110KV单芯电缆直接接地与保护接地的区别
110kV高压单芯电缆金属护套接地方式探讨

110kV高压单芯电缆金属护套接地方式探讨摘要:我国现行《电力安全规程》当中有明确规定:电气设备非带电金属外壳均需要做接地处理,高压电缆金属屏蔽层需正常接地。
目前,110kV高压电缆线路多采用单芯电缆,其线芯部分与金属屏蔽层的关系可以视作“变压器初级绕组装置”,即在高压单芯电缆线芯有电流通过时,会产生磁力线交链金属屏蔽层,线芯两端出现感应电压。
高压电缆长度与感应电压大小有正相关关系,即在高压电缆线路较长的情况下,金属护套感应电压叠加后所会对人身安全产生危害。
在这一背景下,围绕110kV高压单芯电缆金属护套的接地方式进行探讨,以保证高压电缆运行的安全性。
关键词:高压单芯电缆;金属护套;接地方式一、110kV高压单芯电缆金属护套接地问题在我国现行《电力工程电缆设计规程》的要求下,对于电压等级在35kV及以下水平的电缆线路,多设置为三芯电缆形式。
电缆线路的运行过程中,流经三个现行的电流综合为零,因此,在金属屏蔽层两端均未检测有感应电压的存在。
这意味着对此类电缆线路而言,在对两端进行直接接地的条件下,不会有感应电流流经金属屏蔽层。
但在电压等级高于35kV的情况下,电缆线路多采取单芯形式。
当单芯电缆线芯通过电流时,就会有磁力线交链金属屏蔽层,使它的两端出现感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比。
当高压电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障,遭受操作过电压或雷电冲击时,屏蔽形成很高的感应电压,甚至可能击穿护套绝缘。
在这一情况下,若仍然按照常规方法将金属屏蔽层两端做三相互联式接地处理,则金属屏蔽层上将会产生非常大的环流,换流值可以达到电缆线芯电流的50%~95%,导致明显的电缆损耗。
同时,还会致使金属屏蔽层表面发热,影响电缆线路运行过程中的载流量水平,加速单芯电缆的绝缘老化。
即对于35kV电压等级以上高压单芯电缆而言,不能采取电缆两端直接接地的接地方式。
110kV及以上电压等级高压单芯交联聚乙烯电缆线路接地系统研究

110kV及以上电压等级高压单芯交联聚乙烯电缆线路接地系统研究发布时间:2022-09-20T07:26:03.101Z 来源:《科学与技术》2022年5月第10期作者:孟高志[导读] 随着电网的快速发展,高压电缆在城郊电网中运用越来越广泛孟高志扬州浩辰电力设计有限公司江苏省扬州市 225000摘要:随着电网的快速发展,高压电缆在城郊电网中运用越来越广泛。
当单芯电缆通过电流时,在金属护套上会产生感应电压,如果护套接地,则形成电流通道,在金属护套上会产生环流。
如果金属护套中电流过大就会使金属护套发热,不仅浪费了大量电能,而且会降低电缆的载流量,长期运行可能伤及主绝缘或加快劣化。
在对电缆“导体芯-铝护套-石墨层-接地体”三级电容进行理论分析的基础上,单端接地系统和交叉互联接地系统两种工况,计算分析了由接地系统异常引起的电缆线路高悬浮电压,并通过案例进行实证,提出了解决电缆线路高悬浮电压的措施关键词:高压电缆;铝护套;悬浮电压;接地系统 0引言110kV及以上高压电缆均采用单芯结构,金属护套一方面起径向阻水和抗机械损伤的作用,另一方面在系统发生短路故障时为故障电流提供回流通路。
当单芯电缆线芯流过交变的电流时,在线芯的周围会产生交变的磁场,该交变磁场与金属护套相交联,在金属护套上将产生感应电动势。
感应电动势会在护套中产生环流,较大的环流会影响电缆的载流量,同时会产生附加损耗,并可能引起电缆发热。
在单芯电缆构成的交流传输系统中,金属护套处于导体电流的交变磁场中,在金属护套中产生一定的感应电动势,其大小与电缆线路的长度、截面及电压等级有关,长度愈长、截面愈大、电压等级愈高,其感应电动势愈高。
如果护套形成通路,金属护套中的感应电动势将在护套中形成金属护套感应电流Is。
单芯电缆的导体与金属护套之间形成以导体和金属护套为连接、绝缘材料为介质的电容器,在交流电压作用下,会产生电容电流Ic。
金属护套接地电流Id由金属护套感应电流Is和电缆电容电流Ic两部分构成,即Id=Is+Ic。
110KV单芯电缆直接接地与保护接地的区别

