2020高考数学快速解题方法
2020年高考江苏版高考数学 一、光速解题——学会9种快速解题技法

- 2, 2,
{ 即
f(x)=
������2 + x ������2 -
+ 2
2,x < - x, -
- 1或x > 2,作出图象如下(加粗部分),由图象可知 1 ≤ x ≤ 2,
f(x)的值域是
[ ]9 - 4,0 ∪(2,+∞).
高考加油,高考加油,高考加油
高考复习参考资料
{ log2(x + 1),x ∈ [0,1),
典例 1 (平面向量问题)设 a,b,c 是单位向量,且 a·b=0,则(a-c)·(b-c)的最小值 为 .
答案 1- 2 高考加油,高考加油,高考加油
高考复习参考资料
解析 由于(a-c)·(b-c)=-(a+b)·c+1,因此求(a-c)·(b-c)的最小值等价于求(a+b)·c 的 最大值,这个最大值只有当向量 a+b 与向量 c 同向共线时取得.由于 a·b=0,故 a⊥b,如图所 示,|a+b|= 2,|c|=1,当 θ=0 时,(a+b)·c 取得最大值 2,故所求的最小值为 1- 2.
1 cos������ + cos������ 4
解析 不妨令△ABC 为等边三角形,则 cos A=cos C=2,则1 + cos������cos������=5.
技法 2 换元法 换元法又称变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出 来,或者将题目变为熟悉的形式,简化复杂的计算和推理.换元的实质是转化,关键是构造元和设元, 理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中再研究,从而使非标 准型问题标准化、复杂问题简单化.换元法经常用于三角函数的化简求值、复合函数解析式的求 解等.
高考数学127个快速解题公式

高中数学127个快速解题公式第1章 集合1、有限集合子集个数:子集个数:2n 个,真子集个数:12n -个;2、集合里面重要结论:①A B A A B ⋂=⇒⊆;②A B A B A ⋃=⇒⊆;③A B A B ⇒⇔⊆ ④A B A B ⇔⇔= 3、同时满足求交集,分类讨论求并集4、集合元素个数公式:()()()()n A B n A n B n A B =+-第2章 函数52.236,3.142, 2.718e π≈≈≈≈≈ 6、分数指数幂公式:nma = 7、对数换底公式:log 1log ;log log log c a a c b b b b a a ==8、单调性的快速法:①.增+增→增;增—减→增;②.减+减→减;减—增→减;③.乘正加常,单调不变: ④.乘负取倒,单调不变:9、奇偶性的快速法:①.奇±奇→奇;偶±偶→偶;②.奇()⨯÷奇→偶;偶()⨯÷偶→偶;奇()⨯÷偶→奇;10、函数的切线方程:000()()y y f x x x '-=-11、函数有零点min max ()0()0f x f x ≤⎧⇔⎨≥⎩12、函数无零点max min ()0()0f x f x ⇔≤≥或13、函数周期性:()()f a x f b x +=+的周期T b a =-; 14、函数对称性:()()f a x f b x +=-的对称轴2a bx +=; 15、抽象函数对数型:若()()()f xy f x f y =+,则()log a f x x =;16、抽象函数指数型:若()()()f x y f x f y +=,则()xf x a =;17、抽象函数正比型:若()()()f x y f x f y +=+,则()f x kx =; 18、抽象函数一次型:若()f x c '=,则()f x cx b =+;19、抽象函数导数型:若()()f x f x '=,则()x f x ke =或()0f x =;20、两个重要不等式:1ln(1)1(0)ln 1x x e x x x e x x x ⎧≥+⇒+≤≤-==⎨≤-⎩当且仅当时“”成立 21、洛必达法则:()()()()limlim x ax a f x f x g x g x →→'='(当()0()0f x g x ∞→∞或时使用) 22、恒成立问题:max min(1)()()(2)()()a f x a f x a f x a f x ≥⇔≥<⇔<23、证明()()f x g x >思路:思路1:(1)()()()()0h x f x g x h x =-⇔>(常规首选方法)思路2:min max ()()f x g x >(思路1无法完成)第3章 数列24、等差数列通项公式:1(1)n a a n d =+- 25、等差数列通项公式:11()(1)22n n n a a n n S na d +-==+ 26、等比数列通项公式:11n n a a q -=27、等比数列通项公式:11(1)11n n n a a qa q S q q+-==--28、等差数列的性质:若m n p q +=+,则m n p q a a a a +=+ 29、等比数列的性质:若m n p q +=+,则m n p q a a a a = 30、等差中项:若,,a A b 成等差数列,则2A a b =+ 31、等比中项:若,,a G b 成等比数列,则2G ab = 32、裂项相消法1:若111(1)1n n nn -++=,则有1111n nT n n =-=++ 33、裂项相消法2:若1111(2)22n n n n -++⎛⎫= ⎪⎝⎭,则有1111(1)2212n T n n =+--++ 34、裂项相消法3:若111111n nnn a a d a a ++=-⎛⎫⎪⎝⎭,则有11111()n n T d a a +=- 35、裂项相消法4:若1111(21)(21)22121n n n n -+--+⎛⎫= ⎪⎝⎭,则有11(1)221n T n =-+ 36、错位相减法求和通式:1112()1(1)1n n n n dq b b a b qa b T q q q -=+----第4章 三角函数37、三角函数的定义:正弦:sin y r α=;余弦:cos x r α=;正切:tan yxα=;其中:r =38、诱导公式:π倍加减名不变,符号只需看象限;半π加减名要变,符号还是看象限。
高考数学快速解题方法(实用)

