(完整word版)专升本高数第一章练习题(带答案)

合集下载

成考专升本《高等数学一》章节试题及答案

成考专升本《高等数学一》章节试题及答案

成考专升本《高等数学一》章节试题及答案极限、连续[单选题]()。

Ay=-xBy=x2Cy=-x2Dy=cosx参考答案:A[单选题]曲线y=x3-6x+2的拐点坐标()。

A(0,4)B(0,2)C(0,3)D(0,-2)参考答案:B[单选题]()。

Acsc2xB-csc2xCsec2xD-sec2x参考答案:B[单选题]()。

A较高阶无穷小量B较低阶无穷小量C等价无穷小量D同阶但不等价无穷小量参考答案:C[单选题]()。

A2B1C0D-1参考答案:C[单选题]设f(x)在点x0的某邻域内有定义,()。

ABC-1D2参考答案:A[单选题]设f(x)有连续导函数,()。

ABCD参考答案:A[单选题]()。

A低阶无穷小B等价无穷小C同阶但不等价无穷小D高阶无穷小参考答案:D[单选题]()。

A2B1CD0参考答案:D[单选题]函数f(x)在点x=x0处连续是f(x)在x0处可导的()。

A充分非必要条件B必要非充分条件C充分必要条件D既非充分条件也非必要条件参考答案:B一元函数微分学[单选题]()。

ABCD参考答案:A[单选题]()。

ABCD参考答案:A[单选题]()。

A0B-1C-3D3参考答案:C[单选题]()。

ABCD参考答案:D[单选题]()。

A0BCD参考答案:A[单选题]()。

A高阶无穷小B低阶无穷小C同阶但不等价无穷小D等价无穷小参考答案:B[单选题]()。

A0BCD参考答案:C[单选题]()。

ABCD参考答案:D[单选题]()。

A1B2CD-1参考答案:C[单选题]()。

A2B1C0D-1参考答案:C空间解析几何[单选题]设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为()。

ABCD不能确定参考答案:B[单选题]方程x=z2表示的二次曲面是()。

A球面B椭圆抛物面C柱面D圆锥面参考答案:C[单选题]方程x2+2y2-z2=0表示的曲面是()。

高等数学第一章课后习题答案(带解析)

高等数学第一章课后习题答案(带解析)