110KV单芯电缆直接接地与保护接地的区别电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要接地。
通常35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。
但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。
当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。
感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。
此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。
[个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。
] 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。
因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。
保护接地和工作接地的区别

保护接地和工作接地的区别在电气系统中,接地是一个非常重要的概念,它涉及到人身安全和设备运行稳定性。
在接地的概念中,我们常常会听到“保护接地”和“工作接地”这两个名词。
它们虽然都与接地有关,但在实际应用中有着不同的作用和要求。
下面我们将分别介绍保护接地和工作接地的区别。
首先,保护接地是指将设备的金属外壳或其他导电部分连接到地面或接地装置上,以确保在设备发生漏电或短路时能够迅速将电流引入地面,保护人身安全和设备的正常运行。
保护接地是为了防止触电、保护设备以及预防火灾等安全问题而设置的。
它通常采用的是多点接地系统,将设备的金属外壳、电缆屏蔽层等部分连接到一个共同的接地系统上,以确保在发生故障时能够迅速引流,保护人员和设备的安全。
而工作接地则是为了保证设备在正常运行时能够稳定接地,以提高设备的运行可靠性和减少电磁干扰。
工作接地通常采用的是单点接地系统,将设备的金属外壳或其他导电部分连接到一个独立的接地系统上,以保证设备在运行时有一个稳定的接地点,减少静电积聚和电磁辐射,提高设备的运行效率和稳定性。
在实际应用中,保护接地和工作接地的区别主要体现在其作用和要求上。
保护接地是为了保护人身安全和设备正常运行,它要求设备的金属外壳或其他导电部分能够迅速引流,确保在发生故障时能够及时切断电源,防止触电和火灾等安全问题。
而工作接地则是为了提高设备的运行可靠性和稳定性,它要求设备能够稳定接地,减少静电积聚和电磁干扰,提高设备的运行效率。
综上所述,保护接地和工作接地在电气系统中有着不同的作用和要求。
保护接地是为了保护人身安全和设备正常运行,它要求设备能够迅速引流,确保在发生故障时能够及时切断电源,防止触电和火灾等安全问题。
而工作接地则是为了提高设备的运行可靠性和稳定性,它要求设备能够稳定接地,减少静电积聚和电磁干扰,提高设备的运行效率。
因此,在实际应用中,我们需要根据不同的要求来合理设置保护接地和工作接地,以确保电气系统的安全稳定运行。
110kV单芯电缆护层接地方式研究

110kV单芯电缆护层接地方式研究摘要:在电缆设计特别是高压单芯电缆设计中,110kV及以上电压等级大多采用单芯电缆,使得在低压三芯电缆中并不十分突出的电缆护层感应电压的问题显现出来,如不处理好这一问题,势必对电缆的运行和维护带来极大安全隐患。
本文针对这一问题指出几种常用的护层接地方法的适用范围,为类似设计提供参考。
关键词:单芯电缆;护层;感应电压前言:电力线路按结构可分为架空线路和电缆线路两大类。
在大多数情况下,用架空线传输电能要比用电缆的成本低,但随着工业和城市的发展,电缆用量在整个传输线中所占比例逐年提高。
与架空线相比,电缆具有显著的优点,如线间绝缘距离小、占地小、地下敷设不占地面上空间、不受周围环境影响、送电可靠性高等。
本文在分析110kV电缆设计相关技术问题的基础上,对110kV电缆导体和截面选择、敷设方式、附件选择、护层接地形式以及目前电网110kV 电缆设计存在的不合理之处进行了探讨,提出改进建议。
一、电缆护层接地方式的选择高压单芯电缆的芯线通过单相电流,正常运行时其磁力线匝链金属外皮而产生感应电压。
在发生短路故障时,芯线通过很大的短路电流,金属外皮中的感应电压极高,必须采取防护措施。
按照要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压未采取能有效防止人员任意接触金属层的安全措施时,不得大于50V,其它情况不得大于300V。
如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。
三芯电缆正常运行时,通过三芯线的三相电流的总合为零,电缆金属外护层中基本无磁场和感应电压,当外护层两端直接接地时,亦无感应电流。
高压单芯电缆,芯线通过单相电流,其磁力线匝链金属外皮,如将单芯电缆外护层两端简单的直接接地,则相当于构成一个1:1的变压器,会产生很大的感应电流和热量损耗,加速电缆绝缘老化,使正常运行时芯线载流量降低达40%。
单芯电缆成品字型排列时的感应电势为:(1-1)Es—感应电势;L—电缆金属层上任一部位与直接接地处的距离;Eso—单位长度的正常感应电势;某变电所采用的YJLW-64/110kV单芯电缆长度2.4km,若采用单端直接接地方式,则非接地端感应电势达:感应电势已超过规范限定的50V电压标准。
对110kV及以上高压电缆线路的接地系统分析

