数字视频技术3PPT课件

合集下载

视频编码技术-PPT

视频编码技术-PPT
第3章 视频编码技术
1.视频信号的数字化 2.视频文件格式 3.视频压缩编码原理 4.视频压缩标准
学习目标
掌握视频数字化方法 了解视频文件格式 掌握视频压缩编码原理(预测编码、变换编
码、统计编码原理)
理解视频压缩标准( MPEG标准 )
3.1 视频信号的数字化
1.视频相关的基本概念
所谓视频(video frequency ),连续的图像变化每秒 超过24帧(frame)画面以上时,根据视觉暂留原理,人 眼无法辨别单幅的静态画面,看上去是平滑连续的视觉效 果,这样连续的画面叫做视频。即视频是由一系列单独的 静止图像组成,其单位用帧或格来表示;
(1)本地影像视频格式
-MOV格式,美国Apple公司开发的一种视频格式,默认 的播放器是苹果的QuickTime Player。具有较高的压缩比率 和较完美的视频清晰度等特点,但其最大的特点还是跨平 台性,即不仅能支持Mac OS,同样也能支持Windows系列。
Avid Media composer非线性编辑软件支持该格式。
同步信号
)
地(色度)
S-Video四芯插头(座)
地(亮度)
2.视频的采集及数字化
视频采集卡的接口
莲花接头
2.视频的采集及数字化
视频采集卡的接口 IEEE1394接口
IEEE1394是一种外部串行总线标准,800Mbps的 高速。1394接口具有把一个输入信息源传来的数据向 多个输出机器广播的功能,特别适用于家庭视听的连接。 由于该接口具有等时间的传送功能,确保视听AV设备 重播声音和图像数据质量,具有好的重播效果。
人眼在观察景物时,光信号传入大脑神经,需经过一段短暂 的时间,光的作用结束后,视觉形象并不立即消失,而能继续保 留其影像0.1-0.4秒左右,这种现象被称为视觉暂留现象。

数字媒体技术课件-PPT版

数字媒体技术课件-PPT版

3 流媒体压缩
数字媒体压缩技术支持实 时流媒体的压缩和传输, 使媒体内容能够边下载边 播放。
数字媒体传输技术
有线传输
数字媒体可以通过有线网络进行 传输,如网线、光纤等。
无线传输
数字媒体可以通过无线网络进行 传输,如Wi-Fi、蓝牙等。
卫星传输
数字媒体可以使用卫星进行长距 离传输,如卫星电视和卫星通信。
多媒体技术在文化艺术领域发挥了重要的创作和展示作用,通过数字媒体形 式传达艺术家的创意和情感。
多媒体技术的发展趋势
随着科技的不断发展,多媒体技术将更加智能化和虚拟化,与人工智能、增 强现实等技术相结合,创造更丰富、更沉浸式的体验。
数字媒体技术课件-PPT版
本课件介绍了数字媒体技术的各个方面,包括数字影像技术、数字音频技术、 数字图像处理技术等。探索多媒体技术的发展趋势和应用领域。
数字媒体技术概述
数字媒体技术是现代媒体领域的关键技术之一,涵盖了数字影像、音频、图像处理、编码、压缩、传输和存储 等方面。
数字影像技术
高画质
数字影像技术可以提供更高 质量的图像和视频,使观众 享受更逼真的视听体验。
3 音频处理
数字音频技术可以对音频进行降噪、均衡、混响等处理,提升音质和 音效效果。
数字图像处理技术
1
图像重建
2数字图像处理技术可以来自过插值和去噪等方法,对图像进行重建和修复,提升
图像质量。
3
图像滤镜
数字图像处理技术提供了各种滤镜效果, 可以改变图像的颜色、亮度和对比度等。
图像识别
数字图像处理技术可以应用图像识别算 法,实现图像内容的自动分析和识别。
特效和动画
数字影像技术可以应用各种 特效和动画效果,为影像内 容增添创意和互动性。

