西藏阿里地区人教A版高中数学必修三第一章1.3算法案例 同步训练

合集下载

人教版高中数学必修3全套精品同步练习

人教版高中数学必修3全套精品同步练习

第一章 算法初步1.1算法与程序框图 1.1.1算法的概念[自我认知]:1.下面的结论正确的选项是 ( ).A. 一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C. 完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原那么2.下面对算法描述正确的一项为哪一项 ( ). A.算法只能用自然语言来描述 B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征 ( ) A.抽象性 B.精确性 C.有穷性 D.唯一性4.算法的有穷性是指 ( ) A.算法必须包含输出 B.算法中每个操作步骤都是可执行的 C.算法的步骤必须有限 D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听播送(8min)几个步骤,从以下选项中选最好的一种算法 ( ) A.S1洗脸刷牙、S2刷水壶 、S3烧水、S4泡面、S5吃饭、S6听播送 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听播送 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听播送 D.S1吃饭同时听播送、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是 ( ) A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x -=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分以下三步:①计算c =a ,b 的值;③输出斜边长c 的值,其中正确的顺序是 ( ) A.①②③ B.②③① C.①③② D.②①③[课后练习]:8.假设()f x 在区间[],a b 内单调,且()()0f a f b <,那么()f x 在区间[],a b 内 ( ) A.至多有一个根 B.至少有一个根 C.恰好有一个根 D.不确定9.一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为: 第一步:取A=89 ,B=96 ,C=99; 第二步:____①______; 第三步:_____②_____; 第四步:输出计算的结果.10.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n =(1)2n n +直接计算. 第一步______①_______; 第二步_______②________; 第三步 输出计算的结果.11.写出1×2×3×4×5×6的一个算法.12.写出按从小到大的顺序重新排列,,x y z 三个数值的算法.1.1.2程序框图[自我认知]:1.算法的三种根本结构是 〔 〕 A.顺序结构、条件结构、循环结构 B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构 D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是 〔 〕A.矩形框 B.菱形框 D.圆形框 D.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为A.⑴3n ≥1000 ? ⑵3n <1000 ?B. ⑴3n ≤1000 ? ⑵3n ≥1000 ? C. ⑴3n <1000 ? ⑵3n ≥1000 ? D. ⑴3n <1000 ? ⑵3n <1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,以下说法正确的选项是 ( )A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如以下图所示),该程序框图的功能是 ( )⑴⑵A.求输出,,a b c 三数的最大数B.求输出,,a b c 三数的最小数C.将,,a b c 按从小到大排列D.将,,a b c 按从大到小排列6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是( ) A.0m =? B.0x = ? C.1x = ? D.1m =?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) A.顺序结构 B.条件结构和循环结构 C.顺序结构和条件结构 D.没有任何结构8.函数()2121x f x x ⎧-=⎨-⎩ (0)(0)x x ≥<,设计一个求函数值的算法,并画出其程序框图1.1.2程序框图(第二课时)[课后练习]:1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____. 2.如图⑵程序框图箭头a 指向①处时,输出 s=__________. 箭头a 指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 那么判断中应填 . A 、i ≥10? B 、i ≥11? C 、i ≤11? D 、i ≥12?4.如图(3)程序框图箭头b 指向①处时,输出 s=__________. 箭头b 指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。

