如何提高目的蛋白的可溶性表达
列举常用的蛋白质表达系统并阐述其基本表达策略

常用的蛋白质表达系统及其基本表达策略1. 介绍蛋白质表达系统是在生物技术领域中广泛应用的重要技术,它可以在大量生产目的蛋白质时提供帮助。
在选择蛋白质表达系统时,科研人员通常需要考虑表达效率、纯度、可溶性和最终产物活性等因素。
在本文中,我们将介绍一些常用的蛋白质表达系统,并阐述它们的基本表达策略。
2. 细菌表达系统细菌表达系统是最常用的蛋白质表达系统之一,其中大肠杆菌表达系统是应用最为广泛的。
基本表达策略包括将目的基因插入原核表达载体中,通过大肠杆菌的代谢系统表达目的蛋白质。
在表达前,需要考虑选择适当的启动子、选择合适的宿主菌株以及优化表达条件等因素。
3. 酵母表达系统酵母表达系统通常采用酿酒酵母或毕赤酵母。
基本表达策略包括将目的基因插入酵母表达载体中,通过酵母的翻译后修饰系统表达目的蛋白质。
在表达前,需要考虑选择合适的启动子、选择适当的宿主菌株以及与酵母细胞适应的表达条件等因素。
4. 昆虫细胞表达系统昆虫细胞表达系统常用于大规模生产蛋白质。
基本表达策略包括将目的基因插入昆虫表达载体中,通过昆虫细胞的翻译后修饰系统表达目的蛋白质。
在表达前,需要考虑选择合适的启动子、适当的宿主昆虫细胞系以及适合昆虫细胞生长的表达条件等因素。
5. 哺乳动物细胞表达系统哺乳动物细胞表达系统通常用于生产高度活性的蛋白质。
基本表达策略包括将目的基因插入哺乳动物表达载体中,通过哺乳动物细胞的翻译后修饰系统表达目的蛋白质。
在表达前,需要考虑选择适当的启动子、选择适合的宿主细胞系以及适合哺乳动物细胞生长的表达条件等因素。
6. 植物细胞表达系统植物细胞表达系统是一种新兴的蛋白质表达系统,常用于农业生物技术和药物开发领域。
基本表达策略包括将目的基因插入植物表达载体中,通过植物细胞的翻译后修饰系统表达目的蛋白质。
在表达前,需要考虑选择适当的启动子、适合的宿主植物组织以及适合植物细胞生长的表达条件等因素。
结论在选择蛋白质表达系统时,科研人员需要根据目的蛋白质的性质、表达需求以及实验条件等因素综合考虑,并选择最适合的表达系统和基本表达策略。
提高大肠杆菌高密度发酵可溶性表达量研究

提高大肠杆菌高密度发酵可溶性表达量研究目的:提高外源蛋白在大肠杆菌中的可溶性表达量。
方法:采用大肠杆菌K12菌株,含有表达某种抗体类蛋白的表达质粒,通过在发酵过程中加入甲硫氨酸、亮氨酸和异亮氨酸的方式,检测不同发酵时间表达量变化情况,评估每种物质对于目的蛋白在大肠杆菌中可溶性表达的影响。
结果:同时加入甲硫氨酸、亮氨酸和异亮氨酸的发酵批次可溶性蛋白表达量最高。
结论:说明在大肠杆菌高密度发酵过程中加入甲硫氨酸、亮氨酸和异亮氨酸有助于提高目的蛋白的可溶性表达。
标签:大肠杆菌;高密度发酵;甲硫氨酸;亮氨酸;异亮氨酸;可溶性表达大肠杆菌是目前常用的蛋白发酵菌体,采用高密度发酵技术(High cell density cultivation,HCDC)不仅可以减少培养体积、提高目的蛋白产量,还可以缩短生产周期,减少设备投资从而降低生产成本,能极大地提高在市场上的竞争力[1]。
但外源蛋白在获得高水平表达的同时,容易形成包涵体,包涵体中的多肽链折叠错误,没有活性,必须通过复杂的复性过程才能获得功能正常的蛋白,但成功率低[2],特别是含二硫键较多的包涵体蛋白,在复性过程中容易发生二硫键的错配,从而使蛋白质失去生物学活性。
蛋白的可溶性表达则可避免变、复性过程,明显简化后续纯化工艺,保证功能蛋白的功能。
因此,探索外源蛋白在大肠杆菌中的可溶性表达具有较高的学术价值和广泛的应用前景。
目前针对于高密度发酵过程中蛋白可溶性表达的研究主要停留在对大肠杆菌宿主细胞[3]、比生长速率、诱导时机[4]、诱导温度[5]、培养基成分[6]、碳源种类[7]、表达载体启动子[8]、融合标签[9]等。
关于发酵过程中补入氨基酸对可溶性蛋白表达的影响,国内目前的相关研究报道偏少。