《数字视频处理》课件

《数字视频处理》课件
《数字视频处理》PPT课 件
数字视频处理是指对数字视频进行各种处理和操作的技术和方法。本课件将 介绍数字视频处理的基础知识、技术、实践以及未来展望。
数字视频处理介绍
1 什么是数字视频处理?
数字视频处理是指对数字视频进行各种处理和操作的技术和方法。
2 应用领域
数字视频处理广泛应用于电影、电视、广告、游戏等领域。
3 数字视频处理基础知识
了解视频编码、像素处理、颜色空间转换等基础知识。
数字视频处理技术
数字视频压缩
学习如何压缩视频文件大小,减少存储空间和传输 带宽。
视频编解码技术
了解各种视频编解码算法,以及它们对视频质量、 压缩率的影响。
视频增强技术
学习如何提高视频质量、增强图像细节和对比度。
视频分析技术
探索如何从视频中提取出有用的信息,如运动检测 和目标识别。
数字视频处理实践
1
数字视频处理软件介绍
2
了解常用的数字视频处理软件
数字视频处理项目实战
参与实际项目,锻炼数字视频处理技能, 解决实际问题。
数字视频处理流程示例
从采集、编辑、特效到输出,学习数字 视频处理的完整流程。
数字视频处理未来展望
1 数字视频处理发展趋势
探索未来数字视频处理的发展方向和趋势,如人工智能和虚拟现实。
2 数字视频处理技术创新
了解最新的数字视频处理技术,如高效的编码算法和实时图像增强。
3 数字视频处理应用前景
展望数字视频处理在娱乐、教育和医疗等领域的广阔应用前景。
结束语
数字视频处理对生活的 影响
数字视频处理改变了我们的 娱乐方式,提供了更丰富、 更精彩的视觉体验。
数字视频处理的未来意 义

数字视频设计与制作技术

数字视频设计与制作技术
智能推荐与策划
AI可以通过对用户行为和喜好的分析,为视频制作提供精准的策 划建议和内容推荐。
5G时代的视频产业变革与机遇
高速度与低延迟
5G网络的高速度和低延迟特性将为视频制作和传输带来更大的便 利和效率。
云游戏与VR/AR应用
5G将推动云游戏和VR/AR技术的发展,为视频制作带来更多的应 用场景。
动态追踪与匹配移动
使视频元素能够自动追踪并匹配视频 中的运动对象,实现更加逼真的特效 效果。
粒子系统与特效
通过粒子系统生成各种自然现象,如 雨、雪、火焰等,为视频添加丰富的 视觉效果。
视频合成技术
键控技术
图像融合
通过识别图像中的特定颜色或亮度信息, 将多个视频叠加在一起,实现画中画、透 明度调整等效果。
数字视频特点
数字视频具有高清晰度、高质量、高存储效率和可编辑性等 特点。它可以通过计算机进行后期处理和制作,生成各种特 效和艺术效果。
数字视频的发展历程
数字视频技术的起源
数字视频技术起源于20世纪90年代,随着计算机硬件和软件技术的不断发展, 数字视频逐渐成为影视制作的主流技术。
数字视频技术的进步
合成与输出
将处理好的片段进行合成,输 出最终的广告视频文件。
实例三:电影特效制作解析
特效需求分析
根据电影剧本和导演的要求 ,确定需要实现的特效效果 和场景。
三维建模与贴图
使用三维建模软件创建特效 所需的场景、角色和道具模 型,并进行贴图和材质设定 。
动画与特效制作
为场景、角色和道具添加动 画效果,并使用特效插件制 作特效效果。
3
视频编解码技术的优化
超高清视频对网络带宽和存储的要求较高,因此 ,更高效的视频编解码技术将是未来的发展趋势 。