人教A版高中数学必修三练习:第一章算法初步1.3算法案例含答案

人教A版高中数学必修三练习:第一章算法初步1.3算法案例含答案

分层训练·进阶冲关A组基础练( 建议用时 20 分钟)1.在对 16 和 12 求最大条约数时 , 整个操作如下:16-12=4,12-4=8,8-4=4.由此能够看出12 和 16 的最大条约数是( A )A.4B.12C.16D.82. 在 m=nq+r(0≤r<n) 中, 若 k 是 n,r 的条约数 , 则 k m,n 的条约数.( A)A. —定是B. 不必定是C.必定不是D.不可以确立3.相关展转相除法以下说法正确的选项是 ( C ) A.它和更相减损术同样是求多项式值的一种方法B. 基本步骤是用较大的数m除以较小的数 n 获得除式 m=nq+r,直至 r<n 为止C.基本步骤是用较大的数m除以较小的数 n 获得除式 m=nq+r(0≤r<n),频频进行 , 直到 r=0 为止D.以上说法皆错4. 已知 7 163=209×34+57,209=57×3+38,57=38×1+19,38=19×2. 根据上述一系列等式 , 可确立 7 163 和 209 的最大条约数是( C )A.57B.3C.19D.345. 把 389 化为四进制数 , 则该数的末位是( A )A.1B.2C.3D.46. 用秦九韶算法求n 次多式 f(x)=a n x n+a n-1 x n-1 +⋯+a1x+a0的 , 当 x=x0 , 求f(x 0) 需要算乘方、乘法、加法的次数分 ( C )A.,n,nB.n,2n,nC.0,n,nD.0,2n,n7. 用更相减求36 与 134 的最大公数 , 第一步先除以2,获得 18与 67 .8.用相除法求 294 和 84 的最大公数 , 需要做除法的次数是2 .9. 三位七制数表示的最大的十制数是342 .10.秦九韶是我国南宋期的数学家 , 普州 ( 四川省安岳 ) 人, 他在所著的《数九章》中提出的多式求的秦九韶算法 , 到现在还是比先的算法 , 如所示的程序框出了利用秦九韶算法求某多式的一个例 . 若入 n,x 的分 3,3, 出 v 的48 .11.将 1234(5)化八制数 .【分析】先将 1234 (5)化十制数 :1234 (5) =1 ×5 3 +2 ×5 2 +3 ×5 1+4 ×5 0 =194.再将十制数 194 化八制数 :因此 1234 (5) =302 (8) .12. 用秦九韶算法计算多项式f(x)=x 6-12x 5+60x4 -160x 3+240x2-192x+64,当 x=2 时的值 .【分析】将 f(x) 改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64, v0 =1,v 1 =1×2-12=-10,v 2 =-10×2+60=40,v 3 =40×2-160=-80,v 4 =-80×2+240=80,v 5 =80×2-192=-32,v 6 =-32×2+64=0.因此f(2)=0,即x=2 时,原多项式的值为0.B组提高练( 建议用时 20 分钟)13.以下各数中最小的数为 ( A )A.101011(2)B.1210(3)C.110(8)D.68(12)14.《九章算术》是中国古代的数学专著 , 此中的一段话“可半者半之 , 不行半者 , 副置分母、子之数 , 以少减多 , 更相减损 , 求其等也 , 以等数约之”用程序框图表示如图, 那么这个程序的作用是( B )A. 求两个正数 a,b 的最小公倍数B. 求两个正数 a,b 的最大公数C.判断此中一个正数能否能被另一个正数整除D.判断两个正数 a,b 能否相等15.用秦九韶算法求多式 f(x)=1+2x+x 2-3x 3+2x4在 x=-1 的 ,v 2的果是( D)A.-4B.-1C.5D.616.396 与 270 的最大公数与最小公倍数分18,5 940 .17.已知一个 k 制的数 123(k)与十制的数 38 相等 , 求 k 的 .【分析】由 123 (k) =1 ×k 2 +2 ×k 1 +3 ×k 0=k 2 +2k+3,得 k 2+2k+3=38, 因此 k 2 +2k-35=0,因此 k=5或k=-7(舍),因此 k=5.18. 用秦九韶算法求多式f(x)=12+35x-8x 2+79x3+6x4+5x5+3x6, 当 x=-4 ,v 4的 .【分析】依照秦九韶算法有v 0 =a 6 =3,v 1 =v 0x+a 5 =3 ×(-4)+5=-7,v2=v 1 x+a 4 =-7×(-4)+6=34,v3=v 2 x+a 3 =34×(-4)+79=-57,v4=v 3 x+a 2=-57×(-4)+(-8)=220.C 培 ( 建用 15 分 )19.程序框 , 利用秦九韶算法算多式 f(x)=a n x n+a n-1 x n-1 +⋯+a1x+a0的 , 当 x=x0, 框中 A 填入a n-k.20. 三个数 168,54,264 的最大条约数为 6 .封闭 Word 文档返回原板块。