第一章函数与极限第一节映射与函数一、填空题1.函数ln(2)y x =+的定义域为[1,)(2,1]+∞-- .2.设函数2(1)f x x x +=+,则=)(x f x x -2.3.设函数()f x 的定义域为[0,1],则(e )xf 的定义域为(,0]-∞.4.已知()sin f x x =,[]2()1f x x ϕ=-,则()x ϕ=2arcsin(1)x -,其定义域为5.设2,0,()e ,0,x x x f x x ⎧-≥=⎨<⎩()ln x x ϕ=,则复合函数[]()f x ϕ=2ln ,1,01x x x x ⎧-≥⎨<<⎩.6.设函数1,1,()0,1,x f x x ⎧≤⎪=⎨>⎪⎩则[]()f f x =1.7.函数(10)y x =-≤<二、单项选择题1.函数lnarcsin 23x xy x =+-的定义域为C .A.(,3)(3,2)-∞-- B.(0,3)C.[3,0)(2,3]- D.(,)-∞+∞2.设(1)f x -的定义域为[0,](0)a a >,则()f x 的定义域为B.A.[1,1]a +B.[1,1]a -- C.[1,1]a a -+ D.[1,1]a a -+3.函数11x y x -=+的反函数是D .A.11x y x -=+ B.11xy x-=+ C.11x y x +=- D.11x y x+=-4.设()f x 为奇函数,()x ϕ为偶函数,且[()]f x ϕ有意义,则[()]f x ϕ为B.A.奇函数B.偶函数C.非奇非偶函数D.以上均不正确三、解答题1.判断函数(ln y x =+的奇偶性,并求其反函数.解:因为()ln(ln(()f x x x f x -=-==-=-,所以()f x 是奇函数.由e yx =,e yx --=,得e e 2y y x --=,所以反函数为e e 2x xy --=2.设)(x f 满足c b a xcx bf x af ,,()1()(=-+均为常数,且)b a ≠,求)(x f .解:x cx bf x af =-+)1()()1(令t x =-1,则t x -=1,故t c t bf t af -=+-1)()1(.xcx bf x af -=+-∴1)()1(.(2)联立(1),(2)得到1(1)(22xbcx ac b a x f ---=.四、证明2()1xf x x =+在其定义域内有界.证明:,x R ∀∈取12M =,使得21()122x x f x M x x =≤==+,所以()f x 在其定义域R 内有界.第二节数列的极限一、单项选择题1.数列极限lim n n y A →∞=的几何意义是D .A.在点A 的某一邻域内部含有{}n y 中的无穷多个点B.在点A 的某一邻域外部含有{}n y 中的无穷多个点C.在点A 的任何一个邻域外部含有{}n y 中的无穷多个点D.在点A 的任何一个邻域外部至多含有{}n y 中的有限多个点nn n 632-∞→A.65-B.31 C.35 D.13.数列有界是数列收敛的C条件.A.充分B.充要C.必要D.两者没有关系二、利用数列极限的定义证明:1cos lim0n nn→∞+=.证明:对0ε∀>,要使1cos 1cos 20n n n n nε++-=≤<,只需2n ε>.0ε∀>,取2N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,就有1cos 0n n ε+-<成立,所以1cos lim0n nn→∞+=.第三节函数的极限一、单项选择题1.=+→x x x 1lim2A.A.32 B.1C.21 D.2.若函数()f x 在某点0x 极限存在,则C.A.()f x 在点0x 的函数值必存在且等于该点极限值B.()f x 在点0x 的函数值必存在,但不一定等于该点极限值C.()f x 在点0x 的函数值可以不存在D.若()f x 在点0x 的函数值存在,必等于该点极限值∞→32x x A.1B.21 C.0D.不存在4.极限0limx x x→=D .A.1B.1- C.0D.不存在二、利用函数极限的定义证明:236lim 53x x x x →--=-.证明:0ε∀>,要使26533x x x x ε---=-<-,只需取δε=,则当03x δ<-<时,就有26533x x x x ε---=-<-成立,所以236lim 53x x x x →--=-.第四节无穷小与无穷大一、单项选择题1.下列命题正确的是C.A.无穷小量的倒数是无穷大量B.无穷小量是绝对值很小很小的数C.无穷小量是以零为极限的变量D.无界变量一定是无穷大量2.下列变量在给定的变化过程中为无穷小量的是C.A.1sin(0)x x→ B.1e (0)xx →C.2ln(1)(0)x x +→ D.21(1)1x x x -→-3.下列命题正确的是D.A.两个无穷小的商仍然是无穷小B.两个无穷大的商仍然是无穷大C.112--x x 是1→x 时的无穷小D.1-x 是1→x 时的无穷小4.(附加题)设数列{}n x 与{}n y 满足lim 0n n n x y →∞=,则下列命题正确的是B.A.若{}n x 发散,则{}n y 发散B.若1n x ⎧⎫⎨⎩⎭为无穷小,则{}n y 必为无穷小C.若{}n x 无界,则{}n y 必有界 D.若{}n x 有界,则{}n y 必为无穷小提示:已知n n x y 为无穷小,当1n x 为无穷小时,必有1()n n n ny x y x =⋅为无穷小;否A,例n x n =发散,21n y n=收敛;否C,例1(1),1(1)n n n n x n y n ⎡⎤⎡⎤=+-⋅=--⋅⎣⎦⎣⎦均无界;否D,例21n x n=有界,n y n =非无穷小.第五节极限运算法则一、填空题1.21lim2x x x x →+=++12. 2.121lim1x x x →+=-∞.3.22121lim1x x x x →-+=-0.4.212lim3n n n →∞+++=+ 12.5.若232lim43x x x kx →-+=-,则常数k =3-.提示:由已知,得23lim(2)0x x x k →-+=,3k ∴=-.6.设213lim 112x a x x x →⎛⎫-=⎪--⎝⎭,则常数a =2.提示:由已知,222113lim ,lim()012x x a x x a x x x →→--=∴--=-,从而2a =.7.e 1lim e 1n nn →∞-=+1.提示:11e 1e lim lim 11e 11en n n n n n→∞→∞--==++8.=-+++∞→)2324(lim 2x x x x 21.9.11021lim 21xx x-→-=+-1,1121lim 21xx x+→-=+1,所以11021lim21xx x →-+不存在.提示:11lim 20,lim 2x xx x -+→→==+∞10.已知21sin ,0()1,0x x x f x x x ⎧<⎪⎪=>⎪⎩,则0lim ()x f x →=0.二、计算题1.220()lim h x h x h→+-解:1.2222220000()22limlim lim lim(2)2h h h h x h x x xh h x xh h x h x h h h →→→→+-++-+===+=.2.231lim (2sin )x x x x x→∞-++解:因为2332111lim lim 011x x x x x x x x→∞→∞--==++,而2sin x +为有界函数,所以根据无穷小量与有界函数的乘积仍为无穷小量,知231lim (2sin )0x x x x x→∞-+=+.3.322232lim 6x x x x x x →-++--解:32222232(1)(2)(1)2lim lim lim 6(3)(2)35x x x x x x x x x x x x x x x x →-→-→-+++++===----+-.4.21lim1x x →-解:211lim1x x x →→=-1x →=14x →=.5.lim x →+∞解:lim x →+∞=limxlimlimx x ==1=-.6.求)1111(lim 31xx x ---→.解:原式32112lim x x x x --+=→)1)(1()2)(1(lim21x x x x x x ++-+-=→112lim21-=+++-=→x x x x .第六节极限存在准则两个重要极限一、填空题1.0sin lim x x x →=1;sin lim x xx→∞=0.提示:0sin lim1x x x →=;sin 1lim lim sin 0x x x x x x →∞→∞=⋅=.2.0sin limsin x x x x x →-=+0;sin lim sin x x xx x→∞-=+1.提示:00sin 1sin lim lim 0sin sin 1x x x x x x x x x x →→--==++;11sin sin lim lim 11sin 1sin x x xx x x x x xx→∞→∞-⋅-==++⋅.3.1lim 1kxx x →∞⎛⎫-= ⎪⎝⎭e k-(k 为正整数).提示:.()11lim 1lim 1e kxx k k x x x x ---→∞→∞⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭.4.10lim 12xx x →⎛⎫-= ⎪⎝⎭12e-.提示:11221200lim 1lim 1e22xxx x x x ---→→⎡⎤⎛⎫⎛⎫⎢⎥-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.