数字音视频技术讲义第三章 模拟信号数字处理

数字音视频技术讲义第三章 模拟信号数字处理

短距离传送PCM信号是采用并行 传送方式,即每一个抽样的N个码位 以及为收、发同步用的抽样时钟, 在n+1条传输线中并行传送。 中、远距离传输时采用全串行传 送方式,即对n个码位首先进行并/ 串转换,然后在同一条线路上依次 传出。
*3.2 彩色电视图像信号的 数字编码
• ~两种PCM编码方式:全信号编码和分 量编码。 • 全信号编码是对彩色电视信号直接进行 编码。 • 分量编码是对亮度信号及两个色差信号 (或对三个基色信号)分别进行编码。
• 满足正交结构的条件是抽样频率是 行频的整数倍。 • 根据副载频与行频的偏置关系,只 当时fs=4fsc才形成正交抽样结构。 • 抽样频率较高可降低模拟低通滤波 器及数字滤波器的设计难度。随着 器件速度的提高和成本的下降,4fsc 抽样频率目前被广泛地采用。
二、量化等级
• 在全信号编码中,一般采用四舍五入的 均匀量化。主观实验表明,为获得满意 的图像质量,一般采用8bit量化。当编解 码次数较多时,考虑到量化噪波的累积, 应采用9-10bit量化。
3.2.2 分量编码
一、抽样频率 • 主观实验表明,当亮度信号Y的带宽为 5.8~6MHz、两个色差信号R-Y和B-Y的 带宽2MHz时,可获得满意的图像质量。 • 分量编码时,一般应先根据需要,用低 通滤波器适当地限制三个分量信号的带 宽。所选定的抽样频率应不小于2.2倍信 号最高频率。
• 三个分量信号的抽样频率之间以及它们与 行频之间,一般应有整数倍的关系,以便 于时分复用和形成正交抽样结构。• 考 虑 525 行 制 和 625 行 制 的 兼 容 性 , Y/RY/B-Y的抽样频率为:13.5/6.75/6.75MHz。 • 色差信号的抽样频率为亮度信号的2/4,简 称为4:2:2标准。根据标准,525行制亮 度信号的每行样点数为858,625行制为864, 色差信号每行样点数均为亮度信号的一半 。

(2024年)《计算机多媒体技术》课件(完整版)

(2024年)《计算机多媒体技术》课件(完整版)
17
视频编辑软件介绍及应用
1
Adobe Premiere Pro
专业的视频编辑软件,提供丰富的剪辑、特效、 音频处理等功能,支持多种格式导入和输出。
2 3
Final Cut Pro
适用于Mac系统的专业视频编辑软件,具有直观 的界面和强大的剪辑功能,支持多轨道编辑和多 种特效处理。
DaVinci Resolve
编码标准
介绍国际通用的音频编码 标准,如MPEG音频编码 标准等。
9
音频编辑与处理软件介绍
专业音频编辑软件
音频处理插件
如Adobe Auditபைடு நூலகம்on、Audacity等,提供音 频录制、编辑、混音等功能。
如WAVES、iZotope等,可用于音频降噪 、均衡、压缩等处理。
音频工作站
手机APP
如Pro Tools、Logic Pro等,集音频录制、 编辑、混音、母带处理等功能于一体。
21
虚拟现实系统硬件设备简介
输入设备
如数据手套、三维鼠标等,用于捕捉用户的 动作和指令。
跟踪定位设备
如光学跟踪器、超声波定位器等,用于确定 用户在虚拟环境中的位置和方向。
2024/3/26
输出设备
如头盔显示器、立体投影仪等,提供沉浸式 的视觉体验。
其他辅助设备
如力反馈装置、声音系统等,增强用户的沉 浸感和交互体验。
16
视频编码与压缩标准
2024/3/26
MPEG-1
用于VCD的视频编码标准,采用帧内压缩和帧间压缩技术,支持多 种分辨率和帧率。
MPEG-2
用于DVD和高清电视的视频编码标准,提供更高的压缩比和图像 质量。
H.264/AVC

《数字视频编辑软》课件

《数字视频编辑软》课件

二、视频编辑软件的分类
常见的视频编辑软件
介绍目前市场上常用的视频编辑软件,如Adobe Premiere、Final Cut Pro等。
主流和非主流视频们 的特点与适用场景。
三、数字视频编辑软件的特点
1 能够处理不同格式的视频
介绍数字视频编辑软件的多格式支持及其重要性。
商业视频制作
介绍数字视频编辑软件在商业广告、企业宣传片等领域的应用。
在线视频教学
探讨数字视频编辑软件在在线教育领域的应用和机会。
六、总结
数字视频编辑软件的发展前景
展望数字视频编辑软件的未来发展,探讨新技术和趋势。
个人使用和商业使用的选择建议
为个人和商业用户提供选择数字视频编辑软件的指导和建议。
学习视频编辑的重要性
强调学习视频编辑的益处,以及它对个人和职业发展的重要性。
2 提供丰富的特效和转场效果
探索数字视频编辑软件所提供的丰富特效和转场效果,并展示其使用实例。
3 可以进行剪辑、合成和输出等操作
详细说明数字视频编辑软件的剪辑、合成和输出功能,以及如何使用这些功能完成视频 制作。
四、数字视频编辑软件的具体操作
1
视频导入和素材管理
学习如何导入视频素材,对素材进行管
剪辑和合成视频
《数字视频编辑软》PPT 课件
数字视频编辑软件是当今数字化世界中不可或缺的工具。本课件将为您介绍 数字视频编辑软件的基本概念、特点以及具体操作,并提供应用实例和发展 前景。
一、引言
本课程简介
对《数字视频编辑软》进行全面介绍,帮助您 快速上手。
数字视频编辑软件的基本概念
了解数字视频编辑软件是什么,以及它在数字 视频制作中的重要性。
2

