工程力学26 梁弯曲时的变形和刚度计算

合集下载

工程力学中的变形量如何计算?

工程力学中的变形量如何计算?

工程力学中的变形量如何计算?在工程力学的领域中,变形量的计算是一个至关重要的环节。

它不仅对于设计安全可靠的结构和机械部件具有关键意义,还能帮助工程师预测和评估物体在受力情况下的性能和行为。

那么,工程力学中的变形量究竟是如何计算的呢?首先,我们需要明确什么是变形量。

简单来说,变形量就是物体在受到外力作用后,其形状、尺寸或位置发生的改变程度。

这种改变可能是拉伸、压缩、弯曲、扭转等多种形式。

在计算变形量时,我们通常会用到一些基本的力学概念和公式。

其中,胡克定律是一个非常重要的基础。

胡克定律指出,在弹性限度内,物体的变形量与所施加的外力成正比,与物体的刚度成反比。

用公式表示为:F = kx,其中 F 是外力,k 是刚度系数,x 是变形量。

对于拉伸和压缩的情况,我们可以通过材料的弹性模量 E、横截面积 A 和所受的拉力或压力 F 来计算变形量。

变形量ΔL = FL /(EA) 。

这里,L 是杆件的原长。

弹性模量 E 是材料的固有属性,表示材料抵抗变形的能力,不同的材料具有不同的弹性模量。

当物体受到弯曲作用时,变形量的计算就会稍微复杂一些。

我们需要考虑梁的几何形状、材料特性以及所受的弯矩。

对于常见的简支梁和悬臂梁,有相应的公式可以用来计算弯曲变形量。

在扭转的情况下,变形量与扭矩 T、材料的剪切模量 G、极惯性矩Ip 以及杆件的长度 L 有关。

扭转角φ = TL /(GIp) 。

除了上述基于简单受力情况的计算方法,实际工程中物体的受力往往更加复杂。

这时,可能需要运用有限元分析(FEA)等数值方法来计算变形量。

有限元分析将物体离散成许多小单元,通过求解每个单元的力学平衡方程,最终得到整个物体的变形分布。

在计算变形量时,还需要考虑一些其他因素。

例如,温度变化可能会导致物体的热膨胀或收缩,从而产生变形。

对于这种情况,我们可以使用热膨胀系数来计算温度引起的变形量。

另外,材料的非线性特性也会对变形量的计算产生影响。

在一些情况下,材料可能不再遵循胡克定律,而是表现出非线性的应力应变关系。

工程力学---材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解

工程力学---材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解

P
B C
l 2 l 2
A
x
P 解:AC段:M ( x ) x 2 y P EIy x 2 A P 2 EIy x C x 4 l 2 P 3 EIy x Cx D 12
P
B C
l 2
x
由边界条件: x 0时,y 0
l 由对称条件: x 时,y 0 2
梁的转角方程和挠曲线方程分别为:
最大转角和最大挠度分别为:
11qa max A 1 x1 0 6 EI 19qa 4 ymax y2 x2 2 a 8EI
3
例5:图示变截面梁悬臂梁,试用积分法
求A端的挠度 P
I
2I
l
fA 解: AC段 0 x l
B
P 3 2 EIy x C2 x D2 6
由边界条件: x l时,y=0, =0
得:
C2
1 1 Pl 2 , D2 Pl 3 2 3
l x 时,yC左 =yC右 , C左 = C右 由连续条件: 2
5 3 2 C1 Pl , D1 Pl 3 16 16
由连续条件: x1 x2 a时, y1 y2 , y1 y2
由边界条件: x1 0时, y1 0
0 x 2 a 时 , y 由对称条件: 2 2
得 D1 0
C1 C2 得 D1 D2
11 3 得 C2 qa 6
qa 1 (11a 2 3 x12 ) 0 x1 a 6 EI q 2 [3ax2 2 ( x2 a)3 11a 3 a x2 2a 6 EI qa y1 (11a 2 x1 x13 ) 0 x1 a 6 EI q y2 [4ax23 ( x2 a) 4 44a 3 x2 ] a x2 2a 24 EI