高考数学快速解题方法(实用)高考数学实用的快速解题方法1.熟悉基本的解题步骤和解题方法解题的过程,是一个思维的过程。
对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。
2.审题要认真仔细对于一道具体的习题,解题时最重要的环节是审题。
审题的第一步是读题,这是获取信息量和思考的过程。
读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。
有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。
所以,在实际解题时,应特别注意,审题要认真、仔细。
3.认真做好归纳总结在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
4.熟悉习题中所涉及的内容解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。
解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。
5.学会画图画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。
有些题目,只要分析图一画出来,其中的关系就变得一目了然。
尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
6.先易后难,逐步增加习题的难度人们认识事物的过程都是从简单到复杂。
简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。
高考数学快速进行解题方法及技巧

高考数学快速进行解题方法及技巧高考数学是高考中最重要的科目之一,也是很多学生的难点。
在考试中,时间紧迫,题目也越来越难,如果不掌握一些快速解题的方法和技巧,那么很容易被题目绊住,导致时间不够用、做不完题目的情况。
下面将介绍一些高考数学快速解题的方法和技巧。
1. 能列方程的用方程数学中很多问题都可以用方程来表示,因此能尽可能多地将题目转化为方程,这样可以更快地解决问题。
在列方程时,一定要认真读题、理解题目意思,避免列错了方程。
2. 基本运算要熟练高考数学中的基本运算一定要熟练掌握,包括加减乘除、分数、百分数、小数的相互转化和四则运算等。
如果基本运算不熟练,就会在这些简单的计算上浪费太多的时间。
3. 快速平方计算平方数时,可以用平方公式,也可以用分解质因数的方法,特别是在计算两位数的平方时,可以运用下面的方法:$$(a+b)^2=a^2+b^2+2ab$$例如,计算96的平方:$$96^2=(100-4)^2=100^2-2\times100\times4+4^2=9216$$4. 变量代换当一个问题中出现了很多变量时,可以适当地做一些变量代换,将复杂的问题化简为简单的形式。
例如,当我们遇到像$x+y+z=10$、$xy+xz+yz=20$ 这样的问题时,我们可以把$x+y+z$ 看作一个整体,用$a$ 来代替它,把$xy+xz+yz$ 看作一个整体,用$b$ 代替它,这样就可以用$a$ 和$b$ 来解决问题。
在进行变量代换时,要注意保持等式的平衡。
5. 快速分解因数分解因数是高考数学中常考的知识点之一。
但是如果直接使用分解因数的方法,会浪费很多时间。
因此,在分解因数时,我们可以利用阶梯型分解法,特别是在分解较大数的时候,这种方法更为有效。
例如,对于$100$ 这个数字,我们可以像下面这样较快地得出所有的因数:$$\begin{matrix}1&2&4&5&10&20&25&50&100\\&&&&\uparrow&&&&\end{matrix}$$6. 规律分析有时候,一些数学问题中隐藏着一些规律,只要能够找到这些规律,就能够迅速解题。
2020高考数学选择题的十大万能解题方法

高考数学选择题的十大万能解题方法1、特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2、极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3、剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4、数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5、递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6、顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7、逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8、正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9、特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10、估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
2020年高考数学答题实用技巧大汇总

2020年高考数学答题实用技巧大汇总1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:高中数学21种解题方法与技巧4、换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高考数学题秒杀技巧

以下是一些高考数学题的秒杀技巧:
1.特殊化法:当题目中给出的条件很复杂时,我们可以将问题中的某些元素特殊化,
以便更好地解决问题。
2.极限法:当题目中需要解决的数值处于一个范围之间时,我们可以考虑使用极限思
想,将问题转化为一个简单的形式,以便更快地解决问题。
3.归纳法:当问题中的数值规模较大时,我们可以使用归纳思想,从特殊情况开始,
逐步推导出一般规律,以便更快地解决问题。
4.转化法:当题目中给出的条件或问题比较复杂时,我们可以将其转化为一个更简单、
更易理解的形式,以便更好地解决问题。
5.方程法:当题目中涉及到多个数值之间的关系时,我们可以使用方程思想,建立这
些数值之间的方程关系,以便更好地解决问题。
这些技巧并不是适用于所有高考数学题,而是需要根据具体情况灵活运用。
同时,使用技巧时也需要遵守数学规律和逻辑,避免出现错误。
2020高考数学6大解答题技巧