国外研究表明,在大肠杆菌表达蛋白期间,正亮氨酸残基的引入会导致正常合成的蛋白结构或功能改变[10],引起可溶性蛋白表达量的降低。
在发酵过程中,补入甲硫氨酸,可以确保细胞获得过量的甲硫氨酸,从而减少了甲硫氨酰tRNA不正确的加载正亮氨酸的概率。
蛋白融合表达

蛋白融合表达全文共四篇示例,供读者参考第一篇示例:蛋白融合表达(Protein Fusion Expression)是生物技术领域中一种常用的蛋白表达技术,通过将不同蛋白基因序列进行融合,使其能够在目标宿主细胞中表达出含有多个功能区域的融合蛋白。
蛋白融合表达技术是从基因水平上控制蛋白质的结构和功能,为蛋白质的生物学功能研究、药物研发和生物制药等领域提供了有效的手段。
一、蛋白融合表达的原理蛋白融合表达技术是利用基因工程技术将两个或多个蛋白基因的编码序列连接在一起,形成一个新的融合蛋白基因,然后通过转染或转化等手段将其导入目标宿主细胞中,使其表达出融合蛋白。
蛋白融合表达的基本原理是将两个或多个不同功能的蛋白通过融合技术合并在一起,达到协同作用或增强某一功能的效果。
蛋白融合表达可通过多种途径实现,常见的方法包括直接连接两个蛋白的编码序列、利用核酶切割和PCR等技术进行DNA重组,以及通过载体和质粒等载体介导融合蛋白的表达。
不同的蛋白融合表达技术具有各自的特点和适用范围,选择合适的融合表达策略可提高蛋白表达效率和提取纯度。
1. 生物学功能研究:蛋白融合表达技术可用于研究蛋白质的结构和功能,通过融合不同功能区域的蛋白进行功能分析和蛋白相互作用研究,揭示蛋白质的生物学特性和作用机制。
2. 药物研发:蛋白融合表达技术在药物研发中具有广泛的应用,可用于合成重组蛋白、多肽和抗体等生物制剂,提高药物的活性和稳定性,开发新型药物和治疗方法。
3. 生物制药:蛋白融合表达技术是生物制药领域中最常用的生产方法之一,可用于大规模生产融合蛋白、重组蛋白和生物药物,提高生产效率和产品质量,满足临床需求。
4. 技术创新:蛋白融合表达技术在生物技术领域具有重要的技术意义,可以用于开发新型蛋白表达系统、优化蛋白表达和纯化工艺、改良蛋白结构和功能等方面,推动生物技术的发展和进步。
1. 提高蛋白表达效率:蛋白融合表达技术可以利用多个功能区域相互作用增强蛋白的稳定性和可溶性,提高蛋白的表达水平和纯度。
重组表达质粒的构建——原核表达载体选择

重组表达质粒的构建——原核表达载体选择质粒载体是重组蛋白表达的关键工具,其结构如下图。
重组蛋白表达,我们首先要将基因插入到表达载体上,插入的位置为多克隆位点。
质粒载体上有很多的功能元件,这些元件对于蛋白的表达都是至关重要的。
尽管我们经过系统的分析和预测,但是仍有很多蛋白不能顺利表达、表达量很低或者表达状态不好。
这个时候我们需要尝试构建不同的表达载体以期得到最好的效果,这些载体的主要区别是启动子和融合标签的差异。
蛋白表达优化主要工作也就是尝试构建不同融合表达标签,使用不同的宿主表达菌,测试不同的表达条件,筛选出最优表达体系。
常用的融合标签有GST、MBP、Trx、6His、SUMO等,这些标签主要功能是促表达、促可溶、信号标记或助纯化。
福因德生物可以提供以下系列载体以供科研表达研究。
1)促表达/促溶标签2)信标标签3)纯化标签我们选择表达载体的时候不但要考虑蛋白怎么表达成功,更要考虑蛋白怎么纯化出来,纯化的问题主要是考虑纯化标签和酶切位点的选择,下表我们列举了常见的纯化标签和酶切位点。
4)酶切位点以上为原核表达常用的标签和酶切位点,其性质也都作了简要的介绍,各专业网站或专业书籍已对此做详尽解释,科研工作者可根据具体实验设计方案,组合设计以上标签和酶切位点的使用。
特别值得注意的是,选用和设计蛋白酶切位点的时候首要考虑的是序列内部有没有蛋白酶位点,同时要考虑酶切的效率和蛋白酶试剂成本。
一般商业化载体,在标签蛋白与载体多克隆位点之间都设计有酶切位点。