梁的弯曲计算剪力计算公式

梁的弯曲计算剪力计算公式

梁的弯曲计算剪力计算公式在工程力学中,梁是一种常见的结构元素,用于支撑和承载荷载。

在设计和分析梁的时候,我们需要考虑到梁的弯曲和剪切力。

本文将重点讨论梁的弯曲计算和剪力计算公式,帮助读者更好地理解和应用这些公式。

梁的弯曲计算公式。

在梁的弯曲计算中,我们需要考虑梁的受力情况以及梁的几何形状。

弯曲时梁的受力情况可以用弯矩来描述,弯矩的大小和位置取决于梁的荷载和支撑条件。

在弯曲计算中,我们通常使用以下公式来计算梁的弯矩:M = -EI(d^2y/dx^2)。

其中,M表示弯矩,E表示梁的弹性模量,I表示梁的惯性矩,y表示梁的挠度,x表示梁的位置。

这个公式描述了梁在弯曲时的受力情况,可以帮助我们计算梁的弯曲应力和挠度。

梁的剪力计算公式。

除了弯曲力之外,梁在受荷载时还会产生剪切力。

剪切力是梁上各点间的内力,它的大小和位置取决于梁的荷载和支撑条件。

在剪力计算中,我们通常使用以下公式来计算梁上各点的剪切力:V = dM/dx。

其中,V表示剪切力,M表示弯矩,x表示梁的位置。

这个公式描述了梁上各点的剪切力分布情况,可以帮助我们计算梁的剪切应力和剪切变形。

梁的弯曲和剪力计算实例。

为了更好地理解梁的弯曲和剪力计算,我们可以通过一个实例来说明。

假设有一根长度为L,截面为矩形的梁,受均布荷载w作用。

我们可以根据梁的受力情况和几何形状,计算出梁的弯矩和剪切力分布情况。

首先,我们可以计算出梁的弯矩分布情况。

根据梁的受力情况和几何形状,我们可以得到梁的挠度y(x)的表达式。

然后,我们可以通过弯矩公式M = -EI(d^2y/dx^2)来计算出梁上各点的弯矩分布情况。

接着,我们可以计算出梁上各点的剪切力分布情况。

根据梁的弯矩分布情况,我们可以通过剪切力公式V = dM/dx来计算出梁上各点的剪切力分布情况。

通过以上计算,我们可以得到梁在受均布荷载作用时的弯矩和剪切力分布情况。

这些计算结果可以帮助我们更好地了解梁的受力情况,指导我们设计和分析梁的结构。

工程力学第8章 变形及刚度计算

工程力学第8章 变形及刚度计算

39
40
解 (1)静力方面 取结点 A为研究对象,分析其受 力如图 8.15(b)所示,列出平衡方程:
(2)几何方面
(3)物理方面 由胡克定律,有:
41
(4)补充方程 式(u)代入式(t),得:
再积分一次,得挠度方程
15
16
17
18
例8.5 图8.7所示等截面简支梁受集中力F作用,已 知梁的抗弯刚度为EI,试求C截面处的挠度yC和A截面 的转角θA。
19
解 取坐标系如图所示,设左、右两段任一横截面 形心的坐标、挠度和转角分别为x1,y1,θ1和x2,y2, θ2。梁的支反力为
20
2
3
8.1.2 横向变形及泊松比 定义
4
5
8.2 圆轴扭转时的变形和刚度计算
8.2.1 圆轴扭转时的变形 在7.6节中提到,圆轴扭转时的变形可用相对扭转角 φ来表示,而扭转变形程度可用单位长度扭转角θ来表示。 由7.6.2节中的式(d),即
6
8.2.2 刚度计算 有些轴,除了满足强度条件外,还需要对其变形加 以限制,如机械工程中受力较大的主轴。工程中常限制 单位长度扭转角θ不超过其许用值,刚度条件表述为
(3)物理方面 由胡克定律,可得:
37
(4)补充方程 将式(q)代入式(p),可得:
(5)求解 联立求解方程(o)和(r),可得:
38
由上例可以看出解超静定问题的一般步骤为: (1)选取基本体系,列静力平衡方程; (2)列出变形谐调条件; (3)物理方面,将杆件的变形用力表示; (4)将物理关系式代入变形谐调条件,得到补充 方程; (5)联立平衡方程和补充方程,求解未知量。
34
(1)静力方面 选取右端约束为多余约束,去掉该约束并代之以多 余支反力FB,如图8.14(b)所示,称为原超静定问题 的基本体系。所谓基本体系,是指去掉原超静定结构的 所有多余约束并代之以相应的多余支反力而得到的静定 结构。列出其平衡方程为:

