电保护装置误动以保证保护装置可靠性以外,也防止控制电缆屏蔽因感应电压而导致保护装置损坏,所以均采取带屏蔽铜网的电缆,并对屏蔽接地有着非常严格的规定;并且要求电缆支架等都要求接地以防止感应电压危及人身安全;而高压电力电缆同样存在这样的问题,本文将针对高压电力电缆在施工及运行中遇到的的一系列敷衍出的问题进行讨论:首先是敷设时的机械保护(电缆抗弯、防水、防火、腐蚀——采取铝、铜等金属外护套)→其次运行中线芯电流(在金属护套上形成1∶1的单匝变压器产生感应电动势——危害人身安全及电气设备运行经济性、可靠性等,采取外屏蔽接地)→接地电流或环流→各种接地方式的解决方法。

为了尽可能减少护套环流我们可以采取多种金属护套的连接与接地方式,这是我要着重讨论的问题。

高压电缆线路的接地方式有下列几种:.金属护套一点接地(一端或中点):无环流,感应电压与电缆长度成正比,短电缆线路常用;⑵. 金属护套两端接地:有环流,感应电压为零,但影响载流量,轻负荷电缆线路常用;⑶. 金属护套交叉换位连接:两端接地,中间用绝缘接头将护层交叉换位连接,无环流,感应电压与电缆长度成正比,但可以限制在允许的范围内,长电缆线路常用。

⑷.电缆换位,金属护套交叉互联:要求测得电缆金属感应电压必须是小于50v为前提,如果不是的话,必须进行相应的检查,是否是电缆的原因还是由于电缆的长度太长而造成的,还是其他原因造成的,如果是长度的原因(一般要求在500~800m的范围具体看测试结果),应相应调整其长度,比如说一组交叉互联加一组接地(一段接地)或其他方式。

浅谈电缆金属护套的接地方法和措施

浅谈电缆金属护套的接地方法和措施

浅谈电缆金属护套的接地方法和措施随着我国电网改造的深入,大量的架空线被电力电缆取代。

电力电缆跟架空线不同,它被埋在地下,运行维护较困难,正确使用电缆,是降低工程投资,保证安全可靠供电的重要条件。

在城市配电网络中,应用最广的是10 kV的电力电缆,一般是使用交联聚乙烯铠装三芯电缆,这种电缆金属护套一般只需直接接地即可。

而单芯电缆金属护套的接地和三芯电缆不同。

现从单芯电缆使用过程中经常被忽略的金属护套的感应电动势,现分析一起变电所单芯电力电缆金属护套错误接地引起的故障,并介绍实用的接地措施。

1 单芯电缆金属护套过电压和环流的产生单芯电力电缆的导体中通过交流电流时,其周围产生的磁场会与金属护套交链,在金属护套上会产生感应电动势。

感应电动势的大小与导体中的电流大小、电缆的排列和电缆长度有关。

对三相等边三角形排列的电缆,如果将金属护套两端直接接地,就会在金属护套中形成环流,环流的大小与电缆相应的长度,导体中电流大小有关。

出于经济安全考虑,在一些电缆不长,导体中电流不大的场合,环流很小,对电缆载流量影响也不大,是可以将金属护套的两端直接接地的。

如果仅将电缆的金属护套一端直接接地,在正常运行时,电缆的金属护套另一端感应电压应不超过50 V(或有安全措施时不超过100 V),否则应划分适当的单元设置绝缘接头。

在发生短路故障时,导体中有很大的电流,可能会在金属护套上产生很高的过电压,危及护层绝缘,因此在电缆线路单相接地时,在电缆的未接地端,应加装过电压保护器接地。

2 单芯电缆金属护套的连接与接地为了解决电缆金属护套两端同时接地存在环流,和一端直接接地,在另一端会出现过电压矛盾的问题,电缆金属护套应针对电缆长度和导体中电流大小采取不同的接地形式。

电缆线路不长时,电缆金属护套应在线路一端直接接地,另一端经过电压保护器接地,如图1所示。

电缆越长,电缆非直接接地端产生的感应电压越高,为保证人身安全,电缆在正常运行时,非直接接地端感应电压应限制在50 V以内,在短路等故障情况下,金属护套绝缘的冲击耐压和过电压保护器在冲击电流作用下的残压,配合系数不小于1.4。

110kv电缆线路护层接地方式及保护措施

110kv电缆线路护层接地方式及保护措施

110kv电缆线路护层接地方式及保护措施摘要:当前,110kv电缆线路已经逐渐成为城市中替代架空线路的关键输电环节,然而也存在不足之处,主要原因在于该输电系统的架设工作较为复杂,而且技术性要求相当高。

因此,现阶段我国供电企业需要重点探讨的问题是如何充分掌握110kv电缆线路护层接地方法,采取有效的保护措施,只有这样才可以促进企业持续健康发展。

基于此,本文首先介绍了110kv电缆线路的优势性能,然后分析了110kv电缆线路护层的常见接地方法,最后提出了110kv电缆线路护层的保护措施,以供大家学习和参考。