2020高考数学6大解答题技巧1·三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
2·数列题1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
3·立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
4·概率问题1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。
5·圆锥曲线问题1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3.战术上整体思路要保7分,争9分,想12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考数学快速解题方法2020高考数学快速解题方法1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。
二阶有点麻烦,且不常用。
所以不赘述。
希望同学们牢记上述公式。
当然这种类型的数列可以构造(两边同时加数)7 . 函数详解补充1、复合函数奇偶性:内偶则偶,内奇同外2、复合函数单调性:同增异减3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。
它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。
另外,必有唯一一条过该中心的直线与两旁相切。
8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法前面减去一个1,后面加一个,再整体加一个29 . 适用于标准方程(焦点在x轴)爆强公式k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。
10 . 强烈推荐一个两直线垂直或平行的必杀技已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!11 . 经典中的经典相信邻项相消大家都知道。
下面看隔项相消:对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+ 1)-1/(n+2)]注:隔项相加保留四项,即首两项,尾两项。
自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!12 . 爆强△面积公式S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题13 . 你知道吗?空间立体几何中:以下命题均错(1)空间中不同三点确定一个平面(2)垂直同一直线的两直线平行(3)两组对边分别相等的四边形是平行四边形(4)如果一条直线与平面内无数条直线垂直,则直线垂直平面(5)有两个面互相平行,其余各面都是平行四边形的几何体是棱柱(6)有一个面是多边形,其余各面都是三角形的几何体都是棱锥注:对初中生不适用。
14 . 一个小知识点所有棱长均相等的棱锥可以是三、四、五棱锥。
15 . 求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值答案为:当n为奇数,最小值为(n2-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n2/4,在x=n/2或n/2+1时取到。
16 . √〔(a2+b2)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b为正数,是统一定义域)17 . 椭圆中焦点三角形面积公式S=b2tan(A/2)在双曲线中:S=b2/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。
A为两焦半径夹角。
18 . 爆强定理空间向量三公式解决所有题目:cosA=|{向量a.向量b}/[向量a的模×向量b的模](1)A为线线夹角(2)A为线面夹角(但是公式中cos换成sin)(3)A为面面夹角注:以上角范围均为[0,派/2]。
19 . 爆强公式12+22+32+…+n2=1/6(n)(n+1)(2n+1);123+223+323+…+n23=1/4(n2) (n+1)220 . 爆强切线方程记忆方法写成对称形式,换一个x,换一个y举例说明:对于y2=2px可以写成y×y=px+px再把(xo,yo)带入其中一个得:y×yo=pxo+px21 . 爆强定理(a+b+c)2n的展开式[合并之后]的项数为:Cn+22,n+2在下,2在上22 . 转化思想切线长l=√(d2-r2)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。
23 . 对于y2=2px过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。
爆强定理的证明:对于y2=2px,设过焦点的弦倾斜角为A那么弦长可表示为2p/〔(sinA)2〕,所以与之垂直的弦长为2p/[(cosA)2]所以求和再据三角知识可知。
(题目的意思就是弦AB过焦点,CD过焦点,且AB垂直于CD)24 . 关于一个重要绝对值不等式的介绍爆强∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣25 . 关于解决证明含ln的不等式的一种思路举例说明:证明1+1/2+1/3+…+1/n>ln(n+1)把左边看成是1/n求和,右边看成是Sn。
解:令an=1/n,令Sn=ln(n+1),则bn=ln(n+1)-lnn,那么只需证an>bn即可,根据定积分知识画出y=1/x的图。
an=1×1/n=矩形面积>曲线下面积=bn。
当然前面要证明1>ln2。
注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右边看成是数列求和,证面积大小即可。
说明:前提是含ln。
26 . 爆强简洁公式向量a在向量b上的射影是:〔向量a×向量b的数量积〕/[向量b的模]。