工程力学第6章 弯曲变形_gs

工程力学第6章 弯曲变形_gs
1

M (x) EI
z
[1 (
d y dx dy dx
2 3
2
数学公式
以上两式消去
1
(x)

) ]2
2
,得:
[1 ( d
2
y
2 3
dx dy dx

M (x) EI
z
) ]
2
2
材料力学
弯曲变形/挠曲线的近似微分方程 小挠度情形下:
d
2

dy dx
1
[1 (
x L 代入得:
B 2
材料力学
xL

Fab ( L a ) 6 LEI
弯曲变形/用积分法求梁的变形 5、求 y max 。
由 dy dx
A
Fb ( L b )
2 2
0 求得 y max 的位置值x。
0,
C 1
6 LEI
xa

Fab ( a b ) 3 LEI
弯曲变形/变形的基本概念
连续光滑曲线;铰支座对位移的限制
材料力学
弯曲变形/变形的基本概念
连续光滑曲线;固定端对位移的限制
材料力学
弯曲变形/变形的基本概念
对于拉伸(压缩)、扭转变形定积分 对于梁的位移不定积分
材料力学
弯曲变形/挠曲线的近似微分方程
二、挠曲线的近似微分方程
力学公式
1
(x)

11 ql
4
384 EI
材料力学
48 EI
384 EI
弯曲变形/梁的刚度校核 提高梁弯曲刚度的措施 四、梁的刚度校核 提高梁弯曲刚度的措施 刚度条件:

工程力学c材料力学部分第六章 弯曲变形

工程力学c材料力学部分第六章 弯曲变形
q
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2

工程力学第9章 梁弯曲时的刚度计算

工程力学第9章 梁弯曲时的刚度计算
挠曲线

w

x
qx
F
x
9.1 挠曲线近似微分方程
9.1.2 挠度和转角的关系
◆挠曲线方程 : w f x
w
挠曲线

w

x
qx
F
x
tan dw
dx
dw
dx
9.1.3 挠曲线近似微分方程
一、挠曲线的曲率公式
1M EI

1
x

M x
EI
d2w

1
x


6EI 2l
l 2
2l 2


l 2
2



11Fl3 96EI
未知约束力单独作用引起的B处挠度
wB FB

FB 2l 3
48EI

FBl 3 6EI
将上述结果代入式(b),得到补充方程
11Fl3 FBl3 0 96EI 6EI
w Mex x2 l2 6EIl
(c)
Me 3x2 l2 6EIl
(d)
(4)计算最大挠度与截面的转角
作出梁的弯矩图如下图所示,全梁弯矩为正。其最大 挠度处的转角为零。故由式(c)有
dw Me 3x2 l2 0 dx 6EIl
从而得最大挠度所在截面的坐标为
2
在集中力 F 单独作用下,大梁跨度中点C的挠度由教材表
7–1第5栏中查出为
wC
F


Fl 3 48EI
将以上结果叠加,即得在均布载荷 和q 集中力 的F 共同作用
下,大梁跨度中点C的挠度

工程力学-平面弯曲变形分析

工程力学-平面弯曲变形分析

yc
5ql4 Fl3 384 EI 48EI
洛 阳 职 业 技 术 学 院
五、提高梁的强度 和刚度的措施
提高强度
M max max [ ] WZ
降低 Mmax 合理安排支座 合理布置载荷
合理布置支座
F
F
F
合理布置支座
合理布置载荷
F
采用变截面梁或等强度梁
提高刚度
M max max [ ] WZ
max
M 11 y max Iz 150 3.64 10 103 2 P a 12.94MP a 6 21.09 10
3
2.梁弯曲正应力的强度计算 梁的危险截面上的最大正应力