2020-2021学年人教版数学必修3配套训练:1.3 算法案例

2020-2021学年人教版数学必修3配套训练:1.3 算法案例

第一章算法初步1.3算法案例[A组学业达标]1.在对16和12求最大公约数时,整个操作如下:16-12=4,12-4=8,8-4=4.由此可以看出12和16的最大公约数是() A.4B.12C.16 D.8解析:根据更相减损术的方法判断.答案:A2.459和357的最大公约数是() A.3 B.9C.17 D.51解析:∵459=357×1+102,357=102×3+51,102=51×2,∴459和357的最大公约数是51.故选D.答案:D3.下列各数中最小的数是() A.101 010(2)B.210(8)C.1 001(16)D.81解析:101 010(2)=1×25+0×24+1×23+0×22+1×21+0×20=42,210(8)=2×82+1×81+0×80=136,1 001(16)=1×163+0×162+0×161+1×160=4 097.故选A.答案:A4.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是() A.-4 B.-1C.5 D.6解析:n=4,a4=2,a3=-3,a2=1,a1=2,a0=1,由秦九韶算法的递推关系式得v0=2,v1=v0x+a3=-5,v2=v1x+a2=6.5.用秦九韶算法计算多项式f(x)=3x6+4x5+5x4+6x3+7x2+8x+1当x=0.4时的值时,需要做乘法和加法的次数分别是()A.6,6 B.5,6C.5,5 D.6,5解析:秦九韶算法中最多需用加法和乘法的次数,由多项式的次数n可知,∴选A.答案:A6.用秦九韶算法求f(x)=2x3+x-3当x=3时的值v2=__________.解析:f(x)=((2x+0)x+1)x-3,v0=2;v1=2×3+0=6;v2=6×3+1=19.答案:197.将51化为二进制数得__________.解析:答案:110 011(2)8.用辗转相除法求294和84的最大公约数时,需要做除法的次数是__________.解析:294=84×3+42,84=42×2.答案:29.用辗转相除法求242与154的最大公约数.解析:242=154×1+88,154=88×1+66,88=66×1+22,所以242与154的最大公约数是22.10.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64,当x=2时的值.解析:将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64,由内向外依次计算一次多项式当x=2时的值,v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v4=-80×2+240=80,v5=80×2-192=-32,v6=-32×2+64=0.所以f(2)=0,即x=2时,原多项式的值为0.[B组能力提升]11.下面一段程序的目的是()A.求m,n的最小公倍数B.求m,n的最大公约数C.求m被n除的商D.求n除以m的余数解析:本程序当m,n不相等时,总是用较大的数减去较小的数,直到相等时跳出循环,显然是“更相减损术”.故选B.答案:B12.按照秦九韶算法求多项式f(x)=1.5x5+3.5x4-4.1x3-3.6x+6当x=0.5时的值的过程中,令v0=a5,v1=v0x+a4,…,v5=v4x+a0,则v4=__________.解析:由题意,有v0=1.5,v1=1.5×0.5+3.5=4.25,v2=4.25×0.5-4.1=-1.975,v3=-1.975×0.5+0=-0.987 5,v4=-0.987 5×0.5-3.6=-4.093 75.答案:-4.093 7513.用更相减损术求三个数168,54,264的最大公约数为__________.解析:为简化运算,先将3个数用2约简为84,27,132.由更相减损术,先求84与27的最大公约数.84-27=57,57-27=30,30-27=3,27-3=24,24-3=21,21-3=18,18-3=15,15-3=12,12-3=9,9-3=6,6-3=3.故84与27的最大公约数为3.再求3与132的最大公约数,易知132=3×44,所以3与132的最大公约数就是3.故84,27,132的最大公约数为3;168,54,264的最大公约数为6.答案:614.有甲、乙、丙三种溶液分别重147g,343g,133g,现要将它们分别全部装入小瓶中,每个小瓶装入液体的质量相同,则每瓶最多装多少溶液?解析:每个小瓶的溶液的质量应是三种溶液质量147,343,133的公约数,最大质量即是其最大公约数.先求147与343的最大公约数:343-147=196,196-147=49,147-49=98.98-49=49.所以147与343的最大公约数是49.再求49与133的最大公约数:133-49=84,84-39=35,49-35=14,35-14=21,21-14=7,14-7=7,所以49与133的最大公约数为7,所以147,343,133的最大公约数为7.即每瓶最多装7 g溶液.15.若10y1(2)=x02(3),求数字x,y的值及与此两数等值的十进制数.解析:∵10y1(2)=x02(3),∴1×23+0×22+y×2+1=x×32+0×3+2,将上式整理得9x-2y=7,由进位制的性质知,x∈{1,2},y∈{0,1},当y=0时,x=79(舍),当y=1时,x=1.∴x=y=1,已知数为1 011(2)=102(3),与它们相等的十进制数为1×32+0×3+2=11.。