二、计算题1.30tan sin limx x xx →-解:3200tan sin sin 1cos lim lim cos x x x x x x x x x x →→--=⋅2220002sin sinsin 1122lim lim lim 222x x x x x x x x x →→→⎛⎫ ⎪=⋅== ⎪ ⎪⎝⎭. 2.011limsin x x→解:000011limlim lim lim sin sin sin 2x x x x x x x x x →→→→-=⋅.3.0x →解:原式2220002sin 1sin cos 1cos 2lim 6lim 6lim 311cos sin 32x x x x x x x x x x x x x →→→---====-⋅.4.lim n →∞⎛⎫+解:<++<,又1,1n n n n ====,所以根据夹逼准则知,lim 1n →∞⎛⎫+++=⎪⎭.第七节无穷小的比较一、填空题1.当0x →时,sin 3x 是2x 的低阶无穷小;2sin x x +是x 的等价(或同阶)无穷小;1cos sin x x -+是2x 的低阶无穷小;cos 1x -是2arcsin x 的同阶无穷小;1(1)1nx +-是x n的等价(或同阶)无穷小;32x x -是22x x -的高阶无穷小.提示:222000sin 32sin 1cos sin lim,lim 2,lim,x x x xx x x xx xx →→→+-+=∞==∞13222000cos 11(1)1lim ,lim 1,lim 0arcsin 22nx x x x x x x x x x x n→→→-+--=-==-.2.已知0x →时,()12311ax+-与cos 1x -为等价无穷小,则常数a =32-.提示:12230021(1)1233lim lim 1,1cos 1322x x axax a a x x →→+-==-==---.二、计算题1.21tan 1limx x x →-解:2000tan 1tan 1122lim lim lim 2x x x x xx x x x →→→--===--.2.2220(sec 1)lim3sin x x x x →-解:22222222240002(sec 1)(1cos )1lim lim lim3sin 3cos 312x x x x x x x x x x x x →→→⎛⎫ ⎪--⎝⎭===⋅⋅.3.0tan 2tan lim3sin sin 2x x x x x→--解:000sin 2sin sin tan 2tan cos 2cos cos 2cos lim lim lim 13sin sin 23sin sin 2sin (32cos )x x x x x xx xx x x x x x x x x x →→→--⋅===---.4.20sin cos 1limsin 3x x x x x →+--解:200sin cos 11limlim sin 333x x x x x x x x →→+-==-.第八节函数的连续性与间断点一、填空题1.设2,0()sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在0x =处连续,则常数,a b 应满足的关系为a b =.提示:()2(0)lim (0)x f a bxa f --→=+==,0sin (0)lim x bxf b x-+→==.2.设0()1,0ln(1),0x f x x bx x x <=-=⎨⎪+⎪->⎪⎩在0x =处连续,则常数a =22,b =1.提示:0(0)lim lim lim x x x axf x ----→→→===,(0)1f =-,00ln(1)(0)lim lim x x bx bxf b x x--+→→+=-=-=-.3.()sin xf x x=的可去间断点为0x =;221()32x f x x x -=-+的无穷间断点为2x =.4.若函数e ()(1)x af x x x -=-有无穷间断点0x =及可去间断点1x =,则常数a =e .提示:由已知,1e lim (1)x x a x x →--存在,所以1lim(e )0xx a →-=,从而e a =.二、单项选择题1.0x =是1()sin f x x x=的A .A.可去间断点B.跳跃间断点C.无穷间断点D.振荡间断点提示:01lim ()lim sin0x x f x x x→→==2.函数21,0(),012,12x x f x x x x x ⎧-<⎪=≤≤⎨⎪-<≤⎩D.A.在0,1x x ==处都间断B.在0,1x x ==处都连续C.在0x =处连续,1x =处间断D.在0x =处间断,1x =处连续提示:(0)1,(0)0(0)f f f -+=-==;(1)(1)1,(1)1f f f -+===.3.设函数42,0(),0x f x xk x ≠=⎨⎪=⎩在0x =处连续,则k =B .A.4B.14C.2D.12提示:021lim ()limlim ,(0)4x x x f x f k x →→→===.4.函数111122,0()221,0x x x x x f x x --⎧-⎪≠⎪=⎨+⎪=⎪⎩在0x =处B .A.左连续B.右连续C.左右均不连续D.连续提示:110lim 20,lim 2xxx x -+→→==+∞,从而(0)1(0),(0)1(0)f f f f -+=-≠==.三、讨论函数11e ,0()ln(1),10x x f x x x -⎧⎪>=⎨⎪+-<≤⎩在0x =处的连续性.解:111(0)lim ln(1)0(0),(0)lim ee x x xf x f f -+-+--→→=+====,所以()f x 在0x =处不连续,且0x =是第一类跳跃型间断点.四、若2,0()0e (sin cos ),x x a xf x x x x +≤⎧=⎨>+⎩在-∞(,)∞+内连续,求a .解:由于)(x f 在0=x 处连续,所以)0()0()0(f f f ==-+.(0)lim ()lim e (sin cos )1x x x f f x x x +++→→==+=,a a x x f f x x =+==--→→-)2(lim )(lim )0(0,a f =)0(.故1=a .五、设()f x 在(,)-∞+∞内有定义,且lim ()x f x a →∞=,1,0()0,0f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩.试讨论()g x 在0x =处的连续性.解:()0011lim ()lim lim 令x x t t x g x f f t a x →→→∞=⎛⎫== ⎪⎝⎭,(0)0g =,所以当0a =时,()g x 在0x =处连续,当0a ≠时,()g x 在0x =处间断.第九节连续函数的运算与初等函数的连续性一、填空题1.设,0()1,0a x x f x x x +≤⎧=>⎩在(,)-∞+∞内连续,则常数a =12.2.设22,1()1,1x bx x f x x a x ⎧++≠⎪=-⎨⎪=⎩在(,)-∞+∞处连续,则常数a =1,b =-3.提示:由题意知,1lim ()(1)x f x f a →==,则212lim1x x bx a x→++=-21lim(2)0x x bx →∴++=,则3b =-,进而1a =.3.211lim cos1x x x →-=-cos 2. 4.()2cot 2lim 1tan xx x→+=e .5.21lim 1xx x x →∞-⎛⎫= ⎪+⎝⎭4e-.提示:41122412lim lim 1e 11xx x xx x x x x -++--→∞→∞⎡⎤-⎛⎫⎛⎫⎢⎥=-= ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦.6.已知lim 82xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则常数a =ln 2.提示:332233lim lim 1e 822x a x x axx a x aax a a x a x a →∞→∞--⎡⎤+⎛⎫⎛⎫⎢⎥=+== ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦,所以3ln 8,ln 2a a ==.7.203sin (1)cos lim (1cos )x x x x x →++=+12.8.0x →=12.提示:原式limx→=0x →=22012limsin 222x x x x x →⋅==⋅.9.函数21()23f x x x =--的连续区间是(,1),(1,3),(3,)-∞--+∞.二、单项选择题1.当1→x 时,函数1211e 1x x x ---的极限等于D .A.2B.0C.∞D.不存在但不为∞2.设()f x 在2x =连续,(2)3f =,则2214lim ()24x f x x x →⎛⎫-=⎪--⎝⎭D .A.0B.2C.3D.34提示:22222142113lim ()lim ()lim ()(2)244244x x x x f x f x f x f x x x x →→→-⎛⎫-====⎪---+⎝⎭.三、讨论11()1exxf x -=-的连续性,若有间断点,指出其类型.解:()f x 为初等函数,故在其定义区间(,0),(0,1),(1,)-∞+∞内均连续,在其无定义点0,1x x ==间断.