标签可设计在N-端也可在C-端,设计在N-端的优势是,可通过标签高效翻译起始位点带动插入蛋白的表达,可溶性标签的高效表达更可促进蛋白的可溶性表达;同时,大部分的蛋白内切酶的切割位点在C-端,所以标签设计在N-端可将标签切割完全。
在设计标签序列与酶切位点的时候还要考虑N-端稳定性原则,也就是所谓宿主细胞的N-端规则(N-end rule),这个要避免;同时,还应该检查是否引入了可与别的蛋白相互作用的序列或者蛋白酶切位点。
重组蛋白的概述

重组蛋白的概述1.概述分离纯化组成了基因工程的下游处理(downstream processing)阶段,这一过程又和上游过程紧密相联系,上游过程的诸方面影响到下游的分离纯化,所以在进行目标蛋白质表达纯化时要统一考虑和整体设计,并充分考虑上游因素对下游的影响,如是否带有亲和标签,是否进行分泌表达。
目前应用最广泛的表达系统有三大类,分别是大肠杆菌表达系统、酵母表达系统和CHO细胞表达系统,不同的表达系统和培养方法显著影响下游的处理过程,目标蛋白表达是否形成包涵体,目标蛋白表达的定位(胞内、细胞内膜、周质空间和胞外),蛋白表达的量都依赖于所选择的表达系统。
选择将所表达的蛋白分泌到细胞外或周质空间可以避免破碎细胞的步骤,并且由于蛋白质种类少,目标蛋白容易纯化;而在细胞质内表达蛋白,可能是可溶性表达,可能形成包涵体,可溶性的蛋白往往需要复杂的纯化步骤,而包涵体易于分离,纯度较高,但回收具有生物活性的蛋白却变的相当困难,需要对聚集的蛋白进行变复性,通常活性蛋白的得率比较低,表1列出了不同策略对表达、纯化的影响,对于其中的有些缺点可以通过一定的方法进行克服和避免,如利用DNA重组技术给外源蛋白加上一个亲和纯化的标签,有助于可溶性外源蛋白的选择性纯化,并能保护目标蛋白不被降解(96)。
表 1 重组蛋白不同表达策略的优点和缺点表达策略优点缺点分泌表达至细胞外增强正确二硫键的形成降低蛋白酶对表达蛋白的降解可获得确定的N末端显著减少杂蛋白水平,简化纯化不需要细胞破碎表达水平低多数蛋白不能进行分泌表达表达蛋白需要进行浓缩细胞周质空间表达增强正确二硫键的形成可获得确定的N末端显著减少杂蛋白水平,简化纯化好些蛋白不能分泌进入周质空间没有大规模选择性的释放周质空间蛋白的技术周质蛋白酶可引起重组蛋白酶解胞内包涵体表达包涵体易于分离保护蛋白质不被降解蛋白质不具有活性对宿主细胞生长没有大的影响,通常可获得高的表达水平需要体外的折叠和溶解,得率较低具有不确定N末端胞内可溶性蛋白表达不需要体外溶解和折叠一般具有正确的结构和功能高水平的表达常难以得到需要复杂的纯化可发生蛋白质的酶解具有不确定的N末端在细胞的提取物中,除了目标蛋白外,还含有其它各种性质的蛋白、核酸、多糖等。
蛋白质可溶性问题及其在表达系统中的解决策略

蛋白质可溶性问题及其在表达系统中的解决策略蛋白质是细胞中最重要的生物大分子之一,它们在细胞内发挥着关键的生物学功能。
然而,许多表达系统经常遇到蛋白质可溶性问题,即蛋白质在表达过程中失去了其正常的可溶性结构。
这一问题严重影响了蛋白质功能的研究和应用。
本文将探讨蛋白质可溶性问题的原因以及解决策略。
一、蛋白质可溶性问题的原因1.1 蛋白质序列蛋白质序列在很大程度上决定了其可溶性。
一些蛋白质序列中含有高比例的疏水性氨基酸,这使得蛋白质容易聚集形成不可溶性沉淀。
此外,蛋白质序列中可能存在折叠障碍,导致蛋白质无法正确折叠形成可溶性结构。
1.2 表达条件表达温度、pH值等表达条件的选择也会影响蛋白质的可溶性。
不适当的表达条件可能导致蛋白质的不正常折叠、聚集或失去稳定性,进而降低其可溶性。
二、蛋白质可溶性问题的解决策略2.1 优化蛋白质序列通过对蛋白质序列进行合理的修改和调整,可以提高其可溶性。
一种常用的策略是引入疏水性氨基酸的替代,使蛋白质序列中的疏水性氨基酸比例降低,从而减少其聚集倾向。
此外,可以通过在蛋白质序列中插入构象稳定的序列或结构域,促进蛋白质的正确折叠和稳定。