0301数字视频技术基础讲解PPT课件

0301数字视频技术基础讲解PPT课件

Logo
运动视频分析系统
Logoபைடு நூலகம்
运动视频分析系统
Logo
图像与视频安全
Logo
Logo
1.视频简介
§1.1 模拟视频与数字视频
视频(Video)最初是在电视系统中提出的; 20世纪20年代后期,俄裔美国物理学家、现代电视之父弗
拉迪米尔·兹沃尔金为代表的光电管及阴极射线管为核心技 术的全电子电视系统问世后,才有真正意义上的视频,即 黑白视频; 在不考虑电视调制发射和接收等诸多环节,仅考虑和研究 电视基带信号的摄取、改善、传输、记录、编辑、显示的 技术就叫做“视频技术”; 主要应用于广播电视的摄录编系统、安全及监控、视频通 信和视频会议、远程教育及视听教学、影像医学、影音娱 乐和电子广告等行业和领域。
下面以计算机广泛采用的数字化技术,即flashA/D变换器来具体看一 下数字化工作情况:
将图像分成栅状,每个小格子代表像素, 且位置确定。Flash变换器对每个像素 取样,量化、编码后,将这些数据存储 到存储器中。
计算机技术中,一个字节可以表示 0~255范围内的值,但作为视频信号幅 度,只能在0~100 IRE单位之间。
▪ 量化电平越细,失真程度越低,数字化后的比特率越 高。反之,相反。
▪ 一般来说,二进制方式,其量化比特为8的话,其量化 电平数为28,即256个量化电平。
▪ ITU-601标准规定,演播室用量化位数为10bit,用于 传输的量化位数为8bit
Logo
§1.1.3 数字视频
❖ 编码
▪ 按照一定的规律,将时间和幅度上离散信号用对应的 二进制或多进制代码表示。
➢ 扫描行数(扫描分辨率)越多,电视清晰度越高
分类:
– 隔行扫描: – 逐行扫描:简单、可靠、图像清晰,但要求传输通
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
度信道的一半,所以水平方向的色度抽样率只 是4:4:4的一半
Logo
❖ 对非压缩的8比特量化的视频来说,每个由两个水平方向 相邻的像素组成的宏像素需要占用4字节内存;
❖ 下面的四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]
Logo
图3-2 模拟信号理想取样前后的频谱
只要满足取样定理,仍可以从取样信号的频谱中 精确地恢复出原模拟信号。
2、量化
Logo
❖ 量化就是把幅度连续变化的信号变换为幅度离散的信号, 这是模拟信号到数字信号的映射变换。
❖ 显然,一个量化器只能取有限多个量化级,因此量化过程 将不可避免地带来量化误差。
❖ 编码——按照一定的规律,将时间和幅度上离散的信号 用对应的二进制或多进制代码表示。
Logo
❖ 模拟信号数字化框图如图1-1所示,其中fc为滤波器的截 止频率,fs为取样频率。
图3-1模拟信号数字化框图
1、取样
Logo
❖ 如果对一个时间连续信号f(t)进行等时间间隔取样,取
样时间间隔(取样周期)为Ts,取样频率为fs=1/Ts,设
❖ 存放的码流为: Y0 U0 Y1 V1 Y2 U2 Y3 V3
❖ 映射出像素点为: [Y0 U0 V1] [Y1 U0 V1] [Y2 U2 V3] [Y3 U2 V3]
亮度Y的格式为720*576样值,色度Cb、Cr的格式各为 360*576样值,设每个样值8比特编码,一帧画面的数据量为 (720*576*8+ 360*576*8*2)=6635520(bits)
二、4:1:1
Logo
在水平方向上对色度进行4:1抽样,适应于低端用户和消费类产品。
Logo
❖ 对非压缩的8比特量化的视频来说,每个由4个水平方向相 邻的像素组成的宏像素需要占用6字节内存;
数字视频技术
第三章 标准清晰度电视数字化的演播室标准
2012年4月
Logo §3.1 数字视频标准——ITU-R BT.601标准
一、数字化基础
❖ 模拟信号的数字化过程包括三个步骤:取样、量化和编