关键词:110kv电缆线路护层;接地方式;保护措施近年来,在社会经济日益发展的背景下,我国电力行业不仅迎来很多发展机遇,而且面临严峻的挑战,要想更好地满足社会对电能的需求,供电企业在发展中将电网建设规模不断扩大。

在该情况下,110kv电缆线路的投入使用可以使电网具有更强的供电能力,而为了提高电网运行的可靠性和稳定向,必须要不断完善且落实110kv电缆线路保护层接地方法,还要结合实际情况,合理制定有效的保护措施。

一、110kv电缆线路的优势性能就110kv电缆线路来讲,其内部是单芯结构形式,在具体应用中体现出多个优势特点,具体表现在以下几个方面:其一,可以使电缆的使用寿命得到延长,以显著减少电网运行过程中产生的总成本,为供电企业创造更多的经济效益。

其二,此电缆线路可以迅速适应自然气候带来的影响,在最大限度上减少网损,而且提升供电质量。

其三,利用电缆线路的保护层可以明显减少电缆线路受损的情况,以免投入大量的维修费用。

其四,该电缆线路是采用高空架网的形式来铺设,所以既安全又可靠。

二、110kv电缆线路护层的常见接地方法(一)单端接地电缆的线路长度不超过500米时,一般来说,终端部分运用电缆金属护套使其中的一端直接接地,而且将另一侧通过非线性的电阻保护器,以做好间接接地处理,让金属护套对地处在绝缘的状态中,以免出现有回路的问题。

110kV电缆线路护层接地方式及保护

110kV电缆线路护层接地方式及保护

110kV电缆线路护层接地方式及保护发布时间:2021-12-15T01:29:42.638Z 来源:《福光技术》2021年20期作者:史庆岩[导读] 自改革开放以来,我国社会经济与国民生活水平得到了进一步发展,城市化进程不断加快,我国电力系统整体建设规模逐渐扩大,促使整个电网架构发生了巨大变化。

国网山东省电力公司烟台供电公司山东烟台 264000摘要:自改革开放以来,我国社会经济与国民生活水平得到了进一步发展,城市化进程不断加快,我国电力系统整体建设规模逐渐扩大,促使整个电网架构发生了巨大变化。

为了满足发展需要,我国整体的电网行业加大了对110kV电缆线路的投入。

但是当过电压在击穿110kV电缆外护层的绝缘部分之后,便会造成110kV电缆金属护层多个位置上出现故障问题,进而使得环流及热损耗增强,甚至会使得110kV电力电缆无法得到正常工作,并会对其使用年限造成不利影响。

同时在故障出现之后,无法通过测寻、修复来进行解决,更无法通过停电检修来进行解决,因此需要做好护层保护工作。

本文先分析了常见护层的接地方式,然后对其保护措施进行了探讨关键词:110kV;电缆线路;护层;接地方式;保护1常见护层的接地方式1.1单端接地单端接地是最为常见的护层接地方式,通常是在电缆线路大于500米的时候采用的一种接地方式。

这种方式接地的时候通常采用电缆金属护套在终端位置由一端直接接地,另一端则经过非线性电阻保护器间接接地的连接方式。

在这种接地方式中,由于金属保护套的其他部位对地绝缘,所以在这样的方式中护套和地构不成完整地回路,也就影响不了电缆正常工程的使用。

1.2交叉互联交叉互联接地的方式也是比较常见的护层接地方式。

利用此方法进行护层接地,一般需要将电缆线分成若干个大段,而且每个大段原则上需要分成长度相当的三个小段,每个小段直接用绝缘接头的方式进行连接。

在绝缘接头处金属护套的三项之间要用同轴电缆经过接连地箱的连接片进行换位连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

110kV高压单芯电缆金属护套接地方式探讨
发表时间:2019-11-28T09:41:28.103Z 来源:《云南电业》2019年6期作者:马海鹏[导读] 我国现行《电力安全规程》当中有明确规定:电气设备非带电金属外壳均需要做接地处理,高压电缆金属屏蔽层需正常接地。

马海鹏
(宁夏宁电电力设计有限公司宁夏银川 750002)摘要:我国现行《电力安全规程》当中有明确规定:电气设备非带电金属外壳均需要做接地处理,高压电缆金属屏蔽层需正常接地。

目前,110kV高压电缆线路多采用单芯电缆,其线芯部分与金属屏蔽层的关系可以视作“变压器初级绕组装置”,即在高压单芯电缆线芯有电流通过时,会产生磁力线交链金属屏蔽层,线芯两端出现感应电压。

高压电缆长度与感应电压大小有正相关关系,即在高压电缆线路较长
的情况下,金属护套感应电压叠加后所会对人身安全产生危害。

在这一背景下,围绕110kV高压单芯电缆金属护套的接地方式进行探讨,以保证高压电缆运行的安全性。

关键词:高压单芯电缆;金属护套;接地方式
一、110kV高压单芯电缆金属护套接地问题
在我国现行《电力工程电缆设计规程》的要求下,对于电压等级在35kV及以下水平的电缆线路,多设置为三芯电缆形式。