据011lim ()lim1ex x x xf x →→-==∞-,知0x =为第二类无穷间断点;据11111111lim ()lim 0,lim ()lim 11e1exx x x x x xxf x f x --++→→→→--====--,知1x =为第一类跳跃间断点.第十节闭区间上连续函数的性质一、单项选择题1.方程sin 2x x +=有实根的区间为A.A.π,32⎛⎫⎪⎝⎭B.π0,6⎛⎫ ⎪⎝⎭C.ππ,64⎛⎫⎪⎝⎭D.ππ,42⎛⎫⎪⎝⎭提示:令()sin 2f x x x =+-,分别在各个对应的闭区间上验证零点定理是否成立即可.2.方程(1)(2)(3)(1)(2)(4)(1)(3)(4)x x x x x x x x x ---+---+---(2)(3)(4)0x x x +---=有D 个实根.A.0B.1C.2D.3提示:令()(1)(2)(3)(1)(2)(4)(1)(3)(4)f x x x x x x x x x x =---+---+---(2)(3)(4)x x x +---,又(1)0,(2)0,(3)0,(4)0f f f f <><>,则由零点定理知,方程在(1,2),(2,3),(3,4)分别至少存在一个根;又()f x 是三次多项式,则方程至多有三个根,综上可知方程恰好有三个根.二、证明题1.证明方程e 2xx -=在区间(0,2)内至少有一实根.证明:令()e 2xf x x =--,则()f x 在[0,2]上连续,且2(0)10,(2)e 40f f =-<=->,根据零点定理,至少存在一点(0,2)ξ∈,使()0f ξ=,所以方程()0f x =,即e 2xx -=在区间(0,2)内至少有一实根.2.设()f x 在[,]a b 上连续,且(),()f a a f b b <>.证明至少存在一点(,)a b ξ∈,使()f ξξ=.证明:令()()F x f x x =-,则()F x 在[,]a b 上连续,且()()0F a f a a =-<,()()0F b f b b =->,根据零点定理,至少存在一点(,)a b ξ∈,使()0F ξ=,即()f ξξ=.3.附加题设()f x 在[,)a +∞上连续,lim ()0x f x →+∞=.证明()f x 在[,)a +∞上有界.证明:由lim ()0x f x →+∞=,对10,X a ε=>∃>,当x X >时,有()()01f x f x ε=-<=,即()f x 在(,)X +∞上有界;又()f x 在[,]a X 上连续,故()f x 在[,]a X 上有界,所以存在10,M >使[]1(),,f x M x a X ≤∀∈,取{}1max 1,M M =,则对[],x a ∀∈+∞()f x M <,即()f x 在[,)a +∞上有界.第一章自测题一、填空题(每小题3分,共18分)1.()03limsin tan ln 12x x x x →=-+14-.提示:()20003331lim lim lim 4sin tan tan (cos 1)222ln 12x x x xx x x x x x x x →→→-⋅===---+.2.2131lim2x x x →-=+-26-.提示:21lim26x x x x →→==-+-.3.已知212lim31x x ax bx →-++=+,其中b a ,为常数,则a =7,b =5.4.若()2sin 2e 1,0,0ax x x f x xa x ⎧+-≠⎪=⎨⎪=⎩在()+∞∞-,上连续,则a =-2.提示:由题意知,20sin 2e 1lim ax x x x →+-20sin 2e 1lim 22ax x x a a x x →⎛⎫-=+=+= ⎪⎝⎭,从而2a =-.5.曲线21()43x f x x x -=-+的水平渐近线是0y =,铅直渐近线是3x =.二、单项选择题(每小题3分,共18分)1.“对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ”是数列{}n x 收敛于a 的C.A.充分条件但非必要条件B.必要条件但非充分条件C.充分必要条件D.既非充分也非必要条件2.设()2,02,0x x g x x x -≤⎧=⎨+>⎩,()2,0,0x x f x x x ⎧<=⎨-≥⎩则()g f x =⎡⎤⎣⎦D .A.22,02,0x x x x ⎧+<⎨-≥⎩ B.22,02,0x x x x ⎧-<⎨+≥⎩ C.22,02,0x x x x ⎧-<⎨-≥⎩ D.22,02,0x x x x ⎧+<⎨+≥⎩3.下列各式中正确的是D.A.01lim 1exx x +→⎛⎫-= ⎪⎝⎭B.01lim 1e xx x +→⎛⎫+= ⎪⎝⎭C.1lim 1e xx x →∞⎛⎫-=- ⎪⎝⎭D.11lim 1e xx x --→∞⎛⎫+= ⎪⎝⎭4.设0→x 时,tan e 1x-与n x 是等价无穷小,则正整数n =A.A.1B.2C.3D.4提示:由题意知,当0→x 时,tan e 1tan xx x - 从而n 取1.5.曲线221e 1ex x y --+=-D .A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线又有铅直渐近线6.下列函数在给定区间上无界的是C.A.1sin ,(0,1]x x x ∈ B.1sin ,(0,)x x x∈+∞C.11sin ,(0,1]x x x∈ D.1sin ,(0,)x x x∈+∞三、计算题(每小题7分,共49分)1.2x →解:2222(1)(2)(413)(1)(413)9limlim 4(2)42x x x x x x x →→→+-+===-.2.()21ln(1)lim cos x x x +→解:()()2211ln(1)ln(1)0limcos lim 1cos 1x x x x x x ++→→=+-222001cos 112limlim ln(1)2eeex x x x x x →→---+===.3.()1lim123nnnn →∞++解:()1312333,31233n n n nnnn<++<⋅∴<++<⋅Q1n =,()1lim 1233nnnn →∞∴++=.4.21sinlimx x x解:2111sinsin sinlim lim limlim 112x x x x x x x x x x→+∞→+∞→+∞→+∞=⋅⋅.5.设函数()()1,0≠>=a a a x f x ,求()()()21lim ln 12n f f f n n →∞⎡⎤⎣⎦ .解:()()()()()()22ln 1ln 2ln 1limln 12lim n n f f f n f f f n n n →∞→∞+++=⎡⎤⎣⎦L L ()()222ln 12ln ln limlim22n n n n a n aan n →∞→∞++++===L .6.1402e sin lim 1e xx x x x →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭解:1144002e sin 2e sin 2lim lim 1111e 1e x x x x x x x x x x --→→⎛⎫⎛⎫++ ⎪ +=-=-= ⎪ ⎪ ⎪++⎝⎭⎝⎭,11114444000e 2e 12e sin 2e sin sin lim lim lim 1e 1e e e 1x x x xx x x x x x x x x x x x x +++-→→→-⎛⎫⎛⎫+ ⎪⎛⎫⎛⎫ ⎪++⎝⎭ ⎪ ⎪ ⎪+=+=+ ⎪ ⎪ ⎪⎛⎫ ⎪ ⎪++ ⎪+⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭301lim 1e xx +-→=+=,所以,原式1=.7.已知(lim 1x x →-∞=,求,.a b解:左边22(1)lim limlim x x x x a x b x →-∞→-∞⎡⎤--+⎢==,右边1=,故[]lim (1)1x a x b →-∞--=+,则1,2a b ==-.四、讨论函数,0()(0,0,1,1)0,0x xa b x f x a b a b x x ⎧-≠⎪=>>≠≠⎨⎪=⎩在0x =处的连续性,若不连续,指出该间断点的类型.(本题8分)解:当a b =时,()0f x ≡,此时()f x 在0x =处连续;当a b ≠时,000011lim ()lim lim lim ln (0)0x x x x x x x x a b a b af x f x x x b→→→→---==-=≠=,故()f x 在0x =处不连续,所以0x =为()f x 得第一类(可去)间断点.五、附加题设()f x 在[0,1]上连续,且(0)(1)f f =.证明:一定存在一点10,2ξ⎡⎤∈⎢⎣⎦,使得1()2f f ξξ⎛⎫=+ ⎪⎝⎭.(本题7分)证明:设1()()2F x f x f x ⎛⎫=-+⎪⎝⎭,显然()F x 在10,2⎡⎤⎢⎥⎣⎦上连续,而1(0)(0)2F f f ⎛⎫=-⎪⎝⎭,()()11110222F f f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,211(0)(0)022F F f f ⎡⎤⎛⎫⎛⎫=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,若1(0)02F F ⎛⎫= ⎪⎝⎭,即(0)0F =或102F ⎛⎫= ⎪⎝⎭时,此时取0ξ=或12ξ=即可;若1(0)02F F ⎛⎫< ⎪⎝⎭时,由零点定理知:一定存在一点10,2ξ⎡⎤∈⎢⎣⎦,使()0Fξ=,即1()2f fξξ⎛⎫=+⎪⎝⎭.。