人教版高中数学必修三第一章算法初步1.3算法案例(教师版)【个性化辅导含答案】

人教版高中数学必修三第一章算法初步1.3算法案例(教师版)【个性化辅导含答案】

算法事例____________________________________________________________________________________________________________________________________________________________________1.理解算法事例的算法步骤和程序框图.2.指引学生得出自己设计的算法程序.3. 领会算法的基本思想||,提高逻辑思想能力||,发展有条理地思虑与数学表达能力.1.求两个正整数最大条约数的算法(1) 更相减损之术 (等值算法 )用两数中较大的数减去较小的数||,再用差数和较小的数组成新的一对数||,再用大数减小数||,以同样的操作向来做下去||,直到产生一对相等的数||,这个数就是最大条约数.(2)用“等值算法”求最大条约数的程序while a= a- b b= b- a end2.割圆术用圆内接正多边形面积渐渐迫近圆的面积的算法是计算圆周率的一种方法.3.秦九韶算法 :把一个 n 次多项式f(x)= a n x n+ a n-1 x n-1++ a1x+ a0改写成以下形式:f(x)=a n x n+ a n-1x n-1++ a1x+ a0=( a n x n-1+ a n-1x n-2++ a1)x+a0=(( a n x n-2+ a n-1x n-3++ a2)x+ a1)x+ a0=( (( a n x+ a n-1)x+ a n-2)x++ a1 )x+ a0求多项式的值时||,第一计算最内层括号内一次多项式的值||,而后由内向外逐层计算一次多项式的值.这样经过一次式的频频运算||,逐渐得出高次多项式的值的方法称作秦九韶算法||。

察看上述秦九韶算法中的n 个一次式可见 ||,只需令v0a n此中 k 1,2, ,n 就获得v k v k 1xan k了一个递推关系 ||。

人教版高中数学必修三第一章算法初步1.3算法案例 (教师版)【个性化辅导含答案】-教育文档

人教版高中数学必修三第一章算法初步1.3算法案例 (教师版)【个性化辅导含答案】-教育文档

算法案例__________________________________________________________________________________ __________________________________________________________________________________1.理解算法案例的算法步骤和程序框图.2.引导学生得出自己设计的算法程序.3. 体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.1.求两个正整数最大公约数的算法(1)更相减损之术(等值算法)用两数中较大的数减去较小的数,再用差数和较小的数构成新的一对数,再用大数减小数,以同样的操作一直做下去,直到产生一对相等的数,这个数就是最大公约数.(2)用“等值算法”求最大公约数的程序while a =a -b b =b -a end2.割圆术用圆内接正多边形面积逐渐逼近圆的面积的算法是计算圆周率的一种方法.3.秦九韶算法:把一个n 次多项式f (x )=a n x n +a n -1x n -1+…+a 1x +a 0改写成如下形式:f (x )=a n x n +a n -1x n -1+…+a 1x +a 0=(a n x n -1+a n -1x n -2+…+a 1)x +a 0=((a n x n -2+a n -1x n -3+…+a 2)x +a 1)x +a 0=(…((a n x +a n -1)x +a n -2)x +…+a 1)x +a 0求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值.这样通过一次式的反复运算,逐步得出高次多项式的值的方法称作秦九韶算法。