电缆线路的运行过程中,流经三个现行的电流综合为零,因此,在金属屏蔽层两端均未检测有感应电压的存在。

这意味着对此类电缆线路而言,在对两端进行直接接地的条件下,不会有感应电流流经金属屏蔽层。

但在电压等级高于35kV的情况下,电缆线路多采取单芯形式。

当单芯电缆线芯通过电流时,就会有磁力线交链金属屏蔽层,使它的两端出现感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比。

当高压电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障,遭受操作过电压或雷电冲击时,屏蔽形成很高的感应电压,甚至可能击穿护套绝缘。

在这一情况下,若仍然按照常规方法将金属屏蔽层两端做三相互联式接地处理,则金属屏蔽层上将会产生非常大的环流,换流值可以达到电缆线芯电流的50%~95%,导致明显的电缆损耗。

同时,还会致使金属屏蔽层表面发热,影响电缆线路运行过程中的载流量水平,加速单芯电缆的绝缘老化。

即对于35kV电压等级以上高压单芯电缆而言,不能采取电缆两端直接接地的接地方式。

但在金属屏蔽层一端不接地的情况下,若存在过电压或雷电流沿高压单芯电缆流动,则对于高压单芯电缆而言,金属屏蔽层不接地端可能出现非常高的冲击电压。

若系统发生短路,短路电流流经线芯,也可能导致金属屏蔽层不接地端出现高水平的工频感应电压,形成环流。

在金属屏蔽层采用一端互联接地的方式下,必须采取相应的方法与手段对护层上的过电压进行合理限制。

在安装过程中,需根据线路实际情况在金属屏蔽层或单芯电缆铝包层相应位置采取可行且有效的连接方式以及接地方式,并配合对护层保护器的设置,以避免电缆护层出现绝缘击穿的现象,起到维护110kV高压单芯电缆安全且稳定运行的效果。

二、110kV高压单芯电缆金属护套接地方案
2.1金属屏蔽层两端以不同方式接地 110kV高压单芯电缆金属护套可以采取“金属屏蔽层一端直接接地,另一端经护层保护接地”的接地方式,如图1所示。

结合图1,在110kV高压单芯电缆长度小于700m时,屏蔽层一端可做直接接地处理,另一端则在护层保护器支持下进行接地。

根据相应规范要求,交流系统110kV及以上单芯电缆金属层单点直接接到时,下列任一情况下,应沿电缆邻近设置平行回流线:①系统短路时电缆金属层产生的工频感应电压,超过电缆护层绝缘强度或护层电压限制器的工频电压;②需抑制电缆邻近弱点线路的工频耐压。

当出现上述情况时,还需要安装一条回流线(沿电缆线路保持平行状态),对回流线两端进行直接接地处理。

在回流线的敷设中,其与中间一项电缆的间隔距离应当控制为(0.7×相邻电缆间距),并且需要在线路中心位置进行换位。

由于增加有回流线,所以单相短路回路电流可不经过大地而通过回流线返回。

即在单相接地状态下,金属护套外护层绝缘性能以及保护器所承受工频过电压大小不会受到地网电位的影响,且可以使得一部分因110kV高压单芯电缆接地电流所产生磁通得到回流线流进磁通的抵消,以起到降低过电压水平的目的。

在工程实践中,在成都地区采用“金属屏蔽层一端直接接地,另一端经护层保护接地”的接地方式时,该种接地方式多用于排管敷设和电缆线路的“π”接中,且均未设置回流线。

2.2中点接地
110kV高压单芯电缆金属护套可以采取“中点接地”的接地方式,如图2所示。

结合图2,对110kV高压单芯电缆金属护套采取中点接地方案的基本思路是:在线路中点位置安装专用绝缘接头,通过绝缘接头断开电缆屏蔽层,屏蔽两端则经由护层保护器实现接地,电缆终端屏蔽可做直接接地处理。

需要注意的是,在针对110kV高压单芯电缆金属护套采用中点接地方式时,视实际情况,若电缆长度、敷设和运输方式能够满足要求,则仅需在电缆中点部位破开电缆保护套,并将接地装置直接安装于铝波纹护套上。

安装好后,可做金属护套以及外护层防水工作。

该方案的优势在于:电缆未直接安装绝缘接头,避免了在电缆运行期间出现绝缘性能薄弱的问题。

同时,110kV高压单芯电缆本体无畸变电场,可有助于提高电缆整体使用寿命以及载流量水平,达到维护电缆线路安全运行的目的。

工程实践中,本地区暂时无工程实际使用该种接地方式。

叉互联式的接线方式。

但该方案是本地区目前工程实践中在隧道、浅沟等具备条件的通道中优先选择的接地方式。

相关文档
最新文档