专升本高数一练习题答案

专升本高数一练习题答案

专升本高数一练习题答案### 专升本高数一练习题答案#### 一、选择题1. 题目:函数 $f(x) = x^2 - 4x + 3$ 的最小值是?答案:函数 $f(x) = x^2 - 4x + 3$ 可以写成 $f(x) = (x -2)^2 - 1$,因此最小值为 $-1$。

2. 题目:下列哪个函数是奇函数?答案:$f(x) = x^3$ 是奇函数,因为 $f(-x) = (-x)^3 = -x^3 = -f(x)$。

3. 题目:曲线 $y = e^x$ 在点 $(0,1)$ 处的切线方程是?答案:曲线 $y = e^x$ 的导数为 $y' = e^x$,所以在点$(0,1)$ 处的切线斜率为 $1$,切线方程为 $y - 1 = 1(x - 0)$,即$y = x + 1$。

#### 二、填空题1. 题目:极限 $\lim_{x \to 0} \frac{\sin x}{x}$ 的值为?答案:$1$2. 题目:不定积分 $\int x^2 dx$ 的结果为?答案:$\frac{1}{3}x^3 + C$3. 题目:二重积分 $\iint_{D} x^2 y^2 dA$ 在区域 $D$ 内,其中$D$ 为正方形区域 $[0,1] \times [0,1]$ 的值为?答案:$\frac{1}{6}$#### 三、解答题1. 题目:证明函数 $f(x) = x^3 - 3x$ 在区间 $(-\infty,+\infty)$ 上是增函数。

答案:首先求导数 $f'(x) = 3x^2 - 3$。

令 $f'(x) = 0$,解得$x = \pm 1$。

当 $x < -1$ 或 $x > 1$ 时,$f'(x) > 0$,说明函数在这些区间内是增函数。

当 $-1 < x < 1$ 时,$f'(x) < 0$,说明函数在该区间内是减函数。

专升本高等数学一考试真题及参考答案.doc

专升本高等数学一考试真题及参考答案.doc

专升本高等数学(一)考试真题及参考答案
专升本高等数学(一)考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

第1题设b≠0,当x→0时,sinbx是x2的( )
A.高阶无穷小量
B.等价无穷小量
C.同阶但不等价无穷小量
D.低阶无穷小量
参考答案:D
参考答案:C
第3题函数f(x)=x3-12x+1的单调减区间为( )
A.(-∞,+∞)
B.(-∞,-2)
C.(-2,2)
D.(2,+∞)
参考答案:C
参考答案:A 第5题
参考答案:B
参考答案:D 第7题
参考答案:B 参考答案:A 参考答案:B
参考答案:A
二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

参考答案:1
参考答案:2
第13题设y=x2+e2,则dy=________
参考答案:(2x+e2)dx
第14题设y=(2+x)100,则Y’=_________.
参考答案:100(2+z)99
参考答案:-In∣3-x∣+C
参考答案:0
参考答案:1/3(e3一1)
参考答案:y2cosx
第19题微分方程y’=2x的通解为y=__________.
参考答案:x2+C
参考答案:1
三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第21题
第22题第23题第24题
第25题
第26题设二元函数z=x2+xy+y2+x-y-5,求z的极值.
第27题第28题。

专升本高数第一章练习题(带答案)

专升本高数第一章练习题(带答案)