对110kV及以上高压电缆线路的接地系统分析摘要:本文作者通过实际工作中总结与积累经验,主要针对110kv及以上高压电缆的接地的重要性,并通过分析高压电缆接地的要求、方式和采取的措施等。
关键词:高压电缆接地电流电缆接地方式一、前言:经过十几年高压电力电缆施工我们积累了相当一部分的经验,本文综合各类文献并结合工程实际,意图对110kv及以上高压电缆的接地就重要性等方面进行探索。
二、高压电力电缆接地分析当导体内通过电流时会在其周围产生感应电压,对于在发电厂、变电所等用于低压及二次系统控制的电缆,为了防止继电保护装置误动以保证保护装置可靠性以外,也防止控制电缆屏蔽因感应电压而导致保护装置损坏,所以均采取带屏蔽铜网的电缆,并对屏蔽接地有着非常严格的规定;并且要求电缆支架等都要求接地以防止感应电压危及人身安全;而高压电力电缆同样存在这样的问题,本文将针对高压电力电缆在施工及运行中遇到的的一系列敷衍出的问题进行讨论:首先是敷设时的机械保护(电缆抗弯、防水、防火、腐蚀——采取铝、铜等金属外护套)→其次运行中线芯电流(在金属护套上形成1∶1的单匝变压器产生感应电动势——危害人身安全及电气设备运行经济性、可靠性等,采取外屏蔽接地)→接地电流或环流→各种接地方式的解决方法。
为了尽可能减少护套环流我们可以采取多种金属护套的连接与接地方式,这是我要着重讨论的问题。
高压电缆线路的接地方式有下列几种:.金属护套一点接地(一端或中点):无环流,感应电压与电缆长度成正比,短电缆线路常用;⑵. 金属护套两端接地:有环流,感应电压为零,但影响载流量,轻负荷电缆线路常用;⑶. 金属护套交叉换位连接:两端接地,中间用绝缘接头将护层交叉换位连接,无环流,感应电压与电缆长度成正比,但可以限制在允许的范围内,长电缆线路常用。
⑷.电缆换位,金属护套交叉互联:要求测得电缆金属感应电压必须是小于50v为前提,如果不是的话,必须进行相应的检查,是否是电缆的原因还是由于电缆的长度太长而造成的,还是其他原因造成的,如果是长度的原因(一般要求在500~800m的范围具体看测试结果),应相应调整其长度,比如说一组交叉互联加一组接地(一段接地)或其他方式。
白话说电气 工作接地与保护接地的区别与详解 有图