材料的许用应力

max
M max [ ] Wz
上式适用于横截面关于中性轴对称的截面。
∑Fy=0 FQ=FA ∑Mc(F)=0 -F AX+M =0 M = FAX FQ(剪力)作用线通过截面形心,且平行于外力 M(弯矩) 位于纵向对称面内,使梁受弯曲作用的内力偶矩。 FA-FQ=0
剪力、弯矩符号规定:
剪力 左下右上为正 弯矩 上凹为正
下凹为负
弯矩方程和弯矩图
1、简支梁AB受集中力F作用,跨度为l,求最大弯矩,并画出 梁的弯矩图。
max
M
x
(3)设计截面尺寸。由强度条件 M max max Wz
M max 32 103 103 WZ m m3 203822 m m3 [ ] 157
由矩形截面抗弯截面模量
bh2 b(2b) 2 2 3 WZ b 6 6 3
3 203822 b m m 67.4m m 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
挠曲线方程: w f (x)
式中, x为梁变形前轴线上任一点的横坐标, w为该点的挠度。
工 程力 学
ENGINEERING MECHANICS
工 程力 学
ENGINEERING MECHANICS
2 挠曲线的近似微分方程
纯弯曲时曲率与弯矩的关系为
1M
EI
横力弯曲时, M和都是x的函数。略去剪力对梁的位移
工 程力 学
ENGINEERING MECHANICS 梁弯曲时的变形和刚度计算
工 程力 学
ENGINEERING MECHANICS
一、工程中的弯曲变形问题
弯曲构件除了要满足强度条件外, 还需满足刚度条件。如车床主 轴的过大弯曲引起加工零件的误差。
工 程力 学
ENGINEERING MECHANICS
工 程力 学
ENGINEERING MECHANICS
取梁的左端点为坐标原点, 梁变形前的轴线为x轴, 横截面的
铅垂对称轴为y轴, xy平面为纵向对称平面。
y
A
挠度符号?
C
B
x
C1 w
B'
挠度
挠度(w): 横截面形心(即轴线上的点)在垂直于x轴
方向的线位移, 称为该截面的挠度(Deflection) 。
3 2
M (x) EI
工 程力 学
ENGINEERING MECHANICS
w (1 w2 )32
M (x) EI
由于挠曲线是一条非常平坦的曲线, w'2远比1小, 可以略去不计,
于是上式可写成 w M (x) EI
此式称为 梁的挠曲线近似微分方程。
(Approximately differential equation of the deflection curve)
称为近似的原因: (1) 略去了剪力的影响; (2)略去了w'2项。
工 程力 学
ENGINEERING MECHANICS
3、积分法求弯曲变形
若为等截面直梁, 其抗弯刚度EI为一常量, 上式可改写成
EIw M (x)
上式积分一次得转角方程
EIw M (x)dx C1
再积分一次, 得挠度方程
在这种情况下, 梁在几项载荷 (如集中力、集中力偶或分布力)同时作 用下某一横截面的挠度和转角, 就分别等于每项载荷单独作用下该截面的挠 度和转角的叠加。此即为叠加原理。
工 程力 学
ENGINEERING MECHANICS
5、梁的刚度计算
梁的刚度条件:
wmax w
max
其中[ ]称为许用转角;[w ]称为许用挠度。
工 程力 学
ENGINEERING MECHANICS
必须注意: 梁轴线弯曲成曲线后, 在x轴方向也有线位移。
但在小变形情况下, 梁的挠度远小于跨长, 横截面形心
沿x轴方向的线位移与挠度相比属于高阶微量, 可略去不计。
工 程力 学
ENGINEERING MECHANICS
挠曲线:梁变形后的轴线称为挠曲线。
EIw M (x)dx dx C1x C2
式中:积分常数C1、C2可通过梁挠曲线的边界条件和变形的
连续性条件来确定。
工 程力 学
ENGINEERING MECHANICS
4 、按叠加原理计算梁的挠度和转角
条件:由于梁的变形微小, 梁变形后其跨长的改变可略去不计, 且梁的材料 在线弹性范围内工作, 因而, 梁的挠度和转角均与作用在梁上的荷载成线性 关系。
的影响, 则
1 M (x)
(x) EI
由几何关系知, 平面曲线的曲率可写作
1
w
M (x)
( x)
(1
w2
3
)2
EI
工 程力 学
ENGINEERING MECHANICS
曲线向上凸 时: w’’<0, M<0 曲线向下凸 时: w’’>0, M>0 因此, M与w’’的正此条件进行如下三种刚度计算:
、校核刚度: wmax w
、设计截面尺寸;
、设计载荷。
max
工 程力 学
ENGINEERING MECHANICS
谢 谢 观 赏!
工 程力 学
ENGINEERING MECHANICS
y A
转角符号?
转角
C
B
x
C1
B'
转角(): 横截面绕中性轴(即Z轴)转过的角度(或角 位移), 称为该截面的转角(Slope rotation angle) 。
工 程力 学
ENGINEERING MECHANICS
挠度和转角符号的规定:
挠度:在图示坐标系中, 向上为正, 向下为负。 转角: 逆时针转向为正,顺时针转向为负。
相关文档
最新文档