2.2 调节表达条件合适的表达条件对于蛋白质的可溶性至关重要。
通过调节表达温度、pH值、培养基成分等参数,可以有效提高蛋白质的可溶性。
例如,降低表达温度有助于减缓蛋白质的聚集速度,同时增加蛋白质的折叠时间,有利于蛋白质正确折叠和可溶性的保持。
2.3 使用辅助蛋白质辅助蛋白质在表达系统中的应用可以通过促进蛋白质正确折叠和增强其可溶性来解决可溶性问题。
例如,分子伴侣蛋白可以与目标蛋白结合,提供适当的环境,促进其正常折叠和稳定。
此外,某些蛋白质互作可以通过与其他互补的亚单位结合来增加其可溶性。
2.4 优化翻译后修饰蛋白质的可溶性还受到其翻译后修饰的影响。
通过优化翻译后修饰酶的表达和调节,可以增强蛋白质的可溶性。
例如,合适的糖基化修饰可以提高蛋白质的稳定性和可溶性。
提高大肠杆菌重组蛋白可溶性表达方法研究进展

Vol.53,No.07. 2019DOI:10.3969/j.issn.2095-1205.2019.07.23提高大肠杆菌重组蛋白可溶性表达方法研究进展张真汪燕马振刚(重庆市动物生物学重点实验室,重庆市媒介昆虫重点实验室,重庆师范大学重庆401331)摘要大肠杆菌表达系统与其他外源表达系统相比具有重组蛋白产量高、易操作、生长速度快和成本低等特点。
通过大肠杆菌表达重组蛋白是一种既高效又经济的途径。
然而,外源蛋白在大肠杆菌中表达时往往处于还原性环境的胞质中,而在胞质中外源蛋白不易形成二硫键,出现外源蛋白无法正确折叠的现象,从而形成不可溶的包涵体。
文章在近年提高大肠杆菌重组蛋白可溶性表达研究的基础上,从选择适当的载体和宿主、外源蛋白与其他辅助蛋白共表达、降低蛋白合成速率、提高周质蛋白表达、融合标签表达、肽标签表达、替换蛋白质中的氨基酸、改变培养基的条件等方面进行了综述,为研究者根据外源蛋白自身特点,优化外源蛋白可溶性表达方法提供了参考。
关键词外源蛋白;可溶性表达;大肠杆菌;包涵体中图分类号:Q78文献标识码:A文章编号:2095-1205(2019)07-37-04 Advances in Improving the Soluble Expression of EscherichiaColi Recombinant ProteinZhang Zhen Wang Yan Ma Zhengang(Chongqing Key Laboratory of Animal Biology, Chongqing Key Laboratory of Vector Insects, Chongqing Normal University,Chongqing 401331)Abstract:Compared with other exogenous expression systems, escherichia coli expression system has the characteristics of high yield, easy operation, fast growth rate and low cost of recombinant protein. It is an efficient and economical way to express recombinant protein through escherichia coli. However, when expressed in escherichia coli, exogenous proteins tend to be in the cytoplasm of the reductive environment, whereas in cytoplasm, exogenous proteins are not easy to form disulfide bonds, and foreign proteins cannot fold properly, thus forming insoluble inclusion