首先明确两个概念,工作接地和保护接地。
1什么是工作接地,什么是保护接地?工作接地,在正常或故障情况下为了保证电气设备的可靠运行,而将电力系统中某一点接地称为工作接地。
例如电源(发电机或变压器)的中性点直接(或经消弧线圈)接地,能维持非故障相对地电压不变,电压互感器一次侧线圈的中性点接地,能保证一次系统中相对低电压测量的准确度,防雷设备的接地是为雷击时对地泄放雷电流。
保护接地,将在故障情况下可能呈现危险的对地电压的设备外露可导电部分进行接地称为保护接地。
电气设备上与带点部分相绝缘的金属外壳,通常因绝缘损坏或其他原因而导致意外带电,容易造成人身触电事故。
为保障人身安全,避免或减小事故的危害性,电气工程中常采用保护接地。
接地保护与接零保护统称保护接地,是为了防止人身触电事故、保证电气设备正常运行所采取的一项重要技术措施。
这两种保护的不同点主要表现在三个方面:一是保护原理不同。
接地保护的基本原理是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。
二是适用范围不同。
根据负荷分布、负荷密度和负荷性质等相关因素,《农村低压电力技术规程》将上述两种电力网的运行系统的使用范围进行了划分。
TT系统通常适用于农村公用低压电力网,该系统属于保护接地中的接地保护方式;TN系统(TN系统又可分为TN-C、TN-C-S、TN-S三种)主要适用于城镇公用低压电力网和厂矿企业等电力客户的专用低压电力网,该系统属于保护接地中的接零保护方式。
当前我国现行的低压公用配电网络,通常采用的是TT或TN-C系统,实行单相、三相混合供电方式。
即三相四线制380/220V配电,同时向照明负载和动力负载供电。
三是线路结构不同。
接地保护系统只有相线和中性线,三相动力负荷可以不需要中性线,只要确保设备良好接地就行了,系统中的中性线除电源中性点接地外,不得再有接地连接;接零保护系统要求无论什么情况,都必须确保保护中性线的存在,必要时还可以将保护中性线与接零保护线分开架设,同时系统中的保护中性线必须具有多处重复接地。
浅析110KV电缆线路护层接地方式及保护

浅析110KV电缆线路护层接地方式及保护作者:陈晓儒来源:《中国新技术新产品》2012年第16期摘要:我国的城市输电网络在诸多方面都存在问题,如:架构复杂,线路敷设混乱,设施陈旧等等。
而随着人们对于电的需求与日俱增,我国的城市输电网络也在进行不断的调整和改变,110kV电缆线路逐渐接替架空线路成为城市输电网络的骨干网络。
如何做好110kV电缆线路的运行管理及维护工作,保障城市的用电需求成了当前电缆线路工作者努力的课题。
在电缆运行过程中,金属护层起到电磁屏蔽及防止外力破坏的作用,合适的电缆金属护层接地方式不仅对设备载流量有积极的影响而且有利于设备的安全稳定运行。
本文主要论述了110kV电缆线路护层接地方式及护层保护问题,希望对城市输电网络的改进能有所帮助。
关键词:110kV电缆线路;应用现状;护层保护中图分类号:U665.12 文献标识码:A改革开放以来,我国的社会主义市场经济取得了飞速的发展,越来越多的人口涌入到了城市当中,促进了中国城市化的进程。
所以,在这之前存在的供电网已经不能够适应现当今城市的发展步伐,要求中国城市电力部门进行全方面的改革,调整现有的供电网络布局,满足城市居民对于电力的需求。
值得我们庆幸的是,城市的供电公司已经对这一问题进行了研究,并且诸多公司已经开始将其制定的计划付诸实践,取得了较为明显的效果。
大多数公司采取的改革方案是放弃以前的电缆线路,改为采用110kV,110kV线路具有传统线路所不具备的优势:第一,寿命与之前的相比较之下要更长,在一定的程度上减少了电缆的更换速度,节约了公司的供电成本;第二,传统的电缆抗击外界天气等自然条件的能力较弱,而110kV则对自然条件的适应性较强;第三,环保卫生;第四,不影响城市的整体形象。
综合上述的这些优势,110kV电缆得到了大众的青睐。
但是,任何事物都不可能是完美无缺的,我们也应该看到110kV电缆线路的缺点和不足:由于其为单芯电缆,在使用时没有做好处理,发生事故的概率较高;而且在过电压的情况下护层很容易被击穿,造成电力的流失,严重时将会危机民众的生命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
110KV单芯电缆直接接地与保护接地的区别电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要接地。
通常35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。
但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。
当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。
感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。
此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。
[个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。
] 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯
时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。
因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。
据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。
①如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。
为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。
对于电缆长度不长的情况下,可采用单点接地的方式。
为保护电缆护层绝缘,在不接地的一端应加装护层保护器。
由此可见,高压电缆线路的接地方式有下列几种:
1、护层一端直接接地,另一端通过护层保护接地----可采用方式;
2、护层中点直接接地,两端屏蔽通过护层保护接地---常用方式;
3、护层交叉互联----常用方式;
4、电缆换位,金属护套交叉互联---效果最好的接地方式;
5、护套两端接地---不常用,仅适用于极短电缆和小负载电缆线路。