第一部分:1.下面函数与为同一函数的是( )y x =2.A y =.B y =ln .x C y e =.ln xD y e =解:,且定义域,∴选Dln ln xy e x e x === (),-∞+∞2.已知是的反函数,则的反函数是( )ϕf ()2f x()1.2A y x ϕ=().2B y x ϕ=()1.22C y x ϕ=().22D y x ϕ=解:令反解出:互换,位置得反函数,选A ()2,y f x =x ()1,2x y =ϕx y ()12y x =ϕ3.设在有定义,则下列函数为奇函数的是( )()f x (),-∞+∞()().A y f x f x =+-()().B y x f x f x =--⎡⎤⎣⎦()32.C y x f x =()().D y f x f x =-⋅解:的定义域且∴()32y x f x = (),-∞+∞()()()()()3232y x x f xx f x y x -=-=-=-选C4.下列函数在内无界的是( )(),-∞+∞21.1A y x=+.arctan B y x =.sin cos C y x x =+.sin D y x x=解: 排除法:A 有界,B 有界,C ,21122x x x x ≤=+arctan 2x π<sin cos x x +≤故选D5.数列有界是存在的( ){}n x lim n n x →∞A 必要条件B 充分条件C 充分必要条件D 无关条件解:收敛时,数列有界(即),反之不成立,(如有界,但不{}n x n x n x M ≤(){}11n --收敛,选A.6.当时,与为等价无穷小,则= ( )n →∞21sinn 1k nk AB 1C 2D -212解:, 选C 2211sin limlim 111n n k kn n n n →∞→∞==2k =i n二、填空题(每小题4分,共24分)7.设,则的定义域为 ()11f x x=+()f f x ⎡⎤⎣⎦解: ∵()f f x ⎡⎤⎣⎦()111111f x x==+++112x x x≠-+=+∴定义域为.()f f x ⎡⎤⎣⎦(,2)(2,1)(1,)-∞-⋃--⋃-+∞8.设则2(2)1,f x x +=+(1)f x -=解:(1)令 ()22,45x t f t t t +==-+()245f x x x =-+(2).()221(1)4(1)5610f x x x x x -=---+=-+9.函数的反函数是44log log 2y =解:(1),反解出:;(2)互换位置,得反函数4log y =x 214y x -=,x y .214x y -=10.n =解:原式.3lim2n =有理化11.若则.105lim 1,knn e n --→∞⎛⎫+= ⎪⎝⎭k =解:左式= 故.5lim ()510n kn k ne e e →∞---==2k =12.=2352lim sin 53n n n n→∞++解:当时,~ ∴原式== . n →∞2sin n 2n 2532lim 53nn n n →∞+⋅+65三、计算题(每小题8分,共64分)13.设 求sin1cos 2x f x ⎛⎫=+ ⎪⎝⎭()f x解:.故.22sin 2cos 21sin 222x x x f ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ ()()221f⎡⎤∴=-⎣⎦()()221f x x =-14.设,的反函数,求()f x ln x =()g x ()()1211x g x x -+=-()()f g x 解: (1)求 ∴反解出:22():1x g x y x +=- x 22xy y x -=+22x y y =+-互换位置得(2).,x y ()22g x x x =+-()()ln ln 22f g x g x x x ==⎡⎤⎣⎦+-15.设,求的值。

专升本数学第一章至第四章复习题(精简版)答案

专升本数学第一章至第四章复习题(精简版)答案

专升本入学考试《高等数学》复习题参考答案第一章 函数、极限与连续19.[]1,3-, 2,0 20.[]0,1, []1,1- 21.,x x22.ln 1y x =- 23.2 24.1x 32 26. 43 27.0 28.203050235 29.1 30.x31.()()(),1,1,1,1,-∞--+∞ 32.0 33.(),(1),0,1,2,k k k ππ+=±± 34.1,1 35.(1)偶函数 (2)既非奇函数又非偶函数 (3)偶函数 (4)奇函数(5)既非奇函数又非偶函数 (6)偶函数 36.证明略 37.1 38.(1)1x =-为第二类间断点 (2)x =(3)0x =为第一类间断点 (4)0,1,2,x =±± 均为第一类间断点 39.(1)存在 (2)不连续,1x =为可去间断点,定义:*,01()1,11,12x x f x x x <<⎧⎪==⎨⎪<<⎩,则*()f x 在1x =处连续 40. 0x =为可去间断点,改变(0)f 定义为(0)4f =,即可使()f x 在0x =连续; 2x =为第一类间断点第二章 导数与微分14.()f a ' 15.-2 16.1 17.1()y x e e -=- 18.219.2cos x e xdx 20.(){}()()f f f x f f x f x '''⎡⎤⎡⎤⎣⎦⎣⎦ 21.()2503y x +=- 22.(1)连续,不可导 (2)连续,不可导 23.cos ,0()1,0x x f x x <⎧'=⎨≥⎩ 24.()[()()()]f x x x xe f e e f e f x ''+25. 1(ln 1)xx x ++ 26. 222()42()f x x f x '''+第三章 中值定理与导数的应用12.12 13. 121e 17.在(),1-∞-及()3,+∞单调递增,在()1,3-单调递减 18.极小值ln 22f ⎛⎫-= ⎪⎝⎭19.20证明略 21. 在()0,1及()2,e +∞单调递减,在()21,e 单调递增,极小值()10f =,极大值()224f e e =22.2a =,在3x π=处取得极大值 23. 24.23b ac <第四章 不定积分12.()F x C + 13.-5 14.()F ax b a+ 15.()f x e C + 16.arctan ()f x C +17.ln tan x C+ 18.arcsin x C-+19.12ln 31x C x -++20.11sin 2sin12424x x C -+ 21.(2C +22.11arcsin ln 22x x C ++ 23.322111arctan ln(1)366x x x x C -+++24.()()1cos ln sin ln 2x x x C ++⎡⎤⎣⎦ 25.2111sin 2cos 2448x x x x C +++26.()32e C + 27.()ln ln ln x C +⎡⎤⎣⎦28.()1ln 11xxx e C e-++++ 29.233x C - 30.6811sin sin 68x x C -+ 31.()21ln tan 2x C + 32.2arccos 1102ln10x C -+33.C 34.1arcsin C x -35.ln x C x-+ 36.()sin sec x e x x C -+。

数学专升本第一章练习题

数学专升本第一章练习题

数学专升本第一章练习题### 数学专升本第一章练习题一、单项选择题1. 下列哪个选项是实数集的子集?A. 整数集B. 有理数集C. 无理数集D. 复数集2. 以下哪个命题是正确的?A. 空集是任何集合的子集B. 空集是任何集合的真子集C. 空集是任何集合的超集D. 空集是任何集合的真超集3. 集合A和集合B的交集表示为:A. A∪BB. A∩BC. A-BD. A∈B4. 以下哪个函数是偶函数?A. f(x) = x^2 + 1B. f(x) = x^3 - 1C. f(x) = x^2 - xD. f(x) = x^2 - 2x + 1二、填空题1. 集合{1, 2, 3}和{2, 3, 4}的并集是_________。