观察上述秦九韶算法中的n 个一次式可见,只要令⎩⎨⎧+==--kn k k n a x v v a v 10其中n k ,,2,1 =就得到了一个递推关系。

人教A版高中数学必修3第一章1.3 算法案例课件_4

人教A版高中数学必修3第一章1.3 算法案例课件_4
i=n-1
WHILE i>=0 INPUT“ai=”;a
v=v*x+a
i=i-1
WEND
PRINT v
END
人教A版高中数学必修3第一章1.3 算法案例课件_4
• 程序计算
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
课堂小结:
1、秦九韶算法的方法和步骤 2、秦九韶算法的流程图及程序
人教A版高中数学必修3第一章1.3 算法案例课件_4
秦九韶算法是求一元多项式的值的一种方 法。
怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时 的值呢? 算法一:把5代入,计算各项的值,然后把它 们加起来。 算法二:先计算x2的值,然后依次计算x2·x、 ( x2·x)·x、( ( x2·x)·x)·x的值。
人教A版高中数学必修3第一章1.3 算法案例课件_4
开始 输入n,an,x的值
v=an i=n-1
程序语言
i=i-1
v=vx+ai
i≥0? Y
N
输出v
输入ai
结束
人教A版高中数学必修3第一章1.3 算法案例课件_4
INPUT “n=”;n INPUT “an=”;a INPUT “x=”;x v=a
作业:
1.书本45页 课后练习2 2.( 思考题) f(x)=2x6-5x5+ax3+3x2-6x
当x = 5时v4=608,求a的值
人教A版高中数学必修3第一章1.3 算法案例课件_4
人教A版高中数学必修3第一章1.3 算法案例课件_4
谢 谢 指 导!