记忆方法:在哪投影除以哪个的模27 . 说明一个易错点若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a) 牢记28 . 离心率爆强公式e=sinA/(sinM+sinN)注:P为椭圆上一点,其中A为角F1PF2,两腰角为M,N29 . 椭圆的参数方程也是一个很好的东西,它可以解决一些最值问题。
比如x2/4+y2=1求z=x+y的最值。
解:令x=2cosay=sina再利用三角有界即可。
比你去=0不知道快多少倍!30 . 仅供有能力的童鞋参考的爆强公式和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]积化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+ cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/231 . 爆强定理直观图的面积是原图的√2/4倍。
32 . 三角形垂心爆强定理(1)向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心)(2)若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。
33 . 维维安尼定理(不是很重要(仅供娱乐))正三角形内(或边界上)任一点到三边的距离之和为定值,这定值等于该三角形的高。
34 . 爆强思路如果出现两根之积x1x2=m,两根之和x1+x2=n我们应当形成一种思路,那就是返回去构造一个二次函数再利用△大于等于0,可以得到m、n范围。
35 . 常用结论过(2p,0)的直线交抛物线y2=2px于A、B两点。
O为原点,连接AO.BO。
必有角AOB=90度36 . 爆强公式ln(x+1)≤x(x>-1)该式能有效解决不等式的证明问题。
举例说明:ln(1/(22)+1)+ln(1/(32)+1)+…+ln(1/(n2)+1)证明如下:令x=1/(n2),根据ln(x+1)≤x有左右累和右边再放缩得:左和37 . 函数y=(sinx)/x是偶函数在(0,派)上它单调递减,(-派,0)上单调递增。
利用上述性质可以比较大小。
38 . 函数y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减。
另外y=x2(1/x)与该函数的单调性一致。
39 . 几个数学易错点(1)f`(x) (2)研究函数奇偶性时,忽略最开始的也是最重要的一步:考虑定义域是否关于原点对称(3)不等式的运用过程中,千万要考虑"="号是否取到(4)研究数列问题不考虑分项,就是说有时第一项并不符合通项公式,所以应当极度注意:数列问题一定要考虑是否需要分项!40 . 提高计算能力五步曲(1)扔掉计算器(2)仔细审题(提倡看题慢,解题快),要知道没有看清楚题目,你算多少都没用(3)熟记常用数据,掌握一些速算技(4)加强心算、估算能力(5)检验41 . 一个美妙的公式已知三角形中AB=a,AC=b,O为三角形的外心,则向量AO×向量BC(即数量积)=(1/2)[b2-a2]证明:过O作BC垂线,转化到已知边上42 . 函数①函数单调性的含义:大多数同学都知道若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小),但有些意思可能有些人还不是很清楚,若函数在D上单调,则函数必连续(分段函数另当别论)这也说明了为什么不能说y=tanx在定义域内单调递增,因为它的图像被无穷多条渐近线挡住,换而言之,不连续.还有,如果函数在D上单调,则函数在D上y与x一一对应.这个可以用来解一些方程.至于例子不举了②函数周期性:这里主要总结一些函数方程式所要表达的周期设f(x)为R上的函数,对任意x∈R(1)f(a±x)=f(b±x)T=(b-a)(加绝对值,下同)(2)f(a±x)=-f(b±x)T=2(b-a)(3)f(x-a)+f(x+a)=f(x)T=6a(4)设T≠0,有f(x+T)=M[f(x)]其中M(x)满足M[M(x)]=x,且M(x)≠x则函数的周期为243 . 奇偶函数概念的推广(1)对于函数f(x),若存在常数a,使得f(a-x)=f(a+x),则称f(x)为广义(Ⅰ)型偶函数,且当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)(2)若f(a-x)=-f(a+x),则f(x)是广义(Ⅰ)型奇函数,当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)(3)有两个实数a,b满足广义奇偶函数的方程式时,就称f(x)是广义(Ⅱ)型的奇,偶函数.且若f(x)是广义(Ⅱ)型偶函数,那么当f在[a+b/2,∞)上为增函数时,有f(x1) 44 . 函数对称性(1)若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称(2)若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称柯西函数方程:若f(x)连续或单调(1)若f(xy)=f(x)+f(y)(x>0,y>0),则f(x)=㏒ax(2)若f(xy)=f(x)f(y)(x>0,y>0),则f(x)=x2u(u由初值给出)(3)f(x+y)=f(x)f(y)则f(x)=a2x(4)若f(x+y)=f(x)+f(y)+kxy,则f(x)=ax2+bx(5)若f(x+y)+f(x-y)=2f(x),则f(x)=ax+b特别的若f(x)+f(y)=f(x+y),则f(x)=kx45 . 与三角形有关的定理或结论中学数学平面几何最基本的图形就是三角形①正切定理(我自己取的,因为不知道名字):在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC②任意三角形射影定理(又称第一余弦定理):在△ABC中,a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA③任意三角形内切圆半径r=2S/a+b+c(S为面积),外接圆半径应该都知道了吧④梅涅劳斯定理:设A1,B1,C1分别是△ABC三边BC,CA,AB 所在直线的上的点,则A1,B1,C1共线的充要条件是CB1/B1A·BA1/A1C·AC1/C1B=144 . 易错点(1)函数的各类性质综合运用不灵活,比如奇偶性与单调性常用来配合解决抽象函数不等式问题;(2)三角函数恒等变换不清楚,诱导公式不迅捷。