2. 函数f(x) = 2x + 3的反函数是_________。

3. 函数f(x) = x^2在区间[-1, 1]上的最大值是_________。

4. 函数f(x) = sin(x)在区间[0, π]上的最小值是_________。

三、解答题1. 证明:若A⊆B且B⊆C,则A⊆C。

证明:设x∈A,则由A⊆B,得x∈B。

又由B⊆C,得x∈C。

因此,A⊆C。

2. 计算:求函数f(x) = x^3 - 3x^2 + 2在x=1处的导数值。

解:首先求导数f'(x) = 3x^2 - 6x。

将x=1代入,得到f'(1) = 3(1)^2 - 6(1) = -3。

3. 讨论:函数f(x) = x^2 - 4x + 4在区间[1, 3]上的单调性。

解:首先求导数f'(x) = 2x - 4。

令f'(x) = 0,解得x = 2。

当1 ≤ x < 2时,f'(x) < 0,函数单调递减;当2 < x ≤ 3时,f'(x) > 0,函数单调递增。

四、综合题1. 已知集合A={x|-2 < x < 3},B={x|0 ≤ x ≤ 5},求A∩B。

(完整版)专升本高等数学习题集与答案

(完整版)专升本高等数学习题集与答案

·第一章 函数一、选择题1.以下函数中,【 C 】不是奇函数A.y tan x xB. y xC. y ( x 1) ( x 1)D. y2 sin 2 x2.f (x) 与 g( x) 同样的是【x以下各组中,函数 】A.f ( x) x, g( x)3x 3B.f ( x) 1, g( x) sec 2 xtan 2 xC. f ( x) x 1, g(x) x21D. f ( x) 2 ln x, g( x)ln x 23.x1以下函数中,在定义域内是单一增添、有界的函数是【】A. y x+arctan xB. y cosxC. yarcsin xD. y x sin x4. 以下函数中,定义域是 [,+ ] , 且是单一递加的是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x5. 函数 yarctan x 的定义域是 【】A. (0, )B. (2 , )2C.[, 2 ]D. (,+ )26. 以下函数中,定义域为 [ 1,1] ,且是单一减少的函数是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x7. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]8. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]9.以下各组函数中, 【 A 】 是同样的函数A. f ( x) ln x 2和 gx 2ln x B. f (x)x 和 g xx 2C. f ( x) x 和 g x ( x )2D. f ( x) sin x 和 g(x) arcsin x10. 设以下函数在其定义域内是增函数的是【】A. f ( x) cos xB. f ( x) arccos xC. f (x)tan xD. f (x)arctan x11. 反正切函数 y arctan x 的定义域是【】A. (, ) B. (0, )2 2C. ( , )D. [1,1]12. 以下函数是奇函数的是【】··A. y x arcsin xB.y x arccosxC.y xarccot xD. yx 2 arctan x13. 函数 y5ln sin 3x 的复合过程为 【 A 】A. y 5u ,u ln v, v w 3 , w sin xB. y 5u 3, u ln sin xC. y5ln u 3 ,u sin x D. y5u , u ln v 3,v sin x二、填空题1.函数 yarcsin xarctan x的定义域是 ___________.5 5 2.f ( x)x 2arcsin x的定义域为 ___________.33.函数 f ( x) x 2 arcsinx 1的定义域为 ___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分:1.下面函数与y x=为同一函数的是()2.A y=.B y=ln.xC y e=.ln xD y e=解:ln lnxy e x e x===,且定义域(),-∞+∞,∴选D 2.已知ϕ是f的反函数,则()2f x的反函数是()()1.2A y xϕ=().2B y xϕ=()1.22C y xϕ=().22D y xϕ=解:令()2,y f x=反解出x:()1,2x y=ϕ互换x,y位置得反函数()12y x=ϕ,选A 3.设()f x在(),-∞+∞有定义,则下列函数为奇函数的是()()().A y f x f x=+-()().B y x f x f x=--⎡⎤⎣⎦()32.C y x f x=()().D y f x f x=-⋅解:()32y x f x=的定义域(),-∞+∞且()()()()()3232y x x f x x f x y x-=-=-=-∴选C4.下列函数在(),-∞+∞内无界的是()21.1A yx=+.arctanB y x=.sin cosC y x x=+.sinD y x x=解: 排除法:A21122xxx x≤=+有界,B arctan2xπ<有界,C sin cosx x+≤,故选D5.数列{}n x有界是lim nnx→∞存在的()A 必要条件B 充分条件C 充分必要条件D 无关条件解:{}n x收敛时,数列n x有界(即n x M≤),反之不成立,(如(){}11n--有界,但不收敛,选A.6.当n→∞时,21sinn与1kn为等价无穷小,则k= ()A12B 1C 2D -2解:2211sinlim lim111n nk kn nn n→∞→∞==,2k=选C二、填空题(每小题4分,共24分) 7.设()11f x x=+,则()f f x ⎡⎤⎣⎦的定义域为 解: ∵()f f x ⎡⎤⎣⎦()111111f x x==+++112x xx≠-+=+ ∴()f f x ⎡⎤⎣⎦定义域为(,2)(2,1)(1,)-∞-⋃--⋃-+∞. 8.设2(2)1,f x x +=+则(1)f x -= 解:(1)令()22,45x t f t t t +==-+ ()245f x x x =-+(2)()221(1)4(1)5610f x x x x x -=---+=-+.9.函数44log log 2y =的反函数是解:(1)4log y =,反解出x :214y x -=;(2)互换,x y 位置,得反函数214x y -=.10.n =解:原式32n =有理化.11.若105lim 1,knn e n --→∞⎛⎫+= ⎪⎝⎭则k = .解:左式=5lim ()510n kn k nee e →∞---== 故2k =.12.2352limsin 53n n n n→∞++= 解:当n →∞时,2sin n ~2n∴原式=2532lim 53n n n n →∞+⋅+= 65. 三、计算题(每小题8分,共64分) 13.设sin1cos 2x f x ⎛⎫=+ ⎪⎝⎭求()f x解:22sin 2cos 21sin 222x x x f ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ ()()221f ⎡⎤∴=-⎣⎦.故()()221f x x =-. 14.设()f x ln x =,()g x 的反函数()()1211x g x x -+=-,求()()f g x解: (1)求22():1x g x y x +=- ∴反解出x :22xy y x -=+22x y y =+- 互换,x y 位置得()22g x x x =+-(2)()()ln ln22f g x g x x x ==⎡⎤⎣⎦+-.15.设32lim 8n n n a n a →∞+⎛⎫=⎪-⎝⎭,求a 的值。