高中数学(人教版A版必修三)配套课时作业:第一章 算法初步 §1.3

高中数学(人教版A版必修三)配套课时作业:第一章 算法初步 §1.3

§1.3算法案例课时目标通过三种算法案例:辗转相除法与更相减损术,秦九韶算法,进位制,进一步体会算法的思想,提高算法设计水平,体会中国古代数学对世界的贡献.1.辗转相除法(1)辗转相除法,又叫欧几里得算法,是一种求两个正整数的最大公约数的古老而有效的算法.(2)辗转相除法的算法步骤第一步,给定两个正整数m,n.第二步,计算m除以n所得的余数r.第三步,m=n,n=r.第四步,若r=0,则m、n的最大公约数等于m;否则,返回第二步.2.更相减损术第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步.第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.3.秦九韶算法把一个n次多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0改写成如下形式:(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0,求多项式的值时,首先计算最内层括号内一次多项式的值,即v1=a n x+a n-1,然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2,v3=v2x+a n-3,…v n=v n-1x+a0这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.4.进位制进位制是人们为了计数和运算方便而约定的记数系统,“满k进一”就是k进制,k进制的基数是k.把十进制转化为k进制数时,通常用除k取余法.一、选择题1.下列说法中正确的个数为()(1)辗转相除法也叫欧几里得算法;(2)辗转相除法的基本步骤是用较大的数除以较小的数;(3)求最大公约数的方法,除辗转相除法之外,没有其他方法;(4)编写辗转相除法的程序时,要用到循环语句.A.1 B.2 C.3 D.4答案 C解析(1)、(2)、(4)正确,(3)错误.2.用更相减损术求294和84的最大公约数时,需做减法的次数是()A.2 B.3 C.4 D.5答案 C解析由于294和84都是偶数,所以用2约简:294÷2=147,84÷2=42,又由于147不是偶数,所以147-42=105,105-42=63,63-42=21,42-21=21,故需做4次减法,故选C.3.1 037和425的最大公约数是()A.51 B.17 C.9 D.3答案 B解析∵1 037=425×2+187,425=187×2+51,187=51×3+34,51=34×1+17,34=17×2,即1 037和425的最大公约数是17.4.用秦九韶算法计算多项式f(x)=6x6+5x5+4x4+3x3+2x2+x+7在x=0.4时的值时,需做加法和乘法的次数的和为()A.10 B.9 C.12 D.8答案 C解析f(x)=(((((6x+5)x+4)x+3)x+2)x+1)x+7∴加法6次,乘法6次,∴6+6=12(次),故选C.5.已知f(x)=x5+2x3+3x2+x+1,应用秦九韶算法计算x=3时的值时,v3的值为() A.27 B.11 C.109 D.36答案 D解析将函数式化成如下形式.f(x)=(((x+0)x+2)x+3)x+1)x+1由内向外依次计算:v0=1,v1=1×3+0=3,v2=3×3+2=11,v3=11×3+3=36,v4=36×3+1=109,v5=109×3+1=328.6.下列有可能是4进制数的是()A.5 123 B.6 542 C.3 103 D.4 312答案 C解析4进制数每位上的数字一定小于4,故选C.二、填空题7.辗转相除法程序中有一空请填上.答案 a MOD b解析MOD用来表示a除以b的余数.8.更相减损术程序中有两空请填上.答案a=b b=r9.已知三个数12(16),25(7),33(4),将它们按由小到大的顺序排列为________.答案33(4)<12(16)<25(7)解析将三个数都化为十进制数.12(16)=1×16+2=18,25(7)=2×7+5=19,33(4)=3×4+3=15,∴33(4)<12(16)<25(7).三、解答题10.用两种方法求210与98的最大公约数.解用辗转相除法:210=98×2+14,98=14×7.∴210与98的最大公约数为14.用更相减损术:∵210与98都是偶数,用2约简得105和49,105-49=56,56-49=7,49-7=42,42-7=35,35-7=28,28-7=21,21-7=14,14-7=7.∴210与98的最大公约数为2×7=14.11.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值.解将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64由内向外依次计算一次多项式当x=2时的值v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v4=-80×2+240=80,v5=80×2-192=-32,v6=-32×2+64=0.∴f(2)=0,即x=2时,原多项式的值为0.能力提升12.把111化为五进制数.解∴111化为五进制数为421(5).13.把10 231(5)化为四进制数.解先化成十进制数.10 231(5)=1×54+0×53+2×52+3×51+1=625+50+15+1=691再化为四进制数∴10 231(5)=22 303(4).1.辗转相除法与更相减损术的区别和联系(1)都是求最大公约数的方法.(2)二者的实质都是递归的过程.(3)二者都要用循环结构来实现.2.秦九韶算法的特点秦九韶算法的特点在于把求一个n 次多项式的值转化为求n 个一次多项式的值,即把求f (x )=a n x n +a n -1x n -1+…+a 1x +a 0的值转化为求递推公式: ⎩⎪⎨⎪⎧v 0=a n v k =v k -1x +a n -k (k =1,2,…,n ) 这样可以最多计算n 次乘法和n 次加法即可得多项式的值,和直接代入多项式相比减少了乘法的运算次数,提高了运算效率.3.十进制与其他进制的转化(1)将k 进制转化为十进制的方法:先把k 进制数写成各位上的数字与k 的幂的乘积的形式,再按十进制的运算规则计算.(2)将十进制化成k 进制的方法:用除k 取余法,用k 连续去除十进制数所得的商,直到商为零为止,然后将各步所得的余数倒序写出,即为相应的k 进制数. 小课堂:如何培养中学生的自主学习能力? 自主学习是与传统的接受学习相对应的一种现代化学习方式。

人教版高中数学必修3同步章节训练题及答案全册汇编

人教版高中数学必修3同步章节训练题及答案全册汇编

人教A版高中数学必修3同步训练目录1.1.1算法的概念同步试题1.1.2程序框图与算法的基本逻辑结构同步试题--顺序结构、条件结构1.2.1输入、输出、赋值语句同步试题1.2.2条件语句同步试题1.2.3循环语句同步试题1.3《算法案例---秦九韶算法》测试1.3《算法案例》测试(新人教必修3).2.1.2《系统抽样》测试2.1《随机抽样》测试12.2用样本估计总体(同步练习)2.3《变更间的相关关系》测试12.3《变量间的相关关系》测试23.1随机事件的概率(同步练习)3.2古典概型(同步练习)3.3几何概型(同步练习)第一章《算法初步》测试(1)第一章《算法初步》测试(2)第二章《统计》测试(1)第二章《统计》测试(2)第三章《概率》测试(1)第三章《概率》测试(2)[同步试题] 1.1.1算法的概念1下面对算法描述正确的一项是:()A算法只能用自然语言来描述B算法只能用图形方式来表示C同一问题可以有不同的算法D同一问题的算法不同结果必然不同2算法的有穷性是指()A、算法的最后包含输出B、算法中的每个步骤都是可执行的C、算法的步骤必须有限D、以上说法都不正确3、写出求过P(3,2),Q(-1,6)两点的直线斜率的一个算法.4、深圳到香港的海底电缆有一处发生故障,请你设计一个检修方案.5、任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.6、任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.7、用二分法设计一个求方程(x^2)-2=0的近似根的算法.8、牛虎过河。