bodies. On the basis of improving the soluble expression of escherichia coli recombinant protein, the article summarized from selecting the appropriate carrier and the host, exogenous proteins are co-expressed with other helper proteins, reducing the rate of protein synthesis, improving the periplasmic protein expression, expression of fusion tag expression, peptide tag expression, replacing amino acids in a protein, changing the condition of culture medium and other aspects, providing a reference for researchers to optimize the soluble expression of exogenous proteins according to their own characteristics.Key words:exogenous proteins; soluble expression; escherichia coli; inclusion body目前大部分蛋白质功能研究需要的是可以大量纯化并且可溶的蛋白质,但不管是天然提取还是使用化学合成纯的蛋白质都是非常困难的[1],而DNA重组技术提供了一种经济的外源蛋白获取方式。
原核蛋白可溶性表达策略及方案

原核蛋白可溶性表达策略及实验方案可溶性表达策略大肠杆菌根据表达部位的不同可将蛋白表达的形式分为3种:第1种为胞外分泌,即目的蛋白被分泌到培养基中。
这种方式表达的蛋白容易纯化,不易降解,但通常只有少量的蛋白质可以分泌到细胞外;第2种为周质空间表达,这种方式表达的蛋白存在于周质间隙中,外周质的氧化环境有利于蛋白质的正确折叠,在向外周质转移的过程中,信号肽在细胞内剪切,更有可能产生目的蛋白的天然N末端;第3种为胞内表达,这种表达易形成无活性的包涵体,需要经过繁琐的变性、复性过程才能得到有活性的蛋白。
因为多数蛋白不能够进行分泌表达,且表达量较少,所以分泌蛋白表达方法很少被使用;现阶段实验科研中常用的方法是融合型蛋白表达,包括蛋白上清表达和包涵体复性,以上俩种方法均可获得大量的可溶性蛋白。
有关通过蛋白复性获得可溶性蛋白请参见《包涵体蛋白复性的方法操作》,这里主要从条件优化的角度讨论第一种方法。
降低重组蛋白合成的速率可溶性蛋白的产率取决于蛋白的合成速率,蛋白的折叠速率,以及聚集的速率。
高水平表达时,肽链聚集的速率一旦超过折叠速率,就会形成包涵体。
因此,降低重组蛋白合成的速率有利于提高重组蛋白的可溶性表达。
常用的方法有培养温度的优化、挑选合适的启动子、诱导剂和诱导条件的优化等。
密码子优化密码子的使用对外源基因的表达水平有重要的影响。
密码子优化就是根据表达系统对密码子的偏好性进行优化筛选。
经过优化的基因序列往往能提高mRNA二级结构的稳定性,有利于新生肽段的正确折叠,提高外源活性蛋白的表达。
值得注意的是,稀有密码子存在通常会对蛋白表达产生负面影响,在转录过程中稀有密码子的位置以及转录的速率都会影响密码子的翻译,但在某些基因中使用稀有密码子则能显著降低肽链的延伸速率。
启动子的选择需要从启动子强度、漏表达程度、诱导性及经济因素等方面考虑。
在胞内表达中,常采用T7、PL等强启动子,表达水平可达菌体总蛋白的70%。
若重组蛋白多以包涵体形式存在,可采用强度较弱的lac等启动子以达到一个与表达能力相匹配的翻译速率。