❖ 取样——将时间和幅度上连续的模拟信号转变为时间离
❖ 量化——将幅度连续信号转换为幅度离散的信号,即幅
Logo
四、CIF电视图像格式
为既可用625行的电视图像又可用525行的电视图像,国际 电信联盟(ITU)规定了:
公用中间分辨率格式(Common Intermediate Format,CIF); 1/4公用中间分辨率格式(Quarter-CIF,QCIF); 小1/4公用中间分辨率格式(Sub-Quarter CIF,SQCIF)格式。
① 不论是PAL制还是NTSC制,Y、R-Y、B-Y三个分量的抽样 频率分别为:13.5MHZ、6.75MHZ、6.75MHZ;
② 抽样后采用线性量化,每个样点的量化比特数用于演播室 10bit,用于传输8bit;
③ Y、R-Y、B-Y三个分量样点之间的比例为: 4:2:2
Logo
一、采样频率
➢ 亮度信号采样频率的选择应该从以下4个方面考虑:
Logo
数字视频采样格式
❖ 根据电视信号的特征,亮度信号的带宽是色度信号带宽 的两倍。因此其数字化时对信号的色差分量的采样率低于
对亮度分量的采样率,即对色差信号进行下采样;
❖ 数字视频的采样格式分别有:
▪ 4:4:4—色差分量没有下采样 ▪ 4:2:2 —色差分量进行水平下采样没有垂直下采样 ▪ 4:1:1 —色差分量进行了4:1的水平下采样没有垂直下采样 ▪ 4:2:0 —色差分量分别进行2:1的水平和垂直下采样
fs =525×29.97×N=15734×N=13.5 MHz, N=858 其中,N为每一扫描行上的采样数目 ❖ PAL制和NTSC制电视信号数字化时采用相同的采样频率
Logo
二、采样结构
➢ 采样结构是指采样点在空间与时间上的相对位置,有正交 结构和行交叉结构等;
➢ 在数字电视中一般采用正交结构;
➢ 首先应该满足采样定理,即采样频率应该大于视频带宽的两 倍;
➢ 为了保证采样结构是正交的,采样频率应该是行频fH的整数 倍;
➢ 为了便于节目的国际间交流,亮度信号采样频率的选择还必 须兼顾国际上不同的扫描格式。
fs=m·2.25MHz
NTSC制和
PAL制行频的
➢ 编码后的比特率Rb=fs·n,其中n为量化比特数。最小公倍数
➢ 正交结构在图像平面上沿水平方向取样点等间隔排列,沿垂直方 向取样点上下对齐排列,这样有利于帧内和帧间的信号处理;
➢ 行交叉结构,每行内的取样点数为整数加半个。
Logo
Logo
Logo
三、有效样本数
• 对PAL制和SECAM制的亮度信号,每一扫描行采样864个; • 对NTSC制的亮度信号,每一扫描行采样858个; • 对所有的制式,每一扫描行的有效样本数均为720个。
Logo
❖ CCIR为NTSC制、PAL制和SECAM制规定了共同的电视图 像采样频率。这个采样频率也用于远程图像通信网络中的电 视图像信号;
❖ 对PAL制和SECAM制,规定采样频率为
fs =625×25×N=15625×N=13.5 MHz, N=864 其中,N为每一扫描行上的采样数目
❖ 对NTSC制,规定采样频率为
Logo
✓ 为便于国际间的节目交换,消除数字电视设备之间的制式 差别,使625行电视与525行电视系统兼容,在1982年2月 CCIR第15次全会上通过了601号建议,确定以分量编码为 基础,即以亮度分量Y和两个色差分量R-Y和B-Y为基础进 行编码,作为电视演播室数字编码国际标准.
✓ 该标准规定:
原模拟信号的频谱为F(ω),则 fS(t)的频谱为:
F() f (t)ejt
抽样信号的傅立 叶变换
F s()T 1 s F (n s) n
Logo
❖ (1) 经过理想取样后,输出信号的频谱Fs(ω)是原模 拟信号的频谱F(ω)以ωs为周期延拓形成的,如图1-2所示 。
❖ (2) 如果原模拟信号频谱F(ω)的频谱范围在ωh之内 ,则满足ωs≥2ωh时,则取样后的信号fs(t)通过一个截止 频率为ωs/2的理想低通滤波器后,可以无失真地恢复原信 号f(t)
相关文档
最新文档