一个人带三只老虎和三头牛过河。

只有一条船,可以容一个人和两只动物。

没有人在的时候,如果老虎的数量不少于牛的数量就会吃掉牛。

设计安全渡河的算法。

答案:1、 C2、 C3、 解:第一步:计算1-1--36-2K ==)(, 第二步:输出-1。

4、 解:第一步:找到深圳到香港的地缆的中点位置P ,第二步:分别检验P 到深圳,P 到上海间的地缆,找出不通的,故障即在此段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西藏阿里地区人教A版高中数学必修三第一章1.3算法案例同步训练
姓名:________ 班级:________ 成绩:________
一、单选题 (共11题;共22分)
1. (2分) 1443与999的最大公约数是()
A . 99
B . 11
C . 111
D . 999
2. (2分)四位二进制数能表示的最大十进制数是()
A . 4
B . 15
C . 64
D . 127
3. (2分)用辗转相除法求459和357的最大公约数,需要做除法的次数是()
A . 1
B . 2
C . 3
D . 4
4. (2分)用秦九韶算法求多项式,当时,的值为()
A . 27
B . 86
C . 262
5. (2分) (2017高一下·珠海期末) f(x)=3x6﹣2x5+x3+1,按照秦九韶算法计算x=2的函数值时,v4=()
A . 17
B . 68
C . 8
D . 34
6. (2分)用秦九韶算法计算多项式f(x)="4x6+3x5+4x4+2x3+5x2-7x+9" 在x=4时的值时,V3的值为()
A . 322
B . 80
C . 19
D . 223
7. (2分) (2016高一下·邵东期末) 下列各数中最小的是()
A . 85
B . 210(6)
C . 1000(7)
D . 101011(2)
8. (2分)下列关于算法的说法正确的有()
①求解某一类问题的算法是唯一的;
②算法必须在有限步操作之后停止;
③算法的每一步操作必须是明确的,不能有歧义;
④算法执行后一定产生明确的结果.
B . 2个
C . 3个
D . 4个
9. (2分)将八进制数135(8)化为二进制数为()
A . 1110101(2)
B . 1011101(2)
C . 1010101(2)
D . 1111001(2)
10. (2分)两个正整数840与1 785的最大公约数是()
A . 105
B . 8
C . 2
D . 840
11. (2分)用更相减损术求459与357的最大公约数,需要做减法的次数为()
A . 4
B . 5
C . 6
D . 7
二、填空题 (共7题;共7分)
12. (1分) 25与35的最大公约数为________
13. (1分)(2017·湖南模拟) 把二进制数10011(2)转化为十进制的数为________.
14. (1分)用秦九韶算法计算多项式f(x)=3x4+x2+2x+4,当x=10时的值的过程中,v2的值为________.
15. (1分)用秦九韶算法计算函数当时的值,则 ________.
16. (1分) (2016高一下·邵东期末) 用秦九韶算法计算函数f(x)=2x6﹣3x4+2x3+7x2+6x+3,求x=2时函数值,则V2=________
17. (1分) (2019高一下·吉林期末) 将十进制数30化为二进制数为________.
18. (1分)十进制转化为进制为________ .
三、解答题 (共4题;共20分)
19. (5分)分别用辗转相除法和更相减损术求282与470的最大公约数.
20. (5分)用秦九韶算法计算函数f(x)=2x4+3x3+4x2+5x﹣4当x=3时的函数值(要求有过程)
21. (5分)用辗转相除法求888与1 147的最大公约数.
22. (5分)已知 ,求在这种进制里的数应记成十进制的什么数?
参考答案一、单选题 (共11题;共22分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
二、填空题 (共7题;共7分)
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共4题;共20分) 19-1、
20-1、
21-1、22-1、。

相关文档
最新文档