解:3323lim lim 1n n n n n a a n a n a →∞→∞+⎛⎫⎛⎫=+ ⎪ ⎪--⎝⎭⎝⎭lim,n naa n aee →∞-==8a e ∴=,故ln83ln 2a ==.16.求()111lim 12231nn n n →∞⎛⎫++⋯+ ⎪ ⎪⋅⋅+⎝⎭ 解:(1)拆项,11(1)(1)k k k k k k +-=++111,2,,1k n k k =-=⋯+()11112231n n ++⋯+⋅⋅+1111112231n n ⎛⎫⎛⎫⎛⎫=-+-+⋯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111n =-+ (2)原式=lim 11111lim n nnn n e e n →∞--+→∞⎛⎫-== ⎪+⎝⎭*选做题1已知222(1)(21)126n n n n ++++⋯+=,求22233312lim 12n n n n n n →∞⎛⎫++⋯+ ⎪+++⎝⎭ 解:222312n n n++⋯++ 2222233311211n n n n n n ++⋯+≤+⋯+≤+++且222312lim n n n n→∞++⋯++ ()()31(21)1lim36n n n n n n →∞++==+222312lim1n n n →∞++⋯++3(1)(21)1lim 6(1)3n n n n n →∞++==+ ∴由夹逼定理知,原式13=2 若对于任意的,x y ,函数满足:()()()f x y f x f y +=+,证明()f y 为奇函数。

解 (1)求()0f :令()()()0,0,02000x y f f f ===→=(2)令()()()()():0x y f f y f y f y f y =-=-+→-=-()f y ∴为奇函数第二部分:1. 下列极限正确的( ) A . sin lim1x x x →∞= B . sin limsin x x x x x →∞-+不存在 C . 1lim sin 1x x x →∞= D . limarctan 2x x π→∞= 解:011sin lim sin lim x t t x tx x t→∞→= ∴选C注:sin 1sin 10lim 0;lim 1sin 101x x x x x A B x x x→∞→∞--===++2. 下列极限正确的是( )A . 10lim 0xx e -→= B . 10lim 0xx e +→= C . sec 0lim(1cos )xx x e →+= D . 1lim(1)xx x e →∞+=解:11lim 0xx e e e--∞∞→=== ∴选A 注::,:2,:1B C D +∞3. 若()0lim x x f x →=∞,()0lim x x g x →=∞,则下列正确的是 ( )A . ()()0lim x x f x g x →+=∞⎡⎤⎣⎦B . ()()0lim x x f x g x →-=∞⎡⎤⎣⎦ C . ()()1lim0x x f x g x →=+ D . ()()0lim 0x x kf x k →=∞≠解:()()0lim lim x x x x k kf x k f x k →→≠==⋅∞∞ ∴选D4.若()02lim2x f x x→=,则()0lim3x xf x →= ( ) A .3 B .13 C .2 D .12解:()()002323limlim 32x t tx x t f x f t →→=()021211lim 23323t f t t→==⋅=,∴选B 5.设()1sin (0)0(0)1sin (0)x x x x f x x a x x ⎧<⎪⎪=⎪=⎨⎪+>⎪⎪⎩且()0lim x f x →存在,则a = ( )A .-1B .0C .1D .2 解:sin lim 1,x x x →==01lim sin x x a o a x +→⎡⎤⎛⎫+=+ ⎪⎢⎥⎝⎭⎣⎦1a ∴= 选C . 6.当0x +→时,()1f x =是比x 高阶无穷小,则 ( ) A .1a > B .0a > C .a 为任意实数 D .1a<解:00112lim lim 01ax x xa a x++→→>=∴>.故选A 7.lim 1xx x x →∞⎛⎫= ⎪+⎝⎭解:原式lim 1111lim 11x xxxx e e x →∞-∞-+→∞⎛⎫-== ⎪+⎝⎭8.2112lim 11x x x →⎛⎫-=⎪--⎝⎭解:原式()()()112lim11x x x x →∞-∞+--+111lim 12x x →==+9.()()()3100213297lim 31x x x x →∞-+=+ 解:原式3972132lim lim 3131x x x x x x →∞→∞∞⎛⎫ ⎪∞⎝⎭-+⎛⎫⎛⎫⋅ ⎪ ⎪++⎝⎭⎝⎭328327⎛⎫== ⎪⎝⎭10.已知216lim 1x x ax x→++-存在,则a =解:()1lim 10x x →-=()21lim 60x x ax →∴++=,160,7a a ++==-11.1201arcsin lim sin xx x e x x -→⎛⎫+= ⎪⎝⎭解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x xxx →→==,故原式=1.12.若()220ln 1lim0sin n x x x x →+=且0sin lim01cos n x xx→=-,则正整数n = 解:()222200ln 1limlim sin n n x x x x x x xx→→+⋅=20420,lim 02n x n x n x →<>2,4,n n ∴>< 故3n =. 13.求sin 32limsin 23x x xx x→∞+-解:sin 31lim0sin 31,lim 0x x x x x x →∞→∞⎛⎫=≤= ⎪⎝⎭sin 21lim 0sin 21,lim 0x x x x x x →∞→∞⎛⎫=≤= ⎪⎝⎭∴原式022033+==-- 14.求0x →解:原式有理化x →0tan (1cos )1lim(1cos )2x x x x x →-=⋅-0tan 111limlim 222x x x x x x →∞→=⋅==15.求21lim sin cos xx x x →∞⎛⎫+ ⎪⎝⎭解:令1t x=,当x →∞时,0t → 原式()10lim cos sin 2tt t t →=+[]10lim 1cos 1sin 2tt t t →=+-+()0cos 1sin 2lim2t t t tee →∞-+=16.求0ln cos 2limln cos3x xx→解:原式[][]0ln 1cos 21lim ln 1cos31x x x →--+-变形0cos 21lim cos31x x x →--等价()()2021242lim 1932x x x →-=-等价 注:原式02sin 2cos3limcos 23sin 3x x xx x→∞⎛⎫ ⎪∞⎝⎭-⨯-49=⋯⋯= 17.求02lim sin x x x e e xx x-→---解: 原式0020lim1cos x x x e e x -→+--000000lim lim 2sin cos x x x x x x e e e e xx --→→++= 18.设()fx 1,0x e a x x x -⎧+>⎪=<⎪⎩且()0lim x f x →存在,求a 的值。